SNOWBALL SAMPLING!

By Leo A. GoopmaN
University of Chicago

1. Introduction and Summary. An s stage k¥ name snowball sampling pro-
cedure is defined as follows: A random sample of individuals is drawn from a
given finite population. (The kind of random sample will be discussed later in
this section.) Each individual in the sample is asked to name k different indi-
viduals in the population, where k is a specified integer; for example, each indi-
vidual may be asked to name his “k best friends,” or the “k individuals with
whom he most frequently associates,” or the “k individuals whose opinions he
most frequently seeks,” ete. (For the sake of simplicity, we assume throughout
that an individual cannot include himself in his list of k individuals.) The indi-
viduals who were not in the random sample but were named by individuals in
it form the first stage. Each of the individuals in the first stage is then asked to
name k different individuals. (We assume that the question asked of the indi-
viduals in the random sample and of those in each stage is the same and that %
is the same.) The individuals who were not in the random sample nor in the
first stage but were named by individuals who were in the first stage form the
second stage. Each of the individuals in the second stage is then asked to name
k different individuals. The individuals who were not in the random sample nor
in the first or second stages but were named by individuals who were in the
second stage form the third stage. Each of the individuals in the third stage is
then asked to name k different individuals. This procedure is continued until
each of the individuals in the sth stage has been asked to name & different indi-
viduals.

The data obtained using an s stage k name snowball sampling procedure can
be utilized to make statistical inferences about various aspects of the relation-
ships present in the population. The relationships present, in the hypothetical
situation where each individual in the population is asked to name k different
individuals, can be described by a matrix with rows and columns corresponding
to the members of the population, rows for the individuals naming and columns
for the individuals named, where the entry 6;; in the sth row and jth column is
1 if the sth individual in the population includes the jth individual among the
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k individuals he would name, and it is O otherwise. While the matrix of the ¢’s
cannot be known in general unless every individual in the population is inter-
viewed (i.e., asked to name k different individuals), it will be possible to make
statistical inferences about various aspects of this matrix from the data obtained
using an s stage k name snowball sampling procedure. For example, when
s = k = 1, the number, M, , of mutual relationships present in the population
(i.e., the number of values ¢ with 8;; = 6;; = 1 for some value of j > %) can be
estimated.

The methods of statistical inference applied to the data obtained from an s
stage k name snowball sample will of course depend on the kind of random sample
drawn as the initial step. In most of the present paper, we shall suppose that
a random sample (i.e., the “zero stage” in snowball sample) is drawn so that
the probability, p, that a given individual in the population will be in the sample
is independent of whether a different given individual has appeared. This kind
of sampling has been called binomial sampling; the specified value of p (assumed
known) has been called the sampling fraction [4]. This sampling scheme might
also be described by saying that a given individual is included in the sample just
when a coin, which has a probability p of “heads,” comes up “heads,” where
the tosses of the coin from individual to individual are independent. (To each
individual there corresponds an independent Bernoulli trial determining whether
he will or will not be included in the sample.) This sampling scheme differs in
some respects from the more usual models where the sample size is fixed in ad-
vance or where the ratio of the sample size to the population size (i.e., the sample
size-population size ratio) is fixed. For binomial sampling, this ratio is a random
variable whose expected value is p. (The variance of this ratio approaches zero
as the population becomes infinite.) In some situations (where, for example, the
variance of this ratio is near zero), mathematical results obtained for binomial
sampling are sometimes quite similar to results obtained using some of the more
usual sampling models (see [4], [7]; compare the variance formulas in [3] and
[5]); in such cases it will often not make much difference, from a practical point
of view, which sampling model is utilized. (In Section 6 of the present paper
some results for snowball sampling based on an initial sample of the more usual
kind are obtained and compared with results presented in the earlier sections
of this paper obtained for snowball sampling based on an initial binomial sample.)

For snowball sampling based on an initial binomial sample, and with
s = k = 1, so that each individual asked names just one other individual and
there is just one stage beyond the initial sample, Section 2 of this paper discusses
unbiased estimation of M ; , the number of pairs of individuals in the population
who would name each other. One of the unbiased estimators considered (among
a certain specified class of estimators) has uniformly smallest variance when the
population characteristics are unknown; this one is based on a sufficient sta-
tistic for a simplified summary of the data and is the only unbiased estimator of
M, based on that sufficient statistic (when the population characteristics are
unknown). This estimator (when s = £ = 1) has a smaller variance than a
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comparable minimum variance unbiased estimator computed from a larger
random sample when s = 0 and k = 1 (i.e., where only the individuals in the
random sample are interviewed) even where the expected number of individuals
in the larger random sample (s = 0, £ = 1) is equal to the maximum expected
number of individuals studied when s = k = 1 (i.e., the sum of the expected
number of individuals in the initial sample and the maximum expected number
of individuals in the first stage). In fact, the variance of the estimator when
s =0 and k = 1 is at least twice as large as the variance of the comparable
estimator when s = k = 1 even where the expected number of individuals
studied when s = 0 and k¥ = 1 is as large as the maximum expected number of
individuals studied when s = k = 1. Thus, for estimating M;, the sampling
scheme with s = & = 1 is preferable to the sampling scheme with s = 0 and
k = 1. Furthermore, we observe that when s = & = 1 the unbiased estimator
based on the simplified summary of the data having minimum variance when
the population characteristics are unknown can be improved upon in cases where
certain population characteristics are known, or where additional data not in-
cluded in the simplified summary are available. Several improved estimators are
derived and discussed.

Some of the results for the special case of s = k = 1 are generalized in Sec-
tions 3 and 4 to deal with cases where s and k are any specified positive integers.
In Section 5, results are presented about s stage k name snowball sampling pro-
cedures, where each individual asked to name k different individuals chooses &
individuals at random from the population. (Except in Section 5, the numbers
8;; , which form the matrix referred to earlier, are assumed to be fixed (i.e., to
be population parameters); in Section 5, they are random variables. A variable
response error is not considered except in so far as Section 5 deals with an ex-
treme case of this.)

For social science literature that discusses problems related to snowball
sampling, see [2], [8], and the articles they cite. This literature indicates, among
other things, the importance of studying “social structure and . . . the relations
among individuals” [2].

2. The Case s = k = 1. The term “sample” will be used throughout (except
in Section 6) to refer to the “binomially sampled” sample; i.e., to the “zero
stage” in the s stage k£ name snowball sample. The number of individuals in the
population who enter mutual relationships is 2M;; , We now consider the prob-
lem of estimating My when s = k = 1. Let y be the number of individuals in
the sample who enter mutual relationships (with individuals in the population,
and thus with individuals who are either in the sample or in the first stage).
The random variable y has a binomial distribution with expected value Efy} =
2My;p. (To see this, think of the population as divided into those individuals
who enter mutual relationships, plus the others.) Thus an unbiased estimator
of My is y/(2p).

Let y» be the number of individuals in the sample who enter mutual relation-
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ships with other individuals in the sample, and let y; be the number of indi-
viduals in the sample who enter mutual relationships with individuals who do
not appear in the sample but who are, of course, in the first stage. Then
y = y1 + 2. The random variable y./2 has a binomial distribution with ex-
pected value Ef{y,/2} = M up’. (To see this, think of the population as divided
into those pairs of individuals who name each other, plus the others.) Thus an
unbiased estimator of My is y2/(2p°). The random variable y; has a binomial
distribution with expected value E{y:} = M1u2pg, where ¢ = 1 — p. Thus an
unbiased estimator of My; is y1/(2pq). Of course,

E{y} = E{y} + Elys} = Mul2pq + 21)2] = 2Mup.

Let zu; be the number of mutual relationships observed from these data; i.e.
Tn = 3y + y1 = Wwue + Wi, where 3y, = wiye is the number of mutual rela-
tionships observed with both individuals in the sample and g = wiy is the
number of mutual relationships observed with only one of the individuals in the
sample. (We shall consider later in this section the number, wy;, of mutual re-
lationships observed, where neither individual entering the relationship is in
the sample, i.e., where both individuals are in the first stage; but at this point
this number is to be ignored.) We have introduced the more cumbersome nota-
tion (i.e., the x1; and the w’s) since a notation of this kind will be used in the
generalizations presented later. The random variable z;; has a binomial dis-
tribution with expected value E{xn} = Mu(1 — ¢’). Thus, an unbiased esti-
mator of My is z1u/(1 — ¢*) = zu/[p(2 — p)] = My .

Four unbiased estimators have been presented. In passing, we note that,
when the observed values of y; and ¥, are both zero, all four estimators lead to
an estimate of zero for My, . In particular, if no individuals appear in the bi-
nomial sample, all four estimators of My yield zero. If the population size, N,
is reasonably large. the probability of no individuals, ¢", is very small.

All four estimators are linear functions of y; and y.. We now consider the
class of all linear functions of y and y.. Writing ¥: = %/(2pg) and
Yy = 12/(2p"), all linear functions of y; and y. that are unbiased estimators of
My must be of form AY; 4+ (1 — A)Y, = M(A). The variance of Y, is
Mu(1 — 2pq)/(2pq), the variance of Yy is My (1 — p*)/p’, and the covariance
between Y; and Y, is —My; . These results follow from the fact that the sampling
scheme divides the My pairs into a trinomial with probabilities p* (both indi-
viduals in the sample), 2pg (just one in), and ¢* (neither in); /2 is the num-
ber in the first cell of the trinomial sample, y; is the number in the second cell,
and the second moments of these random variables are then immediate from
those of a trinomial. The variance of M (A4) is thus

dw = MulA*[(1 — 2pg)/(2pg)] + (1 — A)’[(1 — p*)/p"] — 24(1 — A))
= MulA’(p + 2¢) — 44¢ + (1 — p")2¢)/(20°9).
It follows that 4 = 2q/(p + 2q) minimizes the variance of M(A). Thus,
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among the class of unbiased estimators, M (A4 ), that are linear combinations of
y1 and y2 , the estimator with the smallest variance is

(Yi2¢ + Yop)/(2¢ + p) = (%1 + 392)/[p(2 — p)]
= 2u/[p(2 — p)] = My.

The variance of My is o%,, = Mud’/[p(2 — p)] = Mud’/(1 — ¢’). When
A = g, the unbiased estimator is Y1¢ + Yop = (y1 + 2)/(2p) = y/(2p), and
its variance is Muq/(2p).

The preceding comments dealt with all linear functions of y = wi; and
3y2 = wy2 that are unbiased estimators of M, ; we showed that My, had the
smallest variance among these. If we consider the class of all possible functions
of wiy and w2 (not only linear functions) that are unbiased estimators of My, ,
we shall prove below a more general result, from which it follows that the esti-
mator My, has the smallest variance among this class.

Let 213 be the number of individuals in the sample who do not enter mutual
relationships in the population. Because the snowball sampling design has a
first stage, zu1 is observed. We shall refer to the set (wu , wn2, 2u1) as the simpli-
fied set of data for mutual relationships when s = k = 1. (We noted earlier
that x1; and y were linear functions of wi; and wy2.) We shall now limit our
consideration to (wu , Wuz , 2u1), although, as we shall observe later in this sec-
tion, it may sometimes be worthwhile to make use of additional available data.
We now prove the following result:

THEOREM 1: If the population characteristics (including its size) are completely
unknown, then the estimator My, has minimum variance among all unbiased esti-
mators of My based on the simplified set of data when s = k = 1.

Proor: Let Ty be the number of individuals in the population who do not
have mutual relationships, so that 2M,; + T = N and y + 2y = n, where n
is the number in the binomial sample. We have

E{n} = Np = E{y} + E{Zu} = 2M11p + Tup.

The joint distribution of wi , wue, 2u is the following product of a trinomial
and binomial:

Pr {w , wne , 2} = (Pz)w"’@m)wm((12)M"_z"P’"qT"_'”K,

where K is a product of multinomial coefficients. The distribution of zy, is

Prizal = (@)1 - gy (U2)).

Zn

The conditional distribution of (wi; , wue, 211), given zi; and 2y , is

Tu
Pr{wy y Wuz, 2u | T, Zu} = U (,w ) ,
111

where r = p/(2 — p) and h = 1 — r. Thus, z;; and 2y, are jointly sufficient for
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(Wi , Wnz , 21). The joint distribution of zy; , 211 can be written as
(1) Pr {.’L’u y 211 | Mu , Tn} = Pl’ {xu | Mu} Pr {Zu | Tn}.

Since (M1, Tu) ranges through a Cartesian product in the case where the
population size is completely unknown, equation (1) indicates that z, is ir-
relevant for the estimation of My, ; Blackwell’s method [1] can be applied to
prove that to any unbiased estimator M™* of My, based on (zy , 2u) there cor-
responds an unbiased estimator M ** pbased on z; whose variance is no larger
than that of M+ (computed for the true distribution of zy,); the fact that, in the
case considered here, M** is only known to be within a certain class of esti-
mators (formed by computing the conditional distribution of M*, given zy ,
for all admissible distributions of z;) does not weaken the conclusion that if
there exists an estimator with minimum variance among all unbiased estimators
of My, based on z;; (which we shall see below is in fact the case) it will also have
minimum variance among all unbiased estimators based on (z1, 2u), and it
will therefore be sufficient to consider only functions of z;; when estimating
M, . (More can be said concerning the concept of “irrelevance” presented here,
but this would take us too far afield.) We have shown earlier that
My = 2u/[p(2 — p)] is an unbiased estimator of My, . It is, in fact, the only
unbiased estimator of My, that is based on zy , because an unbiased estimator,
g(xu), must satisfy the system of equations

My
Eog(xll) Pri{ey} = My, My, =0,1,2, ---,
2 =

which can be used to define g(zn) recursively for zi; = 0, 1, 2, - - - . Therefore,
g(zn) = My is the unique solution to this system of equations, and is thus the
minimum variance unbiased estimator of M; based on the simplified set of
data. This concludes the proof. (This theorem could also have been demon-
strated by proving that, if the population characteristics are unknown, the only
function of (&y , z11) that is an unbiased estimator of My, is My, ; the proof given
above of the uniqueness of an unbiased estimator of M;; among all functions of
zu can be modified in a straightforward manner to prove the uniqueness of an
unbiased estimator of M;; among all functions of (zy, 2u1).)

The estimator M, will be unbiased whether or not the population size, N, is
known. It is however important to note that Theorem 1 deals only with the situa-
tion where N is unknown.

In situations where N is known, the statistic z;; is not a sufficient statistic for
the ('wm, W2 , Zu) for the estimation of M 1 (since 2M 1 + Tu = N ), and
so it may be possible to obtain estimators of M;; that have a smaller variance
than My, . It is easy to see that, when N is known, the statistic (zy, zu1) is a
sufficient statistic for the simplified set of data for the estimation of M, . Since
the random variable 2;; has a binomial distribution with expected value E{z,} =
Typ, the estimator Ty = z;,/p is an unbiased estimator of Ty and My =
[N — 2u/pl/2 is an unbiased estimator of M;; . The variance o of 4, is equal
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to Tug/(4p), while the variance o% of My was equal to Myug’/[p(2 — p)l.
Since the ratio of these two variance is

E = a"fzz/a:,"- = 2Mu(1 — p)/[Tu(l — p/2)],

the relative accuracy of My and My, will depend on 2My; /Ty, which is un-
known. If 2My,/Ty, is small it will be better to use My, while if 2M u/Ty is
large it will be better to use My . Since My and My, are both unbiased, any
weighted average GMy; + (1 — G)My, will be unbiased. Since the My, and My,
are statistically independent, the value of G that will minimize the variance of
the weighted average is G = 1/(1 4+ E). Although E is unknown, it may be
possible to make a rough guess as to its magnitude, and thus obtain the corre-
sponding value of G to be used in computing the unbiased estimator.

If E and then G are estimated from the same data used to compute M;; and
M1, then the weighted average will not in general be unbiased, but this pro-
cedure may still be of value. An estimator of E can be based on the following
unbiased estimators of % and o’ respectively: ¢ = Mug’/[p(2 — p)] and
o = Tuq/ (4p). When N = 2My + Ty is known, various other unbiased
estimators of o% and ¢% could be obtained, and various iterative procedures
could be suggested for the estimation of My . We shall not go into these details
here, except to mention that, when N is large (N — «) and My;/N is a fixed
unknown constant, an approximation to the maximum likelihood estimator of
My, (based on the simplified set of data) can be obtained by an examination of
the roots of a fourth degree equation in My, , where the coefficients of the equa-
tion are a particular set of functions of x5 , zu , p, and N.

When s = k = 1, the expected number of individuals in the population who
will be interviewed is the sum of the expected number of individuals in the ran-
dom sample and the expected number of individuals in the first stage; i.e.,

N-1 N-—-1
Np+ N1 —p) 201 = (1= p)Pou()) = N 201 = (1 = p)™pu(s)
N—1

=N[1-(©1-=9p i;o (1 = p)bu(a)],

where by (7) is the proportion of the individuals in the population who are
named by < different individuals in the population,
N-—1 N-—-1

> bu(d) =1, and Z;ibn(i) =1
=0 1=

We now have the following theorem:

TuEOREM 2: For all N > 1, the expected number of individuals interviewed
is not greater than Np(2 — p) = N[l — (1 — p)’]. .

Proor: We first note that 2 1 (1 — p)bu(¢d) = E{(1 — p)?} is greater
than or equal to

)z’}’;&[ibu(f)l B(i)

(1-p)=01- =(1-p
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ie., that log E{(1 — p)’} = E{5} log (1 — p) = Eflog (1 — p)¥. This fact
follows from the convexity of —log = (see [6], p. 186). The lower bound is at-
tained when b;;(1) = 1 and b (2) = 0 for 7 1, which will occur if each indi-
vidual is named by exactly one individual in the population (N > 1).
Theorem 2 indicates that the maximum expected number of individuals in-
terviewed can be computed as a function of p or, on the other hand, the appro-
priate value of p can be determined when the maximum expected number of
individuals interviewed has been specified as Nfy; ;ie., thenp = 1 — (1 — fu)*.
Let us now compare the situation where s = k = 1, and the sampling frac-
tion is p, with the situation where s = 0, k¥ = 1, and the sampling fraction is
fu =1 — (1 — p)’. In the former situation, the maximum expected number of
individuals interviewed is Nfy ; in the latter situation, the expected number of
individuals interviewed (which is in this case the expected number of individuals
in the random sample) is also Nfy; . Although the expected number of individuals
interviewed in the former situation will be no more than the expected number of
individuals interviewed in the latter situation, we shall see that the variance of
M, in the former situation (s = k = 1, p) is smaller than the variance of the
minimum variance unbiased estimator of M;; (based on the wi2) in the latter
situation (s = 0,k = 1, fu). In the former situation, wi; , wne, and 2z, can
be observed; in the latter situation, wy; and z; cannot be observed, but wi,
can. In the latter situation, wy will have a binomial distribution with expected
value E{wis} = Myfh, the unbiased estimator of My will be wus/fh = My,
and the variance of M1y will be oo = M u(l—7f ) /f 4. By an argument similar
to that used in the proof for Theorem 1, it can be seen that M ’fl is the minimum
variance unbiased estimator of M;; (based on the wi2) in the latter situation
when the population characteristics are completely unknown. In the former
situation, we have that % = Mu(1 — p)*/p(2 — p) = Mu(l — fu)/fu . Thus,

o — o = Mu{(1 — i) /ft — (1 — fu)/fu} = Mu(1 — fu)/fh,
[o%s — o%)/o% = 1/fu,

and o%/oxs= fu/(1 + fu). This indicates that for estimating My, the former
situation (s = k = 1, p) is preferable to the latter situation (s = 0,k = 1, fi1)
when fi; < 1.

The estimator My, , which we have discussed in this section, is a function of
wi and wis ; i.e., a function of the number of mutual relationships observed
where at least one of the individuals entering the relationship is in the sample.
Let us now consider the number, wy;. , of mutual relationships observed where
either none, one, or both of the individuals are in the sample. We have that
wy. = Wio + Wi + Wie . Let wy.;; be the number of mutual relationships ob-
served where either none, one, or both of the individuals are in the sample and
where one of the mutually related individuals is named by ¢ individuals in the
sample who do not enter the relationship and the other individual is named by
7 individuals in the sample (0 < ¢ < j) who do not enter the relationship. Let
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Wi.i = D jziWn.i; (summed over all j such that j = 7). Then
Wi, = ;’wu-i- = wi.o. + Wiy ,

where wy.4. = D iz1Wn.: . We note that wiy.o. will include only mutual relation-
ships observed where either one or both of the individuals are in the sample.
Let M1, be the number of mutual relationships in the population where one of
the individuals entering the relationship is named by ¢ individuals in the popula-
tion who do not enter the relationship and the other individual is named by j
individuals (0 < ¢ < j) who do not enter the relationship. Let My;. = D ;5 Mys;
(summed over all j such that j = 7). Then

My = Eo My = Muo. + My,

where My 4. = Z;;l Mii. . The expected values of wy.0. and wy. 4. are
Bluno} = (1= ¢) 2 2 Musll = (1 = ¢)(1 = ¢,

and

E{wn.+ = 2 ZMun(l -1 - ¢),

izl iz

respectively. Thus, My = [wno./(1 — ¢*)] + wy. 4. is an unbiased estimator of
M, since E{Mu} = Muo. + Mu+. = My . The variance of wiy.o. is

Awwed = (1= ¢) 24 2 Mui(a' + ' = ¢™)

M= =)+ - "),
and the variance of wy;. .. is

.} = D ZMuu(l - A=)+ — ¢

iz2ljiz

The covariance between wi.o. and wy. 4. is

Cov {wyo. , Wit} = — 2, Z Muii(1 — @) (¢ + ¢ — ¢*)1 — ¢)A - ¢').

izl

Thus, the variance of My, is
%, = Z g‘ Muii(+ ¢ = ¢ — A = @)+ ¢ — ¢/ - ¢)
- .22:1 ’ZZ:‘Muu(l -1 =)+ — ")
Zg: Z;: Mul(d + ¢ — ¢)¢/(1 — )]
é 2; will = (1= ¢)(1 = ¢)lg/(1 = ¢)

M,
= [My— El E Mui(1 — ¢)(1 = ¢)lg'/(1 = ¢).

iz
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If My.; = 0 for all ¢ = 1, it is easy to see that My = My, . If My,; = 0 for
all £ =1 except Mun, then o3, = (My — Munp®)¢/(1 — ¢*). Thus the
ratio of the variances in this case is a%ll /aﬁf,“ =1 — p*(Mun/My);while My,
has a smaller variance than My, , the relative decrease in the variance is at most
p* (which is attained only when My = My, ; i.e., when My = 0). The rela-
tive decrease in the variance in the general case will depend on the unknown
parameters M;; (0 < 72 < §). (It is possible to derive an unbiased estimator
for each Myi; (0 = ¢ = 7), but we shall not go into these details here.) For
some values of the Myy;;, the relative decrease in the variance can be large.

The estimator M, is generally easier to compute than My, and the statistical
properties of My, are simpler to determine than are the corresponding properties
of My, . On the other hand, the variance of My, is greater than or equal to
that of My, . (The variance of My will be greater than that of M, whenever
My > M. .) The estimator My; does not use information about the number
of observed mutual relationships between individuals none of whom are in the
sample, while the estimator My, does. We have obtained a more accurate esti-
mator, My , although one that is not as simple as My, , by using this informa-
tion. When accuracy is more important than simplicity, as it is often the case,
M, should be used rather than M, . However, in the present paper where we
shall show how some of the results obtained concerning the statistical analysis of
the data from a one stage one name snowball sample can be generalized to obtain
corresponding results concerning the statistical analysis of data from an s stage
k name snowball sample where s and k are any specified positive integers, it will
be desirable to keep the exposition as simple as possible. For the sake of this
simplicity, we shall henceforth ignore the information about the number of ob-
served mutual relationships (and other more general kinds of relationships dis-
cussed in subsequent sections) between individuals none of whom are in the
sample. (While we have commented upon the effect of ignoring these relation-
ships when s = k£ = 1, it is beyond the scope of this paper to study this effect
when s and/or k are greater than 1.)

3. The Case Where s is a Specified Positive Integer and k = 1. We shall
discuss the estimation of the number, M, , of s 4+ 1 person circular relationships
in the population; i.e., the number of combinations of s + 1 individuals in the
population where the s + 1 individuals can be arranged so that the first indi-
vidual, if asked to name an individual in the population, would name the second
individual, the second individual would name the third, ---, the (s 4+ 1)th
individual would name the first. A two person circular relationship is a mutual
relationship as defined in the preceding section, and the results in the present
section are a direct generalization of the prior results. The proofs of these results
are similar to the proofs given in the preceding section, and therefore will not be
included here.

Let x4 be the number of s 4+ 1 person circular relationships observed from the
data in an s stage one name snowball sample; i.e., zg = Ws11 + Ws1,2 + Wer,3 +
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- =+ Ws,1,6+1, Where w,,1,; is the number of s + 1 person circular relationships
observed where j individuals entering the relationship are in the sample and
s + 1 — 7 individuals entering the relationship are in the other observed stages.
(For the sake of simplicity, we shall not consider here the number, w; 1,0, of
s + 1 person circular relationships observed where none of the individuals enter-
ing the relationship are in the sample; see related comments in Section 2.) The
random variable x,; has a binomial distribution with expected value

E{za) = M4l — (1 — p)**.

Thus, an unbiased estimator of My is za/[1 — (1 — p)**'] = M, , and the
variance of M, is o%,, = Ma(1 — p)**'/[1 — (1 — p)**']. An unbiased esti-
mator of o,, is 6%,, = Ma(1 — p)* /1 — (1 — p)‘“]

Let z,; be the number of individuals in the sample who are not members of
s + 1 person circular relationships. Because the snowball sampling design has s
stages, 2z is observed. We shall refer to the set

(Wa1,1 ) Wo,2, We,1,3, *** 5 Wa,l,e41 5 Zo1)

as the simplified set of data for s + 1 person circular relationships when s is a
specified integer and k = 1. We shall, for the sake of simplicity, now limit our
consideration to (Ws,1,1, We1,2, *** 5 Wa,1,64+1 , 2e1), although it may sometimes be
worthwhile to make use of additional available data (see related comments in
Section 2). By the same method of proof as for Theorem 1, it can be seen that,
if the population characteristics (including its size) are unknown, then the esti-
mator M, has minimum variance among all unbiased estimators of M, based
on the simplified set of data Similarly, 6%,, has a minimum variance among all
unbiased estimators of o%,, based on these data

The estimators M, and é¢%,, of M, and o%,, ,respectively, will be unbiased
whether or not the population size, N, is known. However, when N is known,
these estimators need not have minimum variance. When N is known, other un-
biased estimators can be based on the relationship (s + 1)My + T, = N,
where T, is the number of individuals in the population who do not enter s + 1
person circular relationships. Since the random variable 2, has a binomial dis-
tribution with expected value E{z4} = Tap, the estimator z,/p is an unbiased
estimator of Ty and [N — z.,l/p]/ (s +1) = M, is an unbiased estimator of
M, . The variance aim of My is Tu(1l — p)/p(s + 1)°. The M, and M, are
statistically independent, and could be combined in various ways, which we shall
not discuss here (see related discussion in Section 2).

With an s stage one name snowball sample, the expected number of individuals
interviewed is

N{Dil — (1 = p)™ba(d)} = N{1 — Zi(1 — p)" ™ ba(d)},

where b,;(7) is the proportion of the population who are named either directly
(in one step) or indirectly in s steps or less by ¢ different individuals in the popu-
lation; i.e., each individual in the population has an influence score 7, where 7 is
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the total number of different individuals who name him (they form step minus
one) or who name individuals who in turn name him (they form step minus two)
or who name individuals who in turn name individuals who name him (they form
step minus three), etc., until step minus s has been considered, and b, (z) is the
proportion of individuals in the population who have the influence score <, for
1=0,1,2,---. We have that > ;ba(¢) = 1 and > ;%bq(7) < s. As in the
proof of Theorem 2, it can be seen that, for all N > s, the maximum expected
number of individuals interviewed is N[1 — (1 — p)**'] = Nf., and the maxi-
mum occurs when by (s) = 1 and by (¢) = 0 for ¢ > s; this can be attained, for
example, if the individuals in the population form an N person circular relation-
ship (N > s). Thus, it is possible to determine this maximum as a function of
p or, on the other hand, to determine the appropriate value of p when the maxi-
mum expected proportion of the population to be interviewed has been specified
asfuie,p=1— (1 — f)¥,

Let us now compare the situation where an s stage one name snowball sample
is drawn and the sampling fraction is p with the situation where an s — 1 stage
one name snowball sample is drawn and the maximum expected proportion of
the population to be interviewed is f,; . In the latter situation, the sampling frac-
tion will be p,_1; = 1 — (1 — fu)*. In both situations, the maximum expected
proportion of the population to be interviewed is f.; , but we shall see that M
computed in the former situation (s, 1, p) will have a smaller variance than the
variance of the minimum variance unbiased estimator of M,; (based on a simpli-
fied set of data) in the latter situation (s — 1, 1, p,—1,1) when the population
characteristics are unknown. Let wg = Ws12 + Ws13 + -+ 4+ Ws1,.41 be the
number of s + 1 person circular relationships observed from the data in the
latter situation; i.e., wq is the number of s + 1 person circular relationships ob-
served where two or more of the individuals entering the relationship are in the
sample obtained. (For the sake of simplicity, we shall not consider here, where
an s — 1 stage one name sampling procedure is used, the number of s + 1
person circular relationships observed where either one or none of the individuals
entering the relationship are in the sample; see comments dealing with this point
in Section 4.) The random variable w, will have a binomial distribution with
expected value E{wy} equal to M4[l — P,_1,], where

Pa—l.l = [1 - ps-1,1]‘+1 + (8 + 1)[1 - pa—l.l]cps—l, 1

The unbiased estimator of M, will be wa/[1 — Peag] = M 31 and the variance

a‘ﬁ,;, of MY will be M s1Ps—11/[1 — Pe,—1,]. Limiting our consideration to the
simplified set of data, (w12, Wsa, < , Ws1,s+1), When an s — 1 stage one

name snowball sampling procedure is used to estimate M, , we find, by an argu-
ment similar to that used in the proof of Theorem 1, that M ¥, is the minimum
variance unbiased estimator of M, based on these data in the latter situation
(s = 1, 1, ps—11) when the population characteristics are unknown. We also
find that

2, 2 2
[GM,; - UM.,]/UMU = 8$ps-12/[1 — P,
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and
‘7121?.1/":!:1 = [l = P a)/[1 + 8pe11 — Poars].

This indicates that for estimating M, , the former situation (s, 1, p) is preferable
to the latter situation (s — 1, 1, p,—1,1) when p,11 < 1.

We have discussed the estimation of M,, from an s stage one name snowball
sample (and from an s — 1 stage one name snowball sample). It is also possible
to estimate M, for any ¢ < s from an s stage one name snowball sample since it
contains all the information obtained in a corresponding ¢ stage one name snow-
ball sample. (See comments dealing with this point in Section 4.) From an s
stage one name snowball sample it is also possible, using an approach similar to
that described in the present section, to estimate M, for any ¢ > s.

In closing this section, we note that an s + 1 person circular relationship is
an s + 1 person closed system in the sense that each of the s + 1 individuals
entering the relationship names an individual from among the s + 1 individuals,
and that it is an irreducible system in the sense that no proper subset of the
s + 1 individuals will form a closed system. Any s + 1 individuals forming an
s + 1 person closed irreducible system, in the sense defined here, will form an
s + 1 person circular relationship. We also note that an s + 1 person circular
relationship is an s + 1 person s step one direction relationship in the sense that,
starting with any given individual entering the relationship, if we include him,
the individual he names (this individual is said to be on step one), the individual
named by the individual on step one (this individual is said to be on step two),
.-+, the individual named by the individual on step's — 1 (this individual is
said to be on step s), we will have included all s + 1 individuals forming the rela-
tionship (and no others). Any s 4+ 1 individuals forming an s + 1 person s step
one direction relationship will form an s 4 1 person circular relationship.

4. The Case Where s and k are Specified Positive Integers. Let M, be the
number of s + k person s step k direction relationships in the population; i.e.,
the number of combinations of s 4+ k individuals in the population where, start-
ing with any given individual in the combination, if we include him, the % indi-
viduals he would name (they are said to be on step one), the k individuals who
would be named by each of the individuals on step one (they are said to be on
step two), - - - , the k individuals who would be named by each of the individuals
on step s — 1 (they are said to be on step s), we will have included all s + &
indidivuals in the combination (and no others). From the comments in the pre-
ceding section, we see that the number, M, , of s + 1 person s step one direction
relationships is equal to the number of s + 1 person circular relationships. The
number, My , of 1 4+ k person one step k direction relationships is equal to the
number of k¥ 4+ 1 person cliques; i.e., the number of combinations of k¥ 4 1 in-
dividuals where each individual in the combination would name the other k indi-
viduals in the combination. The results presented in the present section are direct
generalizations of the prior results; the proofs of these results are similar to the
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proofs presented earlier, and therefore will not be included, except at certain
points where they may not be directly evident.

Let x4 be the number of s + k person s step k direction relationships observed
from the data in an s stage k name snowball sample; i.e.,

sk = Ws,k,1 + Ws k2 + Ws k3 + b + Ws,k,s+k »

where w,,i,; is the number of s 4 & person s step k direction relationships ob-
served where j individuals entering the relationship are in the sample and
s + k — j individuals entering the relationship are in the other observed stages.
(For the sake of simplicity, we shall not consider here the number, w, 0, of
s + k person s step k direction relationships observed where none of the indi-
viduals in the relationship are in the sample.) The random variable z.. has a
binomial distribution with expected value E{za} = Mux[l — (1 — p)***]. Thus,
an unbiased estimator of M, is za/[1 — (1 — p)*™] = Ma , and the variance
of My is o%,, = Ma(1 — p)***/[1 — (1 — p)*™]. An unbiased estimator of
Ry is 60, = Ma(l — p)™/[1 — (1 — p)"™).

Let 2,x be the number of individuals in the sample who are not members of
s + k person s step k direction relationships. Because the snowball sampling de-
sign has s stages, 2. is observed. We shall refer to the set of

(We k1 y We k2 y Wa,k3y *** y Wak,otk 5 Zok)

as the simplified set of data for s + k person s step & direction relationships. As
in the earlier sections, we shall, for the sake of simplicity, limit our consideration
t0 (Ws k1 s Waki2y *** 5 Wsk.stk 5 2ak), When an s stage k name snowball sample is
used to estimate M, . By the same method of proof as for Theorem 1, it can be
seen that, if the population characteristics are unknown, then the estimator M,
has minimum variance among all unbiased estimators of M based on the simpli-
fied set of data when s and k are specified integers. Slmllarly, the estimator ¢%,,
has minimum variance among all unbiased estimators of o%,, based on these data.

Although M, and 6%,, will be unbiased estimators of M, and ¢%,, , respec-
tively, whether or not the population size, N, is known, these estimators need
not have minimum variance when N is known. When N is known, unbiased
estimators can be based on the fact that (s + k)M + Ta = N, where T is
the number of individuals in the population who are not members of s + k
person s step k direction relationships. The details in this case are very similar
to those appearing earlier (see related comments in Sections 2 and 3).

With an s stage k name snowball sample, the expected number of individuals
interviewed is

N2 — (1= ) ha(d)} = N1 — (1 = p) ™ bu(9),
where b..(¢) is the proportion of the population who are named either directly
(in one step) or indirectly in s steps or less by ¢ different individuals in the popu-

lation; i.e., each individual in the population has an influence score 7, where 7 is
the total number of different individuals who name him (they form step minus
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one) or who name individuals who in turn name him (they form step minus
two) or who name individuals who in turn name individuals who name him
(they form step minus three), ete., until step minus s has been considered, and
b (%) is the proportion of the individuals in the population who have influence
score %, for ¢ = 0, 1, 2, --- . We have that )_;bx(s) = 1 and D_;bx(s) =
Cor, Where cq = k + k* + --- + k°. The following theorem is a generaliza-
tion of Theorem 2:

TuroreM 3: When s and k are specified integers, the maximum expected number
of individuals interviewed is N{1 — (1 — p)**™, for N sufficiently large.

Proor: The fact that N[1 — (1 — p)***') = N{1 — 2 .(1 — p)*Mbu(4)}
can be proved using the same method as for Theorem 2. The bound is attained
whenever b (csk) = 1 and b (2) = 0 for ¢ 3 ¢y . It is possible to prove that,
for N sufficiently large, the bound can be attained. The detailed calculations will
not be given here.

Theorem 3 indicates that it is possible to determine the maximum expected
number of individuals interviewed as a function of p or, on the other hand, to
determine the appropriate value of p when the maximum expected proportion
of the population to be interviewed has been specified as f. ; i.e.,

p = 1 — (1 _ fSk)l/(cak‘Fl).

Let us now compare the situation where an s stage ¥ name snowball sample is
drawn and the sampling fraction is p with the situation where an s — 1 stage k
name snowball sample is drawn and the maximum expected proportion of the
population interviewed is fq . In the latter situation, the sampling fraction will
be pei = 1 — (1 — fu) -1+ 1In both situations, the maximum expected
proportion of the population to be interviewed is fi . In the latter situation
(s — 1, k, ps—1.4), an estimator of My will be based (for reasons made clear
below) on the number wa = Wsxiy1 + Wekpte + -+ + Werorx of s+ &
person s step k direction relationships observed, where k 4 1 or more individuals
entering the relationship are in the sample and s — 1 or fewer individuals enter-
ing the relationship are in the other s — 1 stages. (If ¥ 4+ 1 (or more) indi-
viduals entering an s + k person s step k direction relationship are observed in
the sample, then the relationship will be detected in an s — 1 stage k name snow-
ball sample since the remaining s — 1 (or fewer) individuals will be observed in
the other s — 1 (or fewer) stages. If one (or more) individuals in an s + &
person s step k direction relationship is observed in the sample, then the relation-
ship will be detected in an s stage & name snowball sample since the remaining
k + s — 1 (or fewer) individuals will be observed in the other stages; k indi-
viduals will be observed in the first stage, when one individual is in the sample,
and the remaining s — 1 individuals will be observed in stages 2, 3, - - - , s.) The
random variable wg, will have a binomial distribution with expected value E{ws}
equal to Ml — P,y ], where

k
Px—l.k = E (s —i- k) p;—l,k(l - ps——l.k)s+k-'~

= (2
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The unbiased estimator of My, is Moy = Wwsr/[1 — P,y 1], and the variance of
My is cuj = MuP, 14/[1 — P,;;]. Limiting our consideration to the simpli-
fied set of data, (Wskk+1, Wek ke, *** , Wsk,s+x), When an s — 1 stage k name
snowball sampling procedure is used to estimate M, , we find by an argument
similar to that used in the proof of Theorem 1 that M ¥ is the minimum variance
unbiased estimator of M, based on these data in the latter situation
(s — 1, k, ps—1,k) when the population characteristics are unknown. We also
find that, in the former situation (s, k, p),

gy = Ma(l — p)"™/[L — (1 — p)™
= Ma(1 — fu)**/[1 — (1 = fu)***]
= Msk<1 - ps—l,k)g‘k/[l - (1 - ps—l'k)g‘k]v

where e = (s 4+ k)/(ca + 1), 9 = (s + k) (€sm1 + 1) /(s + 1), 0 = O,
so that

Gay — Ty = MadPoaa/[l = Poya]l — (1 = poap)®/[1 = (1 = poca )™}
= MadPorp — (1= poca )™M /Il = Pyl — (1 = poa ).

In the preceding section, we saw that this difference was positive when k = 1.
When s = 1, this difference is also positive since

[ (5 ) phat = ™ = (1 = ) | / 1 = )
> [i <k) Pok(l — pop)* ™" — 1] =0,

$= ?

when por < 1. Thus, when s = 1, the former situation (1, k, p) is preferable to
the latter situation with regard to the estimation of My, the number of &k + 1
person cliques. This generalizes the result presented in Section 2 indicating the
preferability of the snowball sample with s = 1 to the case where s = 0. It is
interesting to note that, while an s stage one name snowball sample is preferable,
with regard to the estimation of M, , to a comparable s — 1 stage one name
snowball sample (see Section 3), it is not always the case that an s stage k name
snowball sample is preferable, with regard to the estimation of M, , to a compa-
rable s — 1 stage k name snowball sample, except when either k = 1 or s = 1.
This follows from the fact that the difference o2, — o%,, can be negative for
certain values of s, k, and p,1 1 ; e.g., s = 2, k = 2, and p, 2 very close to one.

We have discussed the estimation of M from an s stage & name snowball
sample (and from an s — 1 stage k name snowball sample). It is also possible
to estimate Mg for any ¢ < s from an s stage £ name snowball sample since it
contains all the information obtained in a corresponding ¢ stage k£ name snowball
sample. Thus, by using data for ¢ 4 & person ¢ step k direction relationships ob-
tained from the first ¢ stages (and from the random sample) of an s stage k
name snowball sample (¢ < s), the methods presented earlier in this section can
be applied in order to estimate M 4 . These methods will lead to simple estima-
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tors; when ¢t < s, they will of course not make use of all of the available data.
For example, when ¢t = 1, s = 2, k = 1, these methods will not make use of the
information available about the number of mutual relationships observed where
one of the individuals entering the relationship is in the second stage. Using this
information, it is possible, to improve upon the estimator My, of My, in, say, the
special case where it is assumed that each individual in the population entering
a mutual relationship is named by exactly two individuals in the population. In
this case, this information could be used in a way similar to that described in
Section 2 where the estimator My; was improved upon by using the information
about the number of observed mutual relationships between individuals both of
whom are in the first stage.

When the individuals in the sample are asked to list in a specified order k dif-
ferent individuals in the population (for example, each individual may be asked
to name his “k best friends” and to rank them with regard to some specified
criterion) and the individuals forming the various stages are asked to do likewise,
the methods developed in this paper can be used to estimate Mg, for
t=1,2,---,sandh = 1,2, --- , k, from an s stage k name snowball sample,
where M 4, is understood to be the number of ¢ + h person ¢ step h direction rela-
tionships obtained when considering the first & individuals listed by each indi-
vidual in the population (or, more generally, when considering any specified
subset of h individuals listed by each individual).

In this section, we have been concerned in the main with the estimation of the
number, M, , of s + k person s step k direction relationships in the population.
Let us now consider briefly the number, M, , of g person s step k direction rela-
tionships; i.e., the number of combinations of ¢ individuals in the population
where, starting with any given individual in the combination, if we include him,
the & individuals he would name (they are said to be on step one), the & indi-
viduals who would be named by each of the individuals on step one (they are
said to be step two), - - - , the k individuals who would be named by each of the
individuals on step s — 1 (they are said to be on step s), we will have included
all g individuals in the combination (and no others). Obviously, M, = M, for
g=s+k Forg=s+k, Mgy = M, (where g = 1 + k). This follows
from the fact that if we start with any given individual in an g person s step
k direction relationship, where ¢ < s + k, if we include him and the individuals
on step one, two, - -+, g — k, we willhaveincluded1 + k4 (9 —k — 1) = ¢
individuals. Thus, for g < s + k the results presented in this section can be ap-
plied directly to estimate M, = M, . Since an upper bound for g is 1 + ca
(this bound is not attainable for some values of s and k), we have that g = 1 + k
fors = l,andg = 1 + sfork = 1. Thusfors = lorfork = 1, My, = My_s.
(for1 4+ k =g =1 + ca). We note therefore that for s = 1 or for &k = 1 the
results presented earlier can be applied directly to estimate M, . Forg > s + k
(s > 1 and k > 1), the methods developed in the present section for the esti-
mation of M from an s stage k name snowball sample (and from an s — 1 stage
k name snowball sample) can be generalized in a straightforward manner in
order to obtain similar methods for the estimation of My, . It is possible to
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estimate M4, for any ¢ < s from an s stage k name snowball sample (since it
contains all the information obtained in a corresponding ¢ stage & name snowball
sample) and for any ¢ = s using an approach similar to that described earlier in
the present section. (Here the range of possible values of ¢ is of course a function
of ¢ and k.) The modification of the s stage k£ name snowball sampling procedure
described in the preceding paragraph could also be used to estimate M, for
h = k. (Here the range of g is a function of ¢ and h.)

Other kinds of g person relationships can be defined and in some cases the s
stage £ name snowball sampling procedure can be used to estimate the number
of such relationships present in the population. This will be the case if the defi-
nition of the g person relationship is such that (i) an individual can belong to
at most one such relationship, (ii) the data obtained by the s stage k£ name snow-
ball sampling procedure can be used to determine whether or not any given indi-
vidual appearing in the initial sample (i.e., in the zero stage) belongs to such a
relationship, (iii) the data obtained can be used to determine whether any two
individuals appearing in the initial sample belong to the very same g person rela-
tionship or not. These three conditions can be modified in various ways. For
example, even if (i) is not satisfied an unbiased estimator is still available for the
number, N, , of such g person relationships present in the population in the case
where (ii) and (iii) are satisfied and where the data obtained can also be used
to determine the number of such relationships to which each individual in the
initial sample belongs; but the formula for the variance of this estimator will
not be as simple as the corresponding variance formulas presented earlier herein.
Even if (ii) and (iii) are not satisfied an unbiased estimator for N, is still avail-
able in the case where the data obtained can be used to determine whether any
set of d (or more) individuals appearing in the initial sample belong to the very
same ¢ person relationship or not (d is a specified integer; 1 < d < ¢). Even if
(iil) is not satisfied (i.e., if the data required under (iii) are not available), an
unbiased estimator for N, is still available when (i) and (ii) hold true. In these
cases, and in some other cases too, where modified forms of these conditions hold
true, the methods developed herein can be generalized in a straightforward man-
ner. It will therefore not be necessary to include the details here.

The snowball sampling procedure can be used for purposes other than those
presented here. It is, however, beyond the scope of the present paper to study
the other possible uses of snowball sampling.

b. Random Choices. In the preceding sections, we discussed the situation
where each individual, if asked, would name k different individuals from the
given finite population according to some specified criterion; e.g., his ‘“k best
friends”. In the present section, we shall discuss briefly the situation where each
individual, would name % other individuals chosen at random (without replace-
ment) from this population. In this situation, the expected number of & + 1
person cliques (i.e., 1 4+ & person one step k direction relationships) will be

V(O e = (Y ) E)T
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and the expected number of individuals who will be members of &£ + 1 person

cliques will be N[(Nk— 1

relationships (i.e., s + 1 person s step one direction relationships) will be

MY = 2w = oY+ = (N ) etrer - o

= N""/I(N — 1)"™(s + 1],

where 2 = z!/(z — s)!, and the expected number of individuals who will be
members of s 4+ 1 person circular relationships will be N®*™ /(N — 1)*™. When
N — =, the expected number of s + 1 person circular relationships approaches
1/(s 4+ 1), while the expected number of k£ + 1 person cliques approaches zero
when k& > 1; the expected number of two person cliques (i.e., two person circular
relationships) will approach %. The expected number of s + & person s step k
direction relationships will be less than or equal to

CECTE )/

which approaches zero when k > 1; for k = 1, the expected number of s + 1
person s step one direction relationships was given above (it approached

1/(s + 1)).

If each individual names k different individuals at random, the proportion
bi(7) of individuals in the population who are named by 7 different individuals
is a random variable with expected value

E{bu(i)} = (N n 1) (N""'_ l)i (1 - NL_E)N—H — Pry {i}.

Thus, the expected proportion of the population interviewed, when a one stage &
name snowball sample is drawn, is

N—1
1 - ;_:0 (1 — p)™ Pry {1}

1—(1—p>[<1—p)( 1)+1—N—’“_—1]N_l
1—(1—p)[1 *_E}

1—(1-p) Z (1 - N—k;—l) <N : 1) p'(1 —p)"

—pk

—k
)] . The expected number of s 4+ 1 person circular

(8]

which approaches 1 — (1 — p)e ™ as N — «. The expected proportion inter-
viewed, when an s stage k£ name snowball sample is drawn, can be written as

1 - (1 - p) R 2 X (1 - p)il+i2+“‘+iaE{bk(il;i277:3) Tt ’i&')}’

1,80,y
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where by(7;, %2, %3, -+ -, %,) is the proportion of individuals in the population
whose step minus one consists of 7; individuals, whose step minus two consists
of 7, additional individuals (an individual appearing on both steps minus one
and two is included in the 7; count but not in the 7; count; the individual himself,
if he reappears on step minus two, is not counted), whose step minus three con-
sists of 7; additional individuals, - - - , whose step minus s consists of 7, additional
individuals. It is clear that

. bk(i17i27i3’ e 7i8) = bSk(i)y
T1tigt oo tig=t

where summation is over all values of 4;, %, - - - , 4, such that ¢ + 4, + --- +
i, = 1. The expected value E{by(%1, 2, -+, 1:)} of be(21, 42, -+, 7,) will be
equal to

Pre iy, 52, -, 3} = <N; 1) <NL—1) (1 _ N_,c:_Iy_l-ﬁ
L=/
[/ .
I [ G Vel
[/

.(N—l—ilia_..._is_l) .
[io(Fzmas i) (s )]

where 7 =4 + 4+ --- +14,. When s = 1, Pri{s;} = Pru{di} approaches
ke™*/i;! as N — . In other words, the random variable 4; (the number of
individuals forming step minus one for an individual drawn at random from the
population) has a Poisson distribution with mean value k, when N — «. When
s = 2,

Pr; (i1, 2} = Pr. {41} (N T il)

12

. [1 _(N-2-— k)(ill]iz [(N —2—k) [ill]N——l-—-i,-—iz
(N — 2)ti (N — 2yt
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approaches [k*le™ /4 !)[(kiy) e ™" /3,1] as N — . When s = 3,

Pry {11, 92, %5} = P {41, 3} (N -1 —h- ‘L2)

3
. [1 _ (N -2 -4 - k) [izl}‘a |:(N -2 =4 - k) (izl]N—l—il—iz—i:
(N =2 = )bl (N =2 — )b
approaches [k*e ™" /i 1|[(kiy) "¢ ™" /3] (iz) *e "% /451] as N — . More generally,
Prifdy, 4, - -+, 4,} will approach
TR (i) (Ria) * -+ - (i)™
tlialag) - !

= Pry {7:17i27 e '7".8}

as N— o, where ¢* =4+ %+ --- +4.,. It also can be seen that
be(41, %2, - -+, 7,) converges in probability to Pri{s;, 72, - - - , 44}, and that

2 (At e b, g, e, d) = D dba(d)

1113200ty *
converges in probability to c¢s = k + k* + -+ + k°, as N — «. This fact is
of particular interest since (as observed in the preceding section) c. is an upper
bound for ;% bw (). Furthermore, the proportion of the population inter-
viewed converges in probability to

1= —p) 2 (A=p)*™ PR i, 6, -,

$1082:0° %%y

Thus, for s = 1, the proportion interviewed converges in probability to 1 —
(1 —p) (1 — p)'ke™/il =1 — (1 — p)e™®; for s = 2, the proportion in-
terviewed converges in probability to

L —k(1+11) 7,51 .\ 1g
1-(1-p X (- p)ha ['i__k(li]

1,43 il" i2!
= I -— (l — p)e [1—(—p)e ]'

More generally, the proportion interviewed in an s stage k name snowball sample
converges in probability to I, , where Iy = pand I, = 1 — (1 — p)e -, The
fact that I, = 1 — (1 — p)°*™ follows from Theorem 3, or it can be proved

directly by induction on s.

6. Binomial Sampling. In [4], the binomial sampling model was used to derive
exact formulas for certain sampling procedures and also to obtain approximate
formulas for other sampling procedures (where, for example, the sample size-
population size ratio is a constant, rather than a random variable). Since bi-
nomial sampling does differ from the more usual sampling models, it is of course
possible to construct examples where the mathematical results obtained with
binomial sampling do not lead to satisfactory approximations for the results ob-
tained with the usual sampling models. Caution must naturally be exercised.
Although the statistical problems studied in the present article are different
from those presented in [4], we shall observe as in [4] that formulas derived
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(earlier herein) for binomial sampling are simpler than related formulas derived
with the usual sampling models and that the former formulas lead to good ap-
proximations for the latter ones under certain circumstances.

Suppose that a random sample (in the usual sense) of size n is drawn without
replacement from a given population of size N (n denotes a fixed positive integer,
rather than a random variable, in this section), where each individual in the
sample names one other individual, and where there is just one stage beyond the
initial sample. In other words, consider the case where s = k = 1 with binomial
sampling replaced by the more usual sampling model for drawing a sample of
fixed size from a finite population. In this case, the random variable y has a
hypergeometric distribution with expected value E{y} = n 2M;/N and variance
oy = n(2Myu/N)[1 — (2My/N)J[(N — n)/(N — 1)]. For binomial sampling
(see Section 2), the expected value and the variance of y are E{y} = 2Myp and
oy = 2Mypg, respectively. Thus, if n/N is set equal to p, the expected value
formulas are identical; the variance formula derived for binomial sampling will
serve as an approximation to the variance formula derived with the more usual
sampling model when N — o« (M, is fixed).

The random variables i , ¥, and x;; , under the usual sampling model, have
the expected values

E{y} = n(2Mu/N)[(N — n)/(N — D)],
E{y} = n(2Mu/N)[(n — 1)/(N — 1)],
E{zn} = n(Mu/N)[2N —n — 1)/(N — 1)],

respectively; while for binomial sampling these expected values were E{y} =
My2pg, E{ys} = Mu2p’, E{zu} = Myup(2 — p), respectively. Again, we note
that when n/N is set equal to p (N — ), the formulas obtained for binomial
sampling will lead to approximations for the formulas derived with the usual
sampling model. In addition, the variance formulas for ¥, , ¥2, and z1; , derived
with the usual sampling model, will approach the corresponding variance formu-
las derived for binomial sampling when n/N = p and N — «. More generally,
the probability distributions of y; , ¥z, and z1; , and all of the moments of these
statistics, will approach the corresponding probability distributions and mo-
ments derived for binomial sampling, when n/N = p and N — «. Even more
general results concerning the relationship between formulas derived with the
usual sampling model and corresponding formulas derived for binomial sampling
could be presented (when s and k are any positive integers), but we shall not
go into these details.
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