ASYMPTOTIC EFFICIENCY OF CERTAIN LOCALLY MOST
POWERFUL RANK TESTS

By Jack Caron

Federal Scientific Corporation

1. Introduction and Summary. We are given independent random samples
Xy,-+, Xn and Yy, ---, Y, from populations with unknown cumulative
distribution functions (edf’s) Fx and Fy , respectively. It is desired to test

H,:Fx = Fy
against
H1:FX=G0, FY=G¢, 0,¢8R,

where Gy is a specified family of cdf’s (one for each ), R is an interval on the
real line, # and ¢ are specified and very close to some specified value ¢,, and
0 %~ ¢.

A theorem of Hoeffding is used to show that the locally most powerful rank
test (L.M.P.R.T.) of H, against H, is based on a linear rank statistic

N
Ty = (m)'IZ; aniZwi

where Zy; = 1 when the 7th smallest of N = m -4 n observations is an X, and
Zyx: = 0, otherwise, and the ay; are given numbers. In a recent paper, Chernoff
and Savage established the asymptotic normality of the test statistic T'x , sub-
ject to some weak restrictions.

The concept of asymptotic relative efficiency (A.R.E.) was introduced by
Pitman to compare sequences of tests. It was pointed out by Chernoff and
Savage that the asymptotic efficiency of a sequence of tests can be established
by means of a likelihood ratio test. Using this method, in conjunction with the
theorem of Chernoff and Savage on asymptotic normality, it is shown that the
L.M.P.R.T. of H, against H, is asymptotically efficient. Several applications to
Cauchy, exponential, and normal populations are given.

2. The Locally Most Powerful Rank Test. In our ensuing discussion we shall
need the following regularity conditions:

(i) Gs(z) has a density function ge(z), which, along with dge(z)/98, is con-
tinuous with respect to 8 for¢, — a < 0 < ¢, + a, a > 0, for almost all z; there
exist functions My(z) and M;(x), integrable over (— o, «), such that

go(z) = Mo(z), |8ge(x)/36] = Mi(z), ¢o—a=0=5¢,+aq,
(ii) ge(z) > 0 if and only if g4(z) > 0,

(iif) |JOH)| = &'/ dH'| < K(H(1 — H))™7*,
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forz = 0, 1, 2, and for some 6 > 0, where K is a constant, and where

J(Gor(@) = 510 go(®loms,

(iv) 0<limm/n=r< .
N->wo
Condition (iii) has been termed a smoothness condition by Chernoff and
Savage [1], and is essential in applying their theorem on the asymptotic nor-
mality of linear rank statistics.
If Bx(6, ¢) denotes the power of a size-a rank test of H, against H;, then we
define the rank test with power ﬂ;(o, ¢) as the LM.P.R.T. for 6 > ¢, if

By (6, 6) = Bn(6, )

uniformly in N, and for all § and ¢ in some sufficiently small neighborhood of
o ; 1.€., 0, pelpo — ex, Po + en), ev > 0. The LM.P.R.T. for # < ¢ is defined
in a similar manner. We note that the neighborhood of ¢, is allowed to vary
with N.

If we arrange X1, -+, Xm, Y1, -++, Ya in order of increasing magnitude,
and replace the 7th smallest of this combined sample by a one if it is an X and
by a zero otherwise, then we obtain a sequence of zeros and ones, Zy,, -- -,
Zyw . Such a sequence is termed an ordering. It was shown by Hoeffding [2]
that, if condition (ii) is satisfied, the probability, under H;, of obtaining an
ordering Zy1 = 2zy1, *** , Zny = Zyw, 18

- Pos(Zay = 2w, ) Zun = 2zyn) = (7]:,)_1 By, {g]i [gi(é:))]m.}

- () ={alsE T

where Z; is the 7th smallest of the N observations, yy; = 1 — 2y;, and E,4 in-
dicates that the expectation is taken under the assumption that Fx = Fy = G, .
The probability of such an ordering, under H, , is

N -1
P¢o¢o = (n>

9Py
P0¢=P¢a¢,+(0-‘¢o)
(2) a0

We can expand P, as

_ 9Py
B=gtbo + (¢ —4) 0 |o=¢=0,

+ 0(]0 — ¢ + |6 — &),

provided that Pgs has continuous partial derivatives in a neighborhood of
6 = ¢ = ¢,. It can be shown that the latter follows from condition (i).

As a consequence of condition (i) and a well known theorem ([9), p. 67), we
may interchange differentiation and expectation to obtain from Eq. (1)
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(N)_ Ey,4, {Z (0/20)gs(Z:) !0=¢° zm}

n i=1 g¢o (ZO)
) ZNi
0=,

-1 N
(N) ; Es.4, ((—% In go(Z;)

1
-1 N
( ) Zamzm,

=1

Pss
a0

0=¢=¢,,

(3)

S

E

and similarly

9Py, - (N )_1 P
4) 3 losms, = \n Z_:lamym,
where
(5) ans = By, (i’- In go(Z:) )
a0 0=d¢

Substituting Egs. (3) and (4) in (2), we obtain

-1
re-()

N N
. (1 + (6 — ¢) ;amzm + (¢ — ¢0) ;a,vi + o(l0 — & + | — ¢o|)>.

We observe that ) i ay: depends on N, but does not depend on the ordering
2w, *** , 2¥n , S0 that it may be considered a constant as far as any particular
hypothesis testing problem is concerned.

Using the Neyman-Pearson fundamental lemma ([15], p. 65), we have that
the most powerful rank test rejects H, when

1+ (6 — ¢) gah’izlﬁ + (¢ — %) gam + o(|0 — ¢o| + 16 — ¢o|) > ¢
If & > ¢, the test is to reject H, when
' gamzm + o(1) > ¢,
and, if # < ¢, the test is to reject H, when
,2:1 anizni + 0(1) <,

where ¢ is a constant chosen to give the test size a, and is not necessarily the
same from one line to the next. Since there are a finite number of orderings

that can be obtained, namely (;V)’ we have that the L.M.P.R.T. rejects H, , if
6 > ¢, when

1 N
(6) ° Ty = —Z ans2n; > ¢,
) m =1
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and rejects H, , if § < ¢, when
(7) TN <e.

The statistic T defined in Eq. (6) is known as a linear rank statistic. The
constant aw; is the expected value of a certain function, 9 In gs(z)/88)s—s, , of
the 7th smallest observation of a sample of size N from the cdf G, . The purpose
of condition (iii) is to insure that this expected value exists for all <.

We define the function hes(u) as Ge(x) = hey(Gy(z)). This function can
always be obtained, since we can always think of Gy and Gy as related by hes , n0o
matter how complicated hgy may be. Since both ge(z) and g4(z) exist for all z,
we may write

(8) 96(2)/94(x) = hos(Go(z)),
where

hos(u) = Ohes(u)/0u.
We have from Eq. (8) that

<] d
Y] In go(x) |0=-¢o = 20 h;¢(G¢(x)) |o=¢=¢,,

and hence

ay; = E¢o¢o {(‘;% h;¢(G¢(Z1)) |9=¢=¢0}
(9) )
=F {@ héd:( Ul) IO=¢—¢0} )

where U, is the ¢th smallest observation of a sample of size N from the uniform
distribution on (0, 1). Thus, ay; is the expected value of a certain function,
Ohgs (1) /36)s—g—s, , Of the ith smallest observation of a sample of size N from the
uniform distribution. This expected value exists, since we have assumed condi-
tion (iil) to be satisfied.

It is observed that Egs. (5) and (9) are identical. The appropriate one to
use depends on the ease of application. If hgs(u) is a complicated function, Eq.
(5) is used, and, if hes(u) is a simple function, Eq. (9) is used. In the latter
case we say that we are dealing with a functional alternative.

Similar results have been obtained by Lehmann [3] for various functional
alternatives, by Hoeffding [2] and Terry [4] when Gs(zx) is a normal cdf, and by
Savage [5] when Ge(x) is an exponential cdf. A generalized approach, somewhat
different than ours, but which leads to essentially the same results presented
above has been given by Pyke [6].

We obtain from Theorem 1 of Chernoff and Savage [1], and a simple extension
of their Theorem 2, that the linear rank statistic 7'~ has asymptotically a normal
distribution, if the smoothness condition (iii) is satisfied; i.e.,

. ITN - Ea¢(TN) } _ ! -3 a2
Il}_xﬁ Prob ™ o) <ty = j;w (27)" exp (—27/2) da,
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where

(10) Ei(Ty) = [ J(Huu(@)) dGi(z),

Noiu(m) = 2{[] @@ - 6w
(11) -J'(Hog(x))J' (Hos(y)) dGs(x) dGo(y)

+ ’% ff Go(x)(1 — Go(y))J'(Hoy(x))J'(Hoo(y)) dGy(x) de:(y)} )
—0o<lz<y<o

and where
Hys(x) = (n/N)Ge(z) + (m/N)Go(2),
J(Gs,(x)) = 31n gs(2)/36ls—, ,
J'(u) = dJ(u)/ du,

providing aes(Tx) = 0.
The variance of the limiting distribution of Ty under H, is obtained from Eq.
(11) by letting 8 = ¢ = ¢, ; thus, if we denote this variance by o5,(Tx), we have

mN ’ ’
(12) "ot =2 [ et = )l @T@) dzdy

(13) = fol Ji(z) dx — (f:J(x) dx)z.

As was pointed out by Chernoff and Savage [1], Eq. (13) can be obtained from
Eq. (12) by interpreting the double integral in Eq. (12) as

fff./;<u<,<”<v<l J'(2)J'(y) du dx dy dv,

and integrating with respect to ¥ first and « second.
If we now use the definition for J(Gy,(x)), we obtain from Eq. (13) that

(mN/n)o%,(Tx) = E,, ((56(‘9 In g’(X))z o=¢o>
0=¢o>2’

~ (B (G macx))

where E,, indicates that the expectation is taken under the assumption that
the cdf of X is G, .

As a consequence of condition (i) we may interchange differentiation and
integration ([9], p. 67), to obtain

B (&m0 e.) = [ B 0(o) o

a [~ _a(1)
30 L ) s = 550

(14)

(15)

|0=¢o = 0'
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Hence Eq. (14) becomes
(16) (mN/n)og,(Ty) = inf Gy, ,

where
. 9 2
inf G¢° = E¢0 ((b—é In go(X)) 0=¢0> .

The quantity inf G4, is known as the information of the cdf Gy evaluated at
6 = ¢,, and will be used repeatedly in our discussions.

In a subsequent analysis we shall need to establish that o34( Tx) is continuous
at the point (¢, ¢), uniformly in N. This is true if the two integrals in Eq.
(11) are continuous at (¢, , ¢,). That the first integral in (11) is continuous at
(¢, ¢») can be seen as follows. If we let

u = Ga(.’L'), v = Go('!/),
Gis(u) = G4(Ga'(w)),  Has(w) = (n/N)u + (m/N)Gss(u),

the integral can be written as

‘/;<u<v<1 .[ R(9, ¢, w, v) du dv,

where R(8, ¢, u, v) = Gos(u)(1 — Gas(v))J'(Hss(u))J'(Hry(v)). It follows
from conditions (i) and (iii) that R(6, ¢, u, v) is continuous with respect to
(6, ¢) at (¢, ¢,) for almost all u, v. It follows from a well known theorem ([9],
p. 67), that it is sufficient to show that |R(8, ¢, u, v)| is bounded by a function
integrable over 0 < 4 < v < 1, which is independent of ¢ and ¢. Since

Grs < (N/m)Hys and 1 — G5y < (N/m)(1 — Hyy),
we obtain, in conjunction with condition (iii), that
IR(6, ¢, u, v)]
< K(N/m)’Hsy(w) (1 — Hay(0)) (1 — Hiy(w) P Hyy (0) 7.

With no loss of generality we may assume that 3 < %; since Hpy(u) = (n/N)u,
and 1 — Hps(u) = (n/N)(1 — u), we have

(17) |R(8, ¢, u, v)| = K*(N/m)* (N/n)* ®u7(1 — o) 7(1 — u) ™07,

The bound in (17) is independent of 6 and ¢ and is easily seen to be integrable
over 0 < u < v < 1. The proof for the second integral in (11) is analogous.

3. Asymptotic Relative Efficiency of Test Procedures. We are now in a posi-
tion to use the Pitman [7], [8], criterion for finding efficiencies of test procedures
based on sequences of statistics {Wx}. We let A = 6 — ¢, and we assume that
the following conditions are true in some neighborhood of A = 0,0 = ¢ = ¢, :

(a) &((Wx — Eo(Wx))/a0s(Wx)) = N(0, 1),

(b) for the sequence of alternatives { Ax}, where Ay = 6y — ¢x = kN * kisa
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non-zero constant, and (¢x — ¢,)/(0y — ¢) = —m/n,

. 0'9N¢N(WN) _
e (7 R

and

A=o

=¢=d,

_ 1 [Boyon(Wx) — Eopo, (W) \? (8/0A) Egs (W)
‘M{ZMWWJ%>}”“@WWQMJ

exists, and is independent of k.
The quantity Ew has been termed the efficacy of the test procedure based on
the sequence of statistics {Wx}. When we compare two sequences of tests, say
(W} and {Wx}, for the same pair of near alternatives given in (b), we find
that the two tests will have the same power only when the corresponding sample

sizes, N and N™ satisfy the relationship
N * E w

(18) im ~ = &,

if Ewe 5 0, and limy, m/n = limyssw m*/n* = 7. By p+ is called the A.R.E.
of the {Wy}-test with respect to the {Wx}-test.

Chernoff and Savage have pointed out (see footnote on p. 983 of [1]) that no
invariant test of A = Ay vs. A = 0 can have greater efficacy than the likelihood
ratio test for testing A = Ay (when the densities of X and Y are gs, and g,, ,
respectively) against A = 0 (when the densities of X and Y are both equal to
gs,). The test is to reject H, when

TL 000 (X0/00, (X T 00n(¥/00, (V) > ¢

goN(X ) g¢N(Y )
(19) Sl S el

v D X0 bes, = 3 3 (2100 e+ 0n (1)) >

where limy., 0x(1) = 0. We see that, except for the ox(1) term, Ly is equal
to the difference of two sums of independent and identically distributed random
variables. If 8 In gs(X)/86]o—y, and 9 In g4(Y)/d¢|s—s, have finite variances in
some neighborhood of A = 0, § = ¢ = ¢,, then Ly is asymptotically normal
and condition (a) is satisfied. We have

E0¢(LN) = Ey <6_60 In go(X) |o=¢.,> — E, (5% In g¢(Y) l¢=¢o> ~+ ow(1)

N->w N->w

EW,W‘ )

= (0 — ¢.)E,, (6_60 In go(X) [o=¢>o>
— (¢ — ¢)E,, (;9% In g,(Y) l¢=¢.,) + ox(1),

E(M,(Ly) ’A—O = inf G¢o -+ ON(].),

0=¢=0¢,
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and

Too(Ly) = (m™ + n7")(inf G4, + on(1)).
Hence
(20) E, = inf G,, .

We shall say that a test is asymptotically efficient, for the sequence of alterna-
tives { Ay}, if its efficacy achieves the upper bound in Eq. (20), namely inf G, .
We shall now show that the L.M.P.R.T. is asymptotically efficient.

4. Asymptotic Efficiency of the Locally Most Powerful Rank Test. We have
already seen that if the smoothness condition (iii) is satisfied, then Ty is asymp-
totically normal. This implies that condition (a) is satisfied. Since we have
shown that op,(Ty) is continuous at the point (¢, , ¢,), uniformly in N, we
obtain

. ooyen (T ) _

11‘} ‘I;f°l° 0¢0(TN ) 1’
which shows that the first part of condition (b) is satisfied. We shall show that
the rest of condition (b) is fulfilled by calculating the efficacy Er , and showing
that it exists.

We may use the mean value theorem to write

(21)  Hoy(2) = Gole) + 1 (Gu(2) = Ga(2)) = Go(2) = " % Gu@) s,

where ¢ is between 6 and ¢. If we use Eq. (21) in (10) we obtain

naA a9

(22) Eo(Ty) = [: J <Ga(x) -~ G.(x) |u=$> dGe(zx).

Using the mean value theorem still one more time we can rewrite Eq. (22) as

Ey(Ty) = fw J(Gs(x)) dGs(x)
(23) h nA % 9 ’
N L,sz; Gu(2) |3 ' (Gu(®)) |a,=ds dGo(2),

where Gy is between Gy and G5 — (n/N)AdG./dulu_j .
The first integral in Eq. (23) can be evaluated as

[ 16w dute)

00

o oc a
E,, ((—;-,5 In go(X) |o=¢o) = ‘Lo 30 go(2) |o—g, dz
(24)

a 0
3 ‘[m go(z) dzx |o—y, = O.

Hence we obtain from Eq. (23) that
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;ZE“(T") | a0 = _<%> [: (6% Go(x))J’(G’o(x)) dGo() [0-s,

0=¢=¢,

(25)

Il

I
~—~~
=l

&

) E,, (43_0_2 In g5(X) |0-¢o)
3 2

= (—27:7) E¢o (56 In gO(X) |0=¢o)

= (%) inf Gy,

Therefore, we have from Eqs. (16) and (25) that the efficacy of the L.M.P.R.T.
is

(26) E; = inf G,,.

Thus, the L.M.P.R.T. of H, against H, is asymptotically efficient. Chernoff
and Savage [1] have obtained the same result for the particular case when
Go(z) = F(x — 0);i.e., translation alternatives.

Our results, of course, hold true for the case when there is a simple functional
relationship between G5 and G, ; i.e., in the case of functional alternatives the
L.M.P.R.T. is asymptotically efficient. In this case the efficacy may also be ex-
pressed as

3 ./ : Yo . :
(27) Er = E (55 h0¢(U) |0=¢=¢.,> = fo (’@ h0¢(u) |0=¢=¢o> du.

b. Applications. We now give applications of our results to some specific cases.
In each example a straightforward calculation shows that the regularity con-
ditions (i)—(iii) are satisfied. It is noted that in each case the form of the test does
not depend on ¢, .

(A) Ezponential Case (Scalar). We let

Gy(z) = 1 — exp (—6z), =0
=0, <0, 6,¢ ¢ ¢ (0, »),
so that

go(z) = 8 exp (—0z), zz0
=0, z <0,
9 96(2) lo=s, = &, — 7, r=0

a0
=0, z <0,
J() = ¢,'(1 + In (1 — v)), 0sv=1
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Hence, the L.M.P.R.T. for this problem is based on a linear rank statistic
Sy, with ay; given by ax; = E(#%:), where 7, is the ¢th smallest observation of a
sample of size N from the exponential distribution Gi(z). It can be shown [10]
that in this case ax; is given by

ayi = E ]—1.

Jj=N—i+1
Therefore, we have that

SN=ii( > f‘)zm.

m i=1 \j=N—i+1

If 6 > ¢, the test is to reject H, when Sy < ¢, and if 8 < ¢ the test is to reject
H, when Sy > c.

The statistic Sy is asymptotically normal, and the { Sy}-test is asymptotically
efficient. The Sy-test was proposed originally by Savage [5], who showed that
it was the L.M.P.R.T. of H, against H; . The asymptotic normality of Sy has
been shown by Chernoff and Savage [1].

(B) Normal Case (Translation). Set

_ 2
00(33) = (27"0’2)_; exp (—% (x . 0) ) ) 0’ ¢’) ¢0 &€ (- ©, © )-
We have
d - Qo
10 go(@) lo-g, = T2,
J(v) = @7 (v), 0=v=1,
where

2(2) = (2 [ exp (~) dy,

and ®7'(v) represents the inverse function to ®(x); i.e., v = ®(x). Thus, the
LM.P.R.T. is based on the linear rank statistic ¢y defined as

1 &
Cy = m ;E(Ei)zm;

where £; is the sth smallest observation of a sample of size N from the N (0, 1)
distribution. If 8 > ¢, the test is to reject H, when ¢y > ¢, and if 6 < ¢, the
test is to reject H, when cy < ¢. This test is also known as the ¢;-test.

The statistic cy is asymptotically normal, and the {c}-test is asymptotically
efficient. The ¢;-test was proposed originally by Fisher and Yates [11], and shown
to be locally most powerful by Hoeffding [2] and Terry [4]. The asymptotic
normality of ¢y, and the asymptotic efficiency of the {cy}-test have been es-
tablished by Hoeffding (pp. 289-292 of [12]) and by Chernoff and Savage [1].
In addition, it is shown in [1] that the A.R.E. of the ¢;-test with respect to the
t-test, for non-normal translation alternatives, is strictly greater than one.
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(C) Normal Case (Scalar). Let

go(z) = (2r0) P exp [—3(z — w)*/6), 6, ¢, ¢ (0, ),
so that

a —_1 —1 1 x—u2
<9—01ng"($)0=%_ §¢° +§< bo )’

J(v) = 3. (@7 ()" — 1), 0=<» =1
Hence the L.M.P.R.T. is based on the linear rank statistic F» defined as

N
Fy = l Z E(Eg)zm ’
m i=1

where £; is the 7th smallest observation of a sample of size N from the N (0, 1)
distribution.

The statistic Fx is asymptotically normal, and the {Fx}-test is asymptotically
efficient. If 8 > ¢, the test is to reject H, when Fx > ¢, and if § < ¢, the test
is to reject H, when Fy < c.

(D) Cauchy Case (Translation). Let

ga(.’l)) = [7r(]- + (CL‘ - 0)2]_1 ) 0, ¢, b € (—007 °°))
so that
2(“; - ¢’o)
L+ (z — 60’

2tan (v — %)
14 tan?27(v — %)’

Thus the L.M.P.R.T. is based on the linear rank statistic Q» defined as

15 i
O = %;E(l +u%-> Zrs s
where p; is the ¢th smallest of N observations from the Cauchy distribution
Go(x).

If 6 > ¢, the test is to reject H, when Q» > ¢, and if 8 < ¢, the test is to re-
ject H, when Qn < c. The statistic Qx is asymptotically normal, and the {Qx}-
test is asymptotically efficient.

(E) Cauchy Case (Scalar). Let

go(z) = 6/[r(1 + 6%")], 0, ¢, ¢ £ (0, ),

i)
e 96(2) |o=g, =

J(v) = 0=v=1

so that

d e 24),,2?2
20 In gy(x) |0=¢o = ¢ TW ’

a1 _ 2tan21r(v—%) ]
J() = ¢, [1 1+ tan?x(v — )|’ 0

IIA
<

IIA
-
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Therefore the L.M.P.R.T. is based on the linear rank statistic Ry, defined as

RN-—ﬂZ ( )Zm,

m ;=1
where p; is the 7th smallest of N observations from the Cauchy distribution
Gi(x).

If 6 > ¢, the test is to reject H, when Ry < ¢, and if 6 < ¢, the test is to reject
H, when Ry > c¢. The statistic Ry is asymptotically normal, and the { Ry}-test
is asymptotically efficient.

(F) The Mann-Whitney-Wilcoxon Test. In this case we have a functional
alternative, where

hos(u) = (1 — 0 4 ¢))u + (8 — ¢)d,
07¢7¢08(—°°1 °°)’ 0< 06 —9¢ < 1’
so that

IIA
I

IIA
—

T() = 5 hao1) lomgms, = 20 — 1, 0
The L.M.P.R.T. is based on the statistic Vy defined as
S E E(U) Zns,

where U, is the 7th smallest of N observations from the uniform distribution on
(0, 1). It can be shown [10] that

E(U:) = i/(N + 1),

and hence Vy can be written as

Vi = m(N+ 1)2””“
Since 6 > ¢, the test is to reject H, when Vy > c.
This result was obtained originally by Lehmann [3}, who also pointed out that
the Vy-test is equivalent to the Mann-Whitney-Wilcoxon test [13], [14].
The statistic Vy is asymptotically normal, and the { V y}-test is asymptotically
efficient.
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