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It can be shown, using the Abelian theorem on p. 182 of [9], that the limit in (1)
is A/(A + B) (if a = B), 1 (if « > B), and 0 (if & < B), a result also obtain-
able from [8].

The limit (1) could be studied from the point of view of Darling and Kac [1].
Possibly, their results would yield conditions on F and G for (1) to hold.

The behavior of P(t) itself, for large ¢, does not seem to be ascertainable by
the method given here,.

0< a

IIA

1, A4 >0,

0<pB =1, B > 0.
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AN EXAMPLE OF AN ANCILLARY STATISTIC AND THE COMBINATION
OF TWO SAMPLES BY BAYES’ THEOREM

By D. A SeroTT

University of Waterloo, Ontario

1. Origin of the example. In [1], an example was given in which a fiducial
distribution served as a distribution a priori to be combined with a different set
of data (not capable of yielding probability statements), by Bayes’ Theorem.
In [2], it was shown that this procedure of combining samples, when each sample
yielded a fiducial distribution, could lead to a contradiction. In [3], an attempt
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was made to show why these contradictions arise and how to eliminate them.
Two conditions that all distributions a posteriori must fulfil, were stated. From
these, the following necessary conditions were derived: the two samples to be
combined by Bayes’ Theorem must have sufficient statistics following:

(1) the normal distributions with means 4, c6 + k, or

(2) the gamma distribution with parameters 6, (c)*, or

(3) the normal distribution with mean ¢ and the gamma distribution with
parameter ¢ exp k9,
where ¢ and k are known constants. Cases (1) and (2) were also shown to be
sufficient conditions. It remains to show that case (3) is a sufficient condition
(i.e., no contradiction arises).

2. Derivation of an ancillary statistic and the corresponding fiducial distribu-
tion. Suppose the sufficient statistics 7; and T» have densities

Li(Ty, 6,) dTy = (2mn)~* exp [—(T: — n0)*/2n] dT,

Io(Te, 6) ATy = [T37'¢™/T(m)] exp [mk§ — ce"'Te] dT: .
Thus, the simultaneous distribution of T; and T is

(" T3/ (2an) T (m)] exp [mk8 — ceTy — (Ty — n6)*/2n] dT: dT; .
Making the transformation
Ty = exp [=k(Us + U)l, Ty =nUs,
the simultaneous distribution of Uy, Us is
[¢"nk/(2rn) T (m)] exp [—mk(Uy + Uz — 6)
— g HOAVED 1y (Uy — 6)*)dU, AU, .
Integrating with respect to U, the distribution of U, is
[e™nkI(Uy)/(27n) T (m)] dUy,

where

(U, = [ exp [—mk(U, + w) — ce F T 1y ] dw,
and is independent of 8. Hence U; = —T/n — (log T:)/k is an ancillary sta-
tistic.

The distribution of U, given U, is
(1) L(Uy| Ui, 0) = lexp [=mk(Uy + Uz — 8) — ce
— n(Us — 0)*}/1(Uy).

—k (1) +Ua—0)

Using (1), the corresponding fiducial distribution is given by

U,
(2) |, U, = [ _ I:a% L(us | Uh ,0)] dus .
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3. Derivation of distribution a posteriori by Bayes’ Theorem. The fiducial
distribution based on T} is
(8| Ti) = (n/2m) exp [(Ty — n8)%/2n].
Using this as the distribution a priors, to be used in conjunction with T, gives
as distribution a posteriort,
(3) b(0| Ty, T:) = {exp [mk8 — ce*Ty — (Ty — n6)*/2n]}/I(Ty, Ts),
where I(T\, T:) = [Zw exp [mk0 — ce*Ty — (T, — n6)*/2n] df. Hence
I(Ty, Te) = [exp mk(Uy + U)|I(UL),
and so
(4) b(6| Uy, Uy) = L(Uz | Uy, 6).
From (1) and (4) it can be seen that

a a a
—a—gL(Uin1,0) ——a—EL(U2I UI,B) “mb(el UI;UZ)’

and so from (2) f(¢| Ui, Us) = b(6| Uy, U,). Thus, the fiducial distribution
based on the combined sample is the same as the a posteriors distribution ob-
tained on combining the samples by Bayes’ Theorem, using the fiducial distribu-
tion based on one of the samples as a distribution a préori. Thus all three condi-
tions stated at the first are sufficient as well as necessary.
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