EXPECTED UTILITY FOR QUEUES SERVICING MESSAGES WITH
EXPONENTIALLY DECAYING UTILITY

By Frank A. HaigHT

Institute of Transportation and Traffic Engineering, University of California,
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1. Introduction. When a sequence of messages arrives at some center, they may
form a queue, owing to delay in reading or processing each message. If the use-
fulness of a message decays with the lapse of time (as might occur in military
operations) it would be important to handle incoming messages with a view to
minimizing the loss of utility. In particular, the order in which items are handled
assumes a greater importance than in other queueing problems. We consider here
a single queue of this sort, and, with some distribution-theoretic restrictions,
derive expressions for the expected (terminal) utility in two cases: (a) most
recent, and (b) least recent message serviced first, with both random and regular
departures.

2. Assumptions. Consider a single queue of messages, in equilibrium, and
assume that each message has associated with it at time ¢ after entry, a utility
subject to exponential decay. We investigate the loss of utility due to queueing
delay in several different circumstances. In each case X denotes the mean arrival
rate, u the mean departure rate, p = A/u. No messages are removed from the
queue without completion of service.

If the initial utility of a message (at the time of entry into the queue) is de-
noted by ¥, the waiting time in the queue (exclusive of service time) by w
and the final utility (when entering service) by y, then we assume yo, and w to
be independent random variables, with

(1) y = ye ™,

where 8 is the same for all messages. We also assume the distribution of initial
utility to be Type IIl, i.e.,

(2) dF (yo) = Ke ™8 dyo, 0<y <,
where KT'(q) = p° We shall use equations (1) and (2) to determine E(y),

and in some circumstances the distribution of y also. If the Laplace transform
of the distribution of w is ¢(s), then E(y) = (¢/p)é(B).

3. First come, first served; Poisson service. This means that messages are
taken off the bottom of the pile, and that both arrivals and departures occur at
random instants. Then the distribution of queue length N (including the message
being serviced) is
(3) pn = Prob (N =n) = (1 — p)p".
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The waiting time of a message will consist of » negative exponential phases
with probability p. . Its distribution therefore consists of a discrete magnitude
po = 1 — p at the origin, together with the continuous component

4) h(w) = A(1 — p)e®™*, 0<w< x,

Since yo and w are independent, we can now write down the distribution of y.
It will consist of the sum of two terms, corresponding to the two components of
the distribtion of w. The first of these corresponds to ¥ = ¥, occurs with prob-
ability 1 — p and is therefore

(5) (1 — p)Ke Py,

The second term of the distribution of y is found by integrating y, out of the
joint distribution of ¥ and y:

Ke ™yi\(1 — p) exp [— (Mu) log (y/y0)1(1/8y)
since dw = dy/By. Letting

I'(n,z) = f et dt

denote the incomplete gamma function, we have for the second term of the
distribution of y

ML=0p)  ywneof, _ B A
(6) ‘W (py) I‘(q F; + ik py) .

E(y) can be found easily from this expression, or from the Laplace transform of
(4) (with the discrete element added), and turns out to be

M1 = p) ]
E(y) = 1— M e,
(7 (y) (q/p)[ L iy
If we choose time units so that A = 1, and units of utility so that

E(y) = (¢/p) = 1, and let « = (log 2)/8 denote the half-life of information,
then we can tabulate E(y) as a function of service rate and half-life. The values
in Table 1 have been obtained.

TABLE 1

Ezxpected terminal utility as percentage of expected initial utility; first come, first served;
negative exponential service
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TABLE 2

Ezxpected terminal utility as percentage of expected initial utility; first come, first served;
regular service

a=1 a =2 a =3 a =4 a=35
p=1 0 0 0 0 0
p=2 .86591 .92437 .94715 .95921 .96631
w=3 .94924 .97286 .98148 .98632 .98866
p=4 .97345 .98602 .99084 .99281 .99466
u=2>5 .98366 .99136 .99430 .99599 .99635

4. First come, first served ; regular departures. In case service is regular rather
than Poisson, we need only replace (3) by a formula quoted by Saaty [2], p. 177,
formula (16). The calculations leading to the distribution of y are then rather
cumbersome, and will be omitted. We can obtain the mean value of this quantity
by the simpler method, using the formula for the Laplace transform of h(w)
quoted by Kendall [5], p. 156, formula (16):

(s/w)(1 = p)
(/) + ple = 1)

Making the same choice of units as in the previous section, the values in Table 2
are obtained.

(8) o(s) =

B. Last come, first served; regular departures. In this case messages are taken
off the top of the pile. The number of service phases (each of length 1/u) which
will delay a given message is by no means the number of waiting messages en-
countered. However, the probability of an empty queue is the same, and there-
fore the first term of the distribution of y is given by (5) in this case also.

To find the second term of the distribution, consider a new arrival to the
queue, which is not empty. Define an auxiliary queue to consist of this arrival
and all subsequent arrivals. Then the probability ., n = 1, 2, --- that the
original arrival will be preceded into service by 7 other messages (including the
one being serviced at his arrival time) is the probability that the auxiliary
(beginning with one member) will discharge exactly n messages before first be-
coming empty.

Therefore the continuous component of the distribution of w is

(9) h(w) = ppmn, (n—l)//‘<w<n/“7 n=12" -,
and of y for fixed yo is

h(y | yo) = My yeexp[8 (n — 1)/ul > y >yo exp (—nB/u),

(10) By

n=12---.

An extra factor p has been introduced into (9) which was not required in the
corresponding formula of Section 3. This is because the distribution , is de-
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fined over the integers excluding zero, whereas the queue length distribution (3)
is defined over all non-negative integers. Thus the required integral

fow hw) dw = p

obtains automatically in that case, but must be produced artificially in this one.

Denoting the second term of the density of y by f.(y), its contribution to the
expected value of y by E.(y), and making the convenient abbreviation
an, = exp (nB/u), we have

© any
(11) i) =3 [T Remyrt My,
n=l Yap_1y ﬁy
and therefore
0 © any AT
(12) B =[ = [ Ky My ay.
0 =n=l1Yap_1% B
Using the transformation '
z = (yo — @n1y)/ (Yo — @ny)
from 3, to z, we obtain after integration
(13) Ex(y) = (\g/Bp) (™ — D)m(e™™),

where 7(s) = D m,s" is the probability generating function of the =, distribu-
tion.

Now we consider the =, distribution itself, and its generating function = (s).
The most unfavorable situation for an entry into the queue is that taking place
just at the beginning of a service time. For this case Borel [1] has given the value
for w, , namely

T = [0"/T(n)]e""p" ",

for which the generating function is (cf., Haight and Breuer [3])

© n-1 n
n n
w(s) = sexp El, n'ez' (s" — 1).

TABLE 3

Approzimate expected terminal utility as percentage of expected initial utility; last come,
first served; regular service

a=1 a =2 a=3 a =4 a=35
n=1 .33466 .45492 .52272 .56822 .59057
p=2 .84089 .90260 .92936 .94446 .95434
n=3 .93811 .96572 .97626 .98206 .98530
n=4 .96835 .98304 .98866 .99115 .99331
n=2>5 .98098 .99006 .99326 .99520 .99574
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Using this approximation, we find that
(14) Ey(y) &~ (\g/Bp)(1 — ¢ ™) exp (¢ — »p),

where o’ = exp [—p — (B/r)]. With the same choice of units and definition
of a, formula (14) yields the values in Table 3. Next, we obtain exact values
for m, ; this constitutes one generalization of Borel’s distribution. Another
generalization is that of Tanner [7], [3] and still another will appear in the fol-
lowing section. )

Let ¢ be the time remaining between an arrival and the first service termina-
tion; this quantity is rectangularly distributed over the interval (0, 1/u). The
probability of x arrivals in the time ¢ is therefore

1/p z .
(15) / M ()\t) e—)\t dt = 1 'Y(x + 1; P)
0

- - ’

x! p T+ 1)

where I'(n) = T'(n, 2) + v(n, 2). If, in addition to ¢, any complete service
periods must be waited, the probabilities of x arrivals during one of these are
the simple Poisson expressions. In order that the queue beginning with one
member shall vanish for the first time when exactly » members have passed
through it requires exactly » — 1 arrivals in the n service periods (including
the fractional one), subject to the restrictions that there will be no arrivals in
the last period, no more than one in the next to last, and so forth. As an occu-
pancy problem, we want to put » — 1 balls into n — 1 boxes so that, reading
from left to right at least as many balls are passed as boxes.

Combining (15) for the fractional period with the Poisson terms for the whole
periods in this way we obtain

m = 7(17 p)/P7

mT2 = 7(27 p)/pep,

m = [7(3’ P) + 2”(27 P)]/2Pezp7
and in general
3 - 2 n—1 . n—1
> <7f_ )p v (i, p)(n — 1)
(16) R 1 —2 .

" T'(n)pet0r

To find the generating function for this distribution, multiply =, by s" and add
the terms containing v(z, p) separately for each ¢. The first of these is simply
(s/p)v(1, p). The succeeding values of ¢ yield infinite series of the type men-
tioned by Bromwich [6], p. 160, example 4. If we write the nth sum in the form

(17) Anls™y(n, p))/[T(n)e™ ]
then, using the example of Bromwich, the A, satisfy the equation

(18) (sp6™")" A = [(log 8a)/(n — 1)]".
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Hence the generating function can be written

— ep - V(n, P) —p\n

(19) w(s) = ;"Z_; Ty (se™*)"An.
An attempt to use (19) with (13) to compute Ex(y) leads to very substantial
calculations, most particularly in connection with finding the A, from (18).

The short method of Laplace transforms also gives an expression for Ex(y)
which is awkward to compute. Tanner [7] gives the Laplace transform of the
delay in the form ¢(s) = ¢*, where ¢ is the fractional service period and ¢ satis-
fies

(20) log o = p(e — 1) + (s/u).

Averaging over ¢, we find

_ ple — 1)
= B = == @
where
(22) log o = p(c — 1) + (B/k).

6. Last come, first served; Poisson service. To deal with this case we need
first a formula generalizing Borel’s distribution to negative exponential service
time. Since departures are random, there is now no distinction to be observed
regarding the fractional service time on entry to the queue. The probability of
z arrivals in a single service interval is

(23) [ w/an00)e™ ds = 51+ )7
0
Thus =, are all of the form
(24) 1 = Kalp" /(1 + )7, n=12 -,

where K, represents the number of ways these arrivals can occur subject to the
restrictions mentioned in the last section.

The values of K, can be found by use of Cauchy’s theorem in much the same
way as Borel used the theorem to evaluate the coefficients in the simpler case
Bateman [4] also refers to these numbers (p. 230) in a different context; both
methods yield the expression

' 1(2n — 2
(25) n-;l(n_l).
Bateman also gives the generating function of the K,
(26) G(s) = 2 Kus" = % — 3(1 — 49)},
n=l1

which is useful in finding E»(y).
Given n, there must have been n departures and n — 1 arrivals between the
arrival of the particular message and its entry into service. The spacings between
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these 2n — 1 events are each distributed with density (A + u) exp — (A + u)z,
and therefore

h(w) © 1 (2n _ 2) pn ()\ + ”)Zn—len—Z

n=l :I-'l« n—1 (1 -|- p)zﬂ_l I‘(2n — l)e()\+u)w
(27) L n n—1_ 2n—2
— e—()\+p)w l 2n — 2) A now
amin\n—1/ 2n — 2)!’°
leading to

_ @ b —Onhyw 0 l 2n _ 2 )‘nﬂn—lw2n—2
¢(’3)‘fo ¢ ,.;n(n—1>—(2n—2)1d"’

or, in terms of the generating function G(s),

(28) ¢(8) = [N+ u + B)/ulGDw/(N + 1 + 8)°).

Using (26), we obtain

(29) #(8) = Ea(y) = [\ + -+ 8)/ull3 — 31 — /(0 + 1 + 8)Y.
Formula (29) has been used in computing Table 4.

TABLE 4

Ezxpected terminal utility as percentage of expected initial wtility; last come, first served;
negative exponential service

a=1 a=2 a=3 a =4 a=35
uw=1 .44476 .55964 .62110 .65929 .69059
=2 .82961 .88946 91727 .93366 .94453
uw=3 .92114 .95353 .96695 .97433 .97902
u=4 .95524 .97486 .98232 .98657 .98911
u=2>5 .97133 .98434 .98922 .99177 .99335

I am grateful to the referee for pointing out a number of errors in earlier ver-
sions of this paper, and to Mr. John Riordan for confirming formula (16).
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