THE MULTIVARIATE SADDLEPOINT METHOD AND CHI-SQUARED
FOR THE MULTINOMIAL DISTRIBUTION

By I. J. Goop

Admiralty Research Laboratory, Teddington, Middlesex!

1. Introduction. This paper is largely a continuation of Good [5], but the above
title is more descriptive than the previous title would be. The contents are:

(i) Further discussion of the saddlepoint theorem for coefficients in a power
of a power series, especially in more than one variable.

(ii) A generalization of Fad di Bruno’s formula for the repeated differentiation
of a function of a function.

(iii) Some discussion of the relationship between moments and cumulants,
especially bivariate ones.

(iv) Some exemplification, but not a systematic exposition, of multivariate
notations in analysis, which are less familiar than those used in algebra.

(v) Corrections to the previous paper [5].

(vi) The results of some numerical trials of the method of calculating the
distribution of chi-squared for an equiprobable multinomial distribution.

2. Further Formalism and Discussion of the Saddlepoint Theorems. In this
section I shall discuss certain formal aspects of the saddlepoint theorems given
in Daniels [3] and Good [5]. (In order to minimize repetition, I shall assume that
the reader has a copy of [5] ready to hand.) A part of the formalism involves
the use of Hermite polynomials in one or more variables. When there is only one
variable, Hermite functions are shown to be relevant, for example, by Jeffreys
and Jeffreys [6], Para. 23.09. But that context is rather different from ours, and
the method of proof, by partial integration, does not appear to be applicable
when there is more than one variable.

The formalism will shed further light on why it is desirable to make use of a
saddlepoint of the integrand (or of a function closely related to the integrand).

I wish to emphasize that the discussion is formal, and I have not investigated
general conditions of validity and bounds for errors. In any specific application
some attempt should be made to estimate the error, either analytically or by
means of numerical experiments.

I shall take the opportunity of correcting some slips in [5].

Let M be the column vector whose components are (My, ---, M;), and let
transposition be denoted by a “prime” or “dash”, so that M’ is the corresponding
row vector. If 0 is another (1-dimensional column) vector, then M’6 represents
the scalar product M6, + - -+ + M,8;, in accordance with the usual notation for
matrix multiplication, a notation that will be used more generally. Let
¢(M,t) = c¢(My, ---, M;,t) be the coefficient of z% = 2* --- 2}**in (f(z))* =
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536 1. J. GOOD

(f(z1, -+, 21))", where ¢ is a positive integer, and where M/t and t/M; are
bounded (j = 1,2, - -+, I). The notation x™ for a “scalar indicial” will be used
more generally, for example, ¢ denotes pi’* - - - pi*. In accordance with a con-
vention often used by physicists, dz, for example, will denote dz dz - - dz; .
(The naturalness of this notation is illustrated by the suggestive notation
dz/d¥ for a Jacobian.) Our main purpose in this section is to develop formulae for
¢(M, t). We start with

I T S g
W = g e e

@) = @—T:;ITM [: [: (flpre™, -+, pr ™)) e ™ db.

Letr = (r, .-+, 1)’ be a vector each component of which is a non-negative
integer, and let [r| = r, + -+ + r;, £l = r; ! --- ;| Similar notation will be
used for s and n.

Consider an (artificial) probability distribution of a random vector X, such
that the probability is pn = Pn,,...,»; that X = n; where p, has the probability
generating function x ™ (o, -+, pwi)/f(e). The corresponding moment
generating function is

MY (e, -, o) /f(0).
Let the corresponding cumulants be k; = «yy,...,r; , 50 that, if |r] = 0,

l i ’
@ we=TL(2Y {25 - 0g(0) +log et -y me |

The “order” of the cumulant . is defined as |r|. Note that k, = 0, and that, if
|r] = 1, the cumulants take the values k;, where

b=~ 4 oL log £(o)

(4) u,
= —_'t"' ‘—E'Ing(Ple PR plesl){,o (.7 =1, 2’ yl)
If [r] = 2,
(5) B III (a£]> . logf(eh, T eEl) Ei=108ﬂi (] - 1’ 2, ’ l)
(6) = I]I (agl) Ing(pl efl’ Tty P efl) £
@ =11 (i) 0100
Formally,
(8) - (M, t) =Fg—2% f fexp {tZr)';—‘! (z‘o)'}do
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where =y means ‘“‘equals formally”. (I am here omitting the ranges of integration
since the argument is only formal. Note that in [5] the factor (f(¢))* was omitted
in error twice on p. 872 and twice on page 869, and the factor 1/t was omitted
once on page 872. Also, on page 872, “1+4” in the heavy exponential should be
deleted. These slips had no real effect on the argument or results.)

To evaluate ¢(M, t) approximately we should like to know the saddlepoints of
f(z)z™. Certainly there is a saddlepoint at z = g if equations (6.20) of [5] are
satisfied. These equations assert the vanishing of the first-order cumulants of our
artificial distribution, i.e., they assert k = 0. We do not need to prove that there
are no other saddlepoints provided that we can cope directly with our integral,
(8), with respect to 6. What we do know, by [5] p. 874, is that there is at most
one “real and positive” saddlepoint, i.e., that equations (6.20) (k = 0) have at
most one solution with p; > 0, ---, p; > 0. But 8 = 0 is not necessarily the
only important point in the region of integration. (There was some carelessness
in [5] concerning this question.) In the next section we shall have an example in
which the region of integration with respect to 6 contains two points of equal
importance.

Let us now continue with the formal procedure. We have

(9) e(M,1) =F--——(f(9))tf fe""""*"""‘”exp {t Irlis:,—'! (ie)'} de

(2m)'M
where K is the matrix of second-order cumulants
i) i)
(10) K = ( igp—i(l’j 5;]) 10gf(9))-
(I am taking the liberty of using ¢ as a suffix, besidesas 4/(—1).) The determi-
nant of K is A, the Hessian of log f(ef!, - - - , ¢**) (where now & = log o1, ete.)

and is positive (see [5], p. 874).

If we now imagine the last exponential factor in (9) to be expanded as a
(multiple) power series, the various terms of the integrand can be obtained by
partial differentiation of the first exponential factor with respect to the first-order
cumulants. By interchanging the order of differentiation and integration we get

(M, t) ~ Ezf ()9,)0“)' exp {t Iﬂia ke (t dk) } [ [ HKOHOKD gy
where
(@) -G )"

[ [ itk 0-410'KO go _ (2*11')} —4tk'K~ 1k
WA

But

(see, for example, Cramér [2], p. 119). Therefore
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(f(e))* W22 M d\\ —perk-r
(11) c(M, t) NF(Q—*fmexp{t Z %(tﬁ)}e HE'K™

r
Let us now introduce a function » , of r and ¢, defined by the identity

[r[=0 el =3
) ”—'£'=eXp(t > ')
r

T rl r!

(12)

= (f (mee‘,}{ ~), Pl e"))t M Etk EHERE
0

Let us also introduce a formal symbol v, to be manipulated as if it were a vector
with I components, and an operator [- - -} which has the effect of replacing v* by
vy . Then the part of (11) beginning “‘exp’ can be written

¥r ir —tk'K™1k _ v d\ ar-x
23 (m) o= (25 )

o= e+ Y

by Taylor’s theorem in several variables. We have then

(f(e))’ |

Now the Hermite polynomial in I variables may be defined as
Hy(x|C) = (—1)" exp (3x'Cx) (d/dx)" exp (—3x'Cx),

where C is an I by | symmetric matrix. (See, for example, Erdélyi, et al., [4],
p. 285.) When ! = 1, I shall adopt the convention

H.(z) = (—1)"" (d/dx)"e™ = H,(x|2).
We have then

(14) c(M, £) ~ (f(@)) —%tk K~k Z (= 1) Vr ,(kté ‘ K—l).

¥ (2ui)Vighal T
In particular, when g is a saddlepoint of f(z)z ™, so that k = 0, we have
(f(e))’ [ I R
(15) C(M, t) F m exp ii vK'vy y
(@)t (=D, .
(16) c(M, t) ~ s MA*Z i H.(0|K™).

(It is perhaps opportune to remind the reader at this point that » depends on ¢.)
Now the Hermite polynomials have the generating function

T8 H (x| €) = exp (3 Cx — 3(x' — &)C(x — a)
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(see, for example, Erdélyi, et al., [4], p. 285), and in particular,

i ® (—1g/ n
> & 0]c) = e = 3 (SHCR)"
r! 2 ]

Therefore H,(0|C) = 0 if |r| is odd, and, when |r| is even,
an L H,(0]C) = e(a)(~3aCa)'"!,
where (- - -) means ‘““the coefficient of - - - 1n”. So

t |r|even $r|
A8) o0 e B i (7)) @@,

in which, by the way, », = 0 when |r| = 2.
When I = 2, and when (p, p’) is a saddlepoint (i.e., equations (6.8) and (6.9)
of [5] are satisfied), we have, from (18),

(Ff(p,0))! = (=1)"* <Koz)"<fc11)"( Kao )j
(19) oM, N, 1)~ 55 By 220 g \aia) \a) \Gia) 7o

When [ = 1, and when p is a saddlepoint (i.e., equation (6.1) of [5] is satisfied),
we have

(20) (M, 1) ~og LT 5 1 ( 1 )

opM(2mi)t St st T 20%)

There are various methods for calculating the #’s. The most convenient one
will depend on the function f and on the computational resources. These methods
will depend on the relationships between one or more pairs of the cumulants,
K , the moments, .’ = E(X"), the moments u, = E(X — EX)" about the mean
(which are equal to the moments when we are using the saddlepoint method
proper), and perhaps the factorial moments,

@) wia = (@A & o, o ) [f(8) | memerm

Ordinary moments can be expressed in terms of factorial moments, using Stirling
numbers of the second kind. Factorial moments can be expressed in terms of
ordinary moments, using Stirling numbers of the first kind. (See Kendall [8],
p. 57, and Riordan [12], pp. 33 and 48.) For the case Il = 1, a table of relation-
ships between moments and cumulants, up to r = 10, is given by Kendall [8],
pp. 62-64. The ».’s can be obtained from the formulae that express the moments
in terms of the cumulants by multiplying the cumulants by ¢ and putting those
of order less than 3 equal to zero. In this manner I have again checked formula
(6.2) of [5].

It was pointed out by Lukacs [9], that, for I = 1, the relationships between
moments and cumulants can be obtained from Fad di Bruno’s formula for the
repeated differentiation of a function of a function. When I > 1 we can either use
the rules given by Kendall [7], or the generalization of Fa3 di Bruno’s formula:
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ig
1(dYf e
(22) L&) e -5 () .
8
a formula that will now be explained, and then proved.
(i) ris a multipartite number, i.e., a vector whose components are non-nega-
tive integers.
(ii) The number of components of { need not be equal to the number of inde-
pendent variables 2, , 2, , - - - , i.e., to the number of components of x.
(iii) y = ¢(x). The notation of partial differentiation on the right implies that
y is not supposed to be expressed in terms of x before the differentiations
are performed.
(iv) ig is a function of the vector s and is itself a vector of dimensionality that
of ¢ and has non-negative integer components.
(v) s#0.
(vi) jis an abbreviation for D 41 .
(vii) f, = (1/s!) (d/dx)%(x).

(viii) By the time the summation sign is to be interpreted, s has already become
a dummy variable, i.e., the summand is not a function of s. The summation
is to be performed over all selections of the function i for which
D e slis] = r; in other words, when 4 is a scalar function, over all parti-
tions of the multipartite number r.

(ix) In conformity with the notation for the factorial of a vector, ] is! means

o1 (2
ILeasPra®r-. o,
«(1) +(2)

where g, 45, - - - are the components of ig .
Proor or (22): By repeated applications of Taylor’s theorem in several
variables, together, in the last step, with some applications of the multinomial
theorem, we have

=2 () etea)

r!

e(h(x 4+ w))

= o4 + 3 w)

(S ()
=3 I']_ (wE,)1e (i

is H i ay.
8
and the result follows on equating coefficients of w*.

In Fad di Bruno’s formula both ¢ and z are scalars. Riordan [11], who gives
earlier references, points out that the generalization to the case where there are

\_/_
—~
«
>
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several independent variables is purely a matter of notation. Here I have taken
1 as a vector, for good measure.
By taking ¢ = exp, and ¢ as the scalar function ¢(x) = > (k/T))X5, we get

(23) S = z H—lf' II (g)

By taking ¢ = log, and ¢(x) = Y (u/r!)X", we get

1« (=D7G 1) AR
(24) %= 2t I I;[<;Ll)

(Cf., Lukacs [9], for the case ! = 1.) In both formulae the summation is over
all 35’s for which 44 = 0, D_ssis = T, and |s| = 2, and j means D et . If the
moments, ps , are replaced by ug , then the condition |s| = 2 in (23) and (24)
is to be replaced by |s| = 1. To get the »’s we replace the cumulants by #«s in
(23), and put ks = 0 when |s| = 2.

For example, when | = 2, we have

Krs = Mg if 2§T+8§3’

Ko = Jao — SMB0, Ka1 = Ms1 — Sploopur , Koz = a2 — Maoez — 2ul1 , ete.

o = ki + 3630, e = ka4 Bkaokus , pm = Kz + Keokor + 2411, ete.

Koo = peo — 15paouzo — 10u50 + 30udo

poo = koo + 15kaokz0 + 10k30 + 1530

(25) ks = psr — Spaopn — 10uaiuz0 — 10uaouer + 30uzou11

por = ks + Braokin + 10kgkao + 10ksokar + 15650ky

Kep = Hap — Maotior — Spisskirs — Optzopao — Apsopre — Gy + Gugoer + 24paonis

iz = ka2 + kaokne + Bkakir + Bkazxao + sz + 6z + Skokor + 12ke0kTy

Kss = Mss — OSMapez — Oaopnn — SMiskz0 — Maokos — Opzmiz + 18usomoamn
+ 1241,

pss = ks + Skakes + akyy + Skigkao + Ksokos + kakiz + Okeokeekns + 611

The other three pairs of bivariate formulae of order six can be written down by
symmetry. For our application the formulae of order five, and other odd orders,
are irrelevant. The above formulae for the moments and cumulants check one
another. A further check is that when a cumulant of order r is expressed linearly
in terms of moments about the mean, the sum of the coefficients is equal to
rle(z") log (¢* — x), whatever be the value of 1. Similarly, when a moment (of
order r) about the mean is expressed linearly in terms of the cumulants, then
the sum of the coefficients is equal to r!€(z") exp (¢ — 1 — x). (These two
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assertions are readily proved by putting all the moments about the mean equal
to 1 first, and second putting all the cumulants equal to 1.) Up to order ten we
can therefore check against the case | = 1, given by Kendall [8].

Up to order six the formulae for the bivariate »’s in terms of the bivariate
cumulants are

vw=1v,=0 if 1=<r+4s=2
Vs =1lker f 32 r+s=<4

veo = tkso + 10£%k5

tkss + 108kso

tkes + Akgok12 + 683,

Vs = tras + Lkokos + 9 koikz .

(26)

V51

It

Va2

We can write down v, 15, vs , by symmetry.
For the case I = 2, the sum in formula (18) can now be written
r4-8=4 1 r4-8=6

(27) 1+ Slt > knC(af a3)(a’K™Ma)? — =P Ve @(a} a2) ('K "2)° + - - -.

The last term given explicitly contains terms of order ¢, since the »,’s of order

six contain terms of order ¢, but no omitted term does so. It is possible that, for

any finite value of ¢, we should sometimes get a more accurate result by using

the terms shown explicitly here than by using the terms shown explicitly in [5],

formula (6.10). The difference between the explicit parts of these formulae is
r48=6

T ; krs C(a] a3)(a’Ka)%
To conclude this section I should like to summarize some advantages of using
a saddlepoint method proper.

(i) It is more difficult to justify formula (14) for the more general method (in
which the first-order cumulants of our artificial random variable do not all
vanish), because the modulus of the integrand in (9) is liable not to decrease
rapidly enough when we move away from its maximum.

(ii) It is only when k = 0 that the series (14) consists of terms of smaller and
smaller order. For when k > 0 it can be shown that H, (k¢ | C) is of order
as large as ", _

(ili) When k = 0 the Hermite polynomials vanish for odd values of |r|, and also
simplify for even values of |r|.

Nevertheless it seems worthwhile to notice the existence of the formulae with
k # 0, since
(a) Saddlepoints do not always exist. An example is given in the next section
in which there is at any rate no real saddlepoint.
(b) Even when a saddlepoint exists it is often numerically laborious to com-
pute it. :

(28)
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(¢) The more general formulae are of some mathematical interest and enable
one to see the saddlepoint method in a more general context.

3. Chi-squared for the Equiprobable Multinomial Distribution. In [5] I gave
a method of obtaining a saddlepoint approximation for the probability ‘“density”’
of

X =N 2 (n. — N/t)%,

or equivalently of S = D nf, for a t-category equiprobable multinomial dis-
tribution of sample size N, where the cell entries are ng, 7y, * - , 74— . The pur-
pose of the present section is to continue the discussion of this method. The
calculation required the solution of two equations for a saddlepoint (p, p’)
(equations (8.3) and (8.4) of [5].) In discussions between Mr. Peter John
Taylor and myself, arising out of attempts to solve the equations on an electronic
computer (Pegasus at the Admiralty), we discovered that these equations do
not have a solution when x* > ¢, and the saddlepoint method appears to break
down. This is unfortunate since x° > ¢ is much the more interesting case in most
applications. On page 877 of [5] I erroneously supposed that there is always a
solution. '

There is, however, a way round the difficulty. .

Let the probability that S = M (i.e., that x° = tMN ' — N) be denoted by
p(M | N, t). Then

(29) p(M|N,t) = @@y )N (),

where

fu =fL(x, y) = Z z len,

n=0 M.

and L = min (N, M*). (There is little inaccuracy in taking L smaller provided
that P (max n; > L) is negligible. The probability can be estimated as in [5].)

In [5] I took L = . By taking L finite it turns out that the saddlepoint
equations, namely

(30) L n2 n2 n 3 _]l_[_ i pn2p/n
0 n! t 5 n! )’
L 22 yn L 2%
np' p N<o'p
1 _ —
(31) ; n! t 20: n! "’

always have a solution when x* > t, except perhaps in the trivial case M = N>.
(The solution is unique in virtue of [5], p. 874.) This statement is a special case
of the following more general one.

Suppose M = N’. Let non-negative integers be defined by the inequalities
W< M/t £ (u+ 1), » < N/t £ v+ 1. Then the simultaneous equations (30)
and (31) have a solution if (i) u > v, and also #f (i) p = v and

x N N N\ .
(32) T-t—>(—t~— )(V+1_T>;
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but they do not have a solution if (iii) p = v and
2
(33) §-N<<ﬁ—)@+1—¥)

(For example, there is no finite solution if N < ¢, x* < t — N.) This statement
covers essentially all cases since it is impossible for u to be less than ».

OUTLINE or ProoOF. For each p > 0, equation (30) has a posmve solution for
p'. Callit p1 = p1(p). Similarly equation (31) has a solutlon p> = p2(p). The con-
dition for the existence of a ]omt solution is that p — ps changes sign when p
increases from 0 to ». (py and p; are continuous functions of p.)

Equation (30) can be written in the form

¥ w1 -2 -4

Af_ 4o+ L oo = G FDr Lttty 4 3 L oMo,
in which the terms on both sides are all non-negative. When p is very small it
turns out that we can approximate the relationship between p and p1 by retain-
ing only the last term on the left and the first term on the right (or the second
one if M/t is an integer that is a perfect square). But when p — « it turns out
that we need retain only the first term on the left and the last one on the right
(even if L = N, t = 1, provided that M > N?). (If L were infinite there would
not be a last term on the right.) We find

~( L! %)Z L oas po

[

and similarly
1
,N(_'L_!_..ZX>Z —L as —
r~\=n~nr t)° P :

M_

’ t K —2u—1
p1~(u+1)—————]‘—[p as p—0,
(#+1)2—7

if M/t = (b + 1%
N

— -y
pr~ (v 4+ 1). 5 1 a5 p—0,
V‘I’l——t—

if N/t #v+1;

p~Ap™? as p—0,
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if M/t = (u + 1) (where 4, is independent of p),
pr~ A as p—0,
if N/t = v + 1 (where A; is independent of p).

We now see easily that p1 < pz when p — w,if M < N°.
When p — 0, then pr > pg if u > ». Now
M _(NY X N
(34) 7‘(7) T
soif N/t = v+ 1, wehave u = » + 1 > ». Therefore p1 >> ps if N/t is an integer.
If N/t is not an integer, then p1 >> ps if M/t = (u + 1) (since u = »). Finally
if N/t 5 v+ 1, M/t % (u + 1)°, and u = »; then p; = p; when p — 0 pro-
vided that

5 Tk

M_ . N _
t : F

2 )
R

and this reduces to the asserted condition in virtue of the relation (34).
We may observe that, if L = o, equations (30) and (31), which are now
equations (8.3) and (8.4) of [5], can be solved when p = 1, and give

’ 1 M 1\ ’ N
Pl(l)= —§+<_t—+1> ) Pz(l) =—t—’

and so ) , :
pi(1) > pa(1) if x> ¢

p(l) < p(1) if ¥ <t

We may therefore expect that, even if L is finite, the value of p satisfying equa-
tions (30) and (31) usually exceeds 1 when x* > ¢ and is usually less than 1
(if it exists) when x° < ¢. Of course, when L = oo, values of p exceeding 1 are
not legitimate, and I suspect that f(x, y) cannot be continued analytically across
the boundary |z| = 1.

Mr. P. J. Taylor has kindly written a Pegasus Autocode program for the
solution of equations (30) and (31). Using this program, pairs of values of p and
p’ were obtained with N = ¢ = 10, L = 11 (L = 10 would have been adequate)
and M = 28(2)46. As evidence of the correctness of the program, I quote two
pairs of results. For M = 28, we obtained p = 1.1552500, o’ = 0.5914205; and
for M = 46, p = 1.2158011, p’ = 0.4119696. (The seventh places of decimals are
unreliable.) The method of solution was to start with a trial value of p (either
guessed or derived from the preceding value of M), then to solve equation (31)
for p’, then use this value of p’ to solve equation (30) for p, and so on; the whole
procedure being greatly speeded up by assuming the consecutive differences in
the values of p to form a geometrical progression. This procedure can be seen to
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converge by drawing the graphs of pi(p) and p5(p). (The procedure would diverge
if equations (30) and (31) were taken in the opposite order.) The solution of
each equation separately was obtained by a crude method of bisection, the time
being halved by making use of some fairly readily estimated upper and lower
bounds. (Each bisection gives one additional binary place.)

Had our intention been to produce tables we would have taken L considerably
larger than N, so that the results would be applicable for considerably larger
values of N, M, and ¢, having the same ratios, or as trial values when the ratios
were approximately the same. (This point will be exemplified below.)

We can now apply Theorem 6.2 of [5], but with the following slight modifica-
tion.

In the present problem the parity of M is the same as that of N, otherwise
p(M, N, t) vanishes. Therefore condition (6.16) of [5] is not satisfied (see [5],
pp. 873 and 874). There are here two equally important saddlepoints, namely at
(p, p') and at (—p, —p’). These make numerically equal contributions and the
signs agree or disagree according as M and N are of the same or of opposite
parities. Therefore the formulae for ¢(M, N, t) and p(M, N, t) need tobe doubled
when M and N are of the same parity. This point was overlooked in [5], and
formula (8.5) should read

1 1
— 1+ 5
(35) P(xX*=t|N=1t) = \/-,.-t< +6t + ) (t even)

0 (t odd).

In order to calculate formula (6.10) of [5] I used another Pegasus autocode
program. The values of p and p’ corresponding to ¢ = N = 10, L = 11,
M = 28(2)46 were those obtained in the previous program. For M/ = 20, p and p’
are both approximately equal to 1 (cf. [5], p. 877), and this case gave a good
approximate check on the program.

Column (i) of the table gives all the possible values, a, of x*, when N = t = 10
(and also the impossible values a = 38 and a = 46). Column (ii) gives the
precise probabilities that x* = a. This column was kindly calculated by Mr. P. J.
Taylor, by using the formula

N! 1
P(S—M)—Zm‘t; (M = a +10),
summed over all n; , - - - , n for whichn; 4+ --- +n, = N,nf + - F+ni=M
(I give these exact probabilities in full detail in case the reader wishes to test
some other method of approximation.) The number in brackets, following each
probability, is the number of partitions of X corresponding to that probability.
The smallness-of these numbers of partitions suggests that X is likely to be too
small for our asymptotic approximations to be very accurate.
Column (iii) gives the gamma-variate approximation (obtained from the
tables of Pearson [10]),
1 o+

1
—1t. 8.5
@S] Jos ¢ 5 %
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TABLE

Accurate and Approvimate Values of P(5’ = a) when N = ¢t = 10

o) (i) (iii) (iv) ) i)

. Por=o)  [Gamma appron.| (5 GmSt, | Bontonlow | (78 trmsol

0 000362880 (1)

2 016329600 (1)

4 .114307200 (1) .130

6 .212284800 (2) 197

8 .223851600 (2) .199 ‘
10 .193369680 (2) .163 .180
12 082555200 (3) 114
14 .085730400 (2) .071
16 .031752000 (2) .0422
18 015699600 (3) .0235 .01935 —76 .00457
20 .010160640 (2) .0125 .01200 =71 .00354
22 .007620480 (1) .0066 .007645 —63 .00283
24 .002850120 (3) .00322 .004942 —56 .00217
26 .001383480 (2) .00159 . .003222 —50 .00160
28 .000181440 (1) .000739 .002109 —45 .00115
30 .000635040 (1) .000354 .001383 —42 .000809
32 .000725760 (2) .000163 .000906 —38 .000560
34 000045360 (1) .000074 .000593 —35 .000384
36 .000060480 (1) .0000334 .000387 —33 .000260
38 000000000 (0) .0000150
40 .000001134 (1)
42 .000062370 (2)
44 .000025920 (1)
46 000000000 (0)
48 000001080 (1)
56 .000003240 (1)
58 .000000405 (1)
72 .000000090 (1)
90 .000000001 (1)

Total 1.000000000

in which the range of integration corresponds to the use of the continuity cor-
rection apparently first published by Cochran [1], which is analogous to that used
for 2 X 2 contingency tables. Column (iv) gives the values obtained from the
leading term of (6.10), after doubling for the reason mentioned above. Column
(v) gives the percentage corrections to be made to allow for the term of order
1/t. These corrections are disappointingly large, and, when above 60%, do not
improve the estimates. Column (vi) gives (6.10) to order 1/¢.

The gamma-variate approximation to the tail-area probability (with con-
tinuity correction) is never wrong by more than a factor of 2, in the range covered
by the above table, when the tail-area probability exceeds t57, even though the
expectation in each cell of our multinomial distribution is only 1. It would be
interesting to know whether (6.10) of [5] would give better results for larger
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values of N and ¢, with N = ¢. The exact values of p(M, N, ¢t) could be calcu-
lated from (4.6) of [5], or from a recurrence relation derivable from it. The exact
calculation of p(M, N, t) forall M < M,,and all N < N,, would require about

LMENG log, ¢ multiplications.
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