ABSTRACTS OF PAPERS

(Abstracts of papers presented at the Annual Meeting of the Institute, Seattle, Washington,
June 14-17, 1961. Additional abstracts appeared in the June, 1961 issue.)

18. Tables for the Reliability of Repairable Systems with Time Constraints
(Preliminary report). RoQuez BEsarano anp Rownarp S. Dick, Inter-
national Electric Corp., Paramus, N. J.

Tables have been prepared to solve for the reliability of systems composed of A similar
subsystems of which at most N can be inoperable for periods exceeding ¢ time units. A
second time constraint is introduced into the model so that for at least time ¢ following a
return of the system from state N + 1 to N machines inoperative, the system is only in
states 0 to N or the system fails.

The mixed difference-differential equations solved are of the forms:

Pi(t) = —[u; + MIP; (¢) + NPt () + #i1Pia (8) + pvaPanay (0) [Py (E — 6)]
Pi(t) = —lui + MIPi (@) + XiaPic () + #inaPina () — WIPN (= W) P (o).
or
PF (t) = —mvaPan @) [Prsc-w] — (i + NPT (@) + pinPia() + NiaPia()

where appropriate boundary conditions are applied. Reliability is defined as R(t) =
SAP;t) + > o Pi(¢). For A =1 (1) 5, and N = 0(1)4 — 1, the tables give for 81
combinations of A and p the approximate time at which R (t) = .001, .005, .01, .05, .10 as
well as the MTBF. The Cornish-Fisher equation and Weibull approximations are used in
finding the reliability points. The MTBF is found by evaluating the Laplace Transforms
of the mixed-differential difference equations and is exact. Reference should be made to
“The Reliability of Repairable Complex Systems, Part A: The Similar Machine Case’’ by
R. 8. Dick, §th M:l-E-Con National Convention on Military Electronics, 1961 for a com-
plete set of equations solved in this paper and the details of the model.

19. Mutual Information and Maximal Correlation as Measures of Dependence.
C. B. BeLL, San Diego State College.

Kramer (1961) asks if Shannon’s mutual information, Cp , is equivalent to Kramer’s
generalization (to arbitrary o-algebras) of Gebelein’s (1939) Maximal Korrelation, Sp,
which satisfies Rényi’s (1959) postulates for a dependence measure of pairs of random
variables. It is found that for two normalizations Cj pand Cp of Cp: (1) 0 = Sp, C; P>
Cp =1; (2) Sp = 0iff Cp = 0iff Cp = 0iff the algebras are independent. For strictly posi-
tive probablhty spaces, (3) the algebras are set 1ndependent iff there exists a probability
function P; such that Sp, = Cp, = Cp, = 0; (4) Cp = 1iff one algebra contains the other;
(5) C% = 1iff the algebras are equal; (6) Sp = 1 if the algebras have a non-trivial inter-
section; (in the finite case, the converse of (6) holds;) (7) there exists a probability space
such that no two of the dependence measures are equivalent. Open Problems: Which of
(3)=(8) are valid for (a) the Gelfand-Yaglom (1957) mutual information for non-atomic
algebras generated by random variables; and (b) the Lloyd mutual information for arbi-
trary algebras?
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20. On a Necessary and Sufficient Condition for a Set of Jointly Normal Vari-
ables to have a Common Variance and a Common Covariance (Prelimi-
nary report). B. R. BaaT, University of California, Berkeley.

The following theorem is proved. Let z;(s = 1,2, --- , n) have a joint n-variate normal
distribution with mean 0. Then the necessary and sufficient condition that n&? = (> #:)2/n
and 3, (z; — %)? are distributed independently and the latter as cx?, where ¢ is a constant,
is that Var z; = ¢2and-Cov (%;,2:i') = v (3,4’ = 1,2, --- ,n). The sufficiency of this theorem
is well known. The necessity follows from the facts that if X is N¢0, =) (i) X’AX and X'BX
are distributed independently if and only if A £ B = 0 and (ii) X’AX has a cx? distribution
if and only if cA = A £ A (cf., C. R. Rao, Advanced Statistical Methods in Biometric Re-
search, p. 56). It is also proved that, if z; , y;(¢,7 = 1,2, --- , n) have a joint 2n-variate
normal distribution, then Q@ = > (x; — )2 + 2 (y; — ¥)? is distributed as cx? inde-
pendently of #2 and 72 if and only if Var ; = o, Var y; = o3, Cov (x;, %) = v1,
Cov (y;, yir) = v, Cov (z:i, yj) = vs (1,7, Js jl = 1,2, ---,n). In particular,
(& — 7)[n(n — 1)/Q]* has a t-distribution with 2n — 2 d.f., if further v = % (v1 + v2).

21. A Property of Least Squares Estimator in Regression Analysis when the
Independent Variables are Stochastic. P. K. BuartacHARYA, University
of North Carolina. (Introduced by' S. N. Roy.)

X1, +-,Xp,7Y) follows a (p + 1) variate distribution which is assumed to satisfy
the following conditions: (i) for every non-null (@0, @1, **+ , @p), the set

{@, o, %, y)ia0 + @y + -+ + a2, = 0}

has probability zero, (i) E(X;X;:) is finite, j, j' = 0, 1, -+, p, Xo = 1, (iii)
E[Y| X, -+, X,] is a linear function of X,, +++ , X,, (v) V[V | X1, -+, X,] i8 2
finite constant. n = p + 1 independent observations are made on (X;, -+, X, , Y) and
the loss in estimating the true regression function ¢ (x1, -+« , @) = E[Y | 21, -+, %) by
another function ¢ (21, -+, 2,) is W, ¢) = [ [¢ — ¢]* dF where F(z,, -+ , z,) is the
marginal distribution function of X, -+, X, . Let C be the class of all estimators which
are linear in Y’s and have bounded risk. Then the estimator obtained by the method of
least squares belongs to © and has uniformly minimum risk in © if and only if all the
elements of the inverse of the matrix of normal equations, have finite expectations. This
last condition is not satisfied in general, and in particular, for p = 1 and for a normal dis-
tribution of X, , it is satisfied if and only if n = 4.

22. Selecting the “Best” t out of &k Populations. P. K. BHATTACHARYA, Uni-
versity of North Carolina. (By title) (Introduced by S. N. Roy.)

F(z, 0) is a family of continuous distribution functions admitting density functions
f(z, 0) and g (#) is a real valued function satisfying the following conditions: (i) for ¢; > 6 ,
fiz, 82)/f{zx, &) is a monotonieally increasing function of z, (ii) g(8) is a monotonically in-
creasing function of 8. Suppose X, , --- , Xi have distribution functions

Fi(z) = F(z, 0), -+, Fu(z) = F (2, 04)

respectively, each of which belongs to the above family and one observation is made on
each of X,, ---, Xi, the observations being independent. Let C(6,, -+, ) be the
sum of the largest ¢ of the quantities ¢(8), --- , g(0x). A vector (dy, -+-, dx),dj =0orl,
Z’f d; = t, represents the decision for selecting the random variable X; if and only if
d; = 1, and the loss in taking the decision (di, ---, d¢) when (8, :-- , 0;) obtains, is
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Cr,: -, ) — Z'{ d;0; . It has been shown that the decision function §* defined below
is admissible and minimax, —8*(z) = (3¥(z), :-- , 8 (z)), where 57 (z) = 1 if z; is one of
the largest tof z; , -+ , zx = 0 otherwise.

23. Approximations for the Entropy of Functions of Markov Chains. JonN J.
BircH, University of Nebraska. (By title)

If { Y,) is a stationary ergodic Markov process taking on values in a finite set {1,2, - - -, 4},
then its entropy can be calculated directly. If ¢ is a function defined on 1, 2, ---, 4, with
values 1, 2, ---, D, no comparable formula is available for the entropy of the proc-
ess {X» = ¢(Y,)}. However, the entropy of this functional process can be approximated
by the monotonic functions

Gn=h(Xn|Xu—1,“',X1) and Qn=h(anXn—l,"'yleY0)'

the conditional entropies. Furthermore, if the underlying Markov process { Y.} has strictly
positive transition probabilities, these two approximations converge exponentially to the
entropy H, where the convergence is given by 0 < G, — H < Bp"?and 0 £ H — G» =
Bp»1 with 0 < p < 1, p being independent of the function ¢.

24. Some Properties of a Large Set of Random Signals (Preliminary report).
NEeLsoN M. BraceMaN, Sylvania Electronic Defense Labs. (Introduced
by Emanuel Parzen.)

For a communication channel that accepts n-tuples of real numbers of mean-square
value P as input signals and delivers them with each component perturbed by the addition
of independent, zero-mean normal noise of variance N, M different signals can be distin-
guished with an error probability approaching zero as n — « provided tan? § > N/P,
where sin 8 = M~V», To achieve this result, it suffices to choose for the signals the rectan-
gular coordinates of independent random points s, , - -+ , Sx on the surface of an n-sphere
of radius (nP)? centered at the origin O. When a perturbed n-tuple r is received, the most
likely signal is that corresponding to the nearest s; . Thus, the space of all r is divided into
M convex, pyramidal regions R, , --- , Ry, with R; consisting of all points closer to s;
than to_ any other s; . We find, e.g., that nearly every s; within an angular distance 26 of
s: contributes a face to R; . In a random direction from s; , with probability approaching 1,
R; extends out very nearly just to the circular cone of generating angle 6 with axis Os; .
This cone very closely circumscribes B; and nearly every one of its faces, edges, etc. Nearly
all of R,’s surface is accounted for by faces approximately arc sin (27% sin 6) from s; . The
nearest edge of R; of dimensionality n — k is approximately ¢ from s; , with sin* ¢, cos ¢r =
k¥ (k 4 1)~3®+D gink 9. From such results, we obtain lower bounds on the noise variance
that could result in a large error probability if a portion of the noise should be dependent
on the signal being transmitted and on sy, «-- , Sp .

25. On a Problem in Hilbert Space with Applications. J. R. Buum anxp D. L.
Hanson, Sandia Corporation. '

Let {X.,n = 0, £1 ---} be a stationary stochastic process. Then it is known that a
necessary and sufficient condition that the process be pure nondeterministic is that the
spectral distribution of the process be absolutely continuous and that the logarithm of
the spectral density be integrable. In this paper we obtain necessary and sufficient condi-
tions directly on the covariance sequence. Several related problems are discussed.
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26. Length of the Longesf Run of Consecutive Successes. E. J. Burr, Uni-
versity of New England, Armidale, N.S.W., Australia. (Introduced by
D. B. DeLury.)

In an ordered sequence of n observations, let those possessing a specified attribute be
called ‘‘successes’’, and those not possessing it ‘‘failures’’. A conspicuous feature of such
a sequence is the length k of the longest run of consecutive successes observed. On the
hypothesis that the successes and failures occur in random order, all permutations being
equally probable, we derive formulae for the probability that the statistic k should exceed
any specified value (i) when the probability of success in each trial is given, (ii) when the
numbers of successes and failures are given, (iii) when the sequence is circular with no
preferred initial point. The joint distribution of the lengths of the longest success run and
longest failure run is also derived. The treatment is greatly simplified by introducing the
concept of a success run of length zero.

27. Comparing Distances between Multivariate Normal Populations, I (Pre-
liminary report). THEOPHILOS CAcouLLos, Columbia University. (By
title)

Let =; be p-variate normal populations with means u(¥¢ = 0, 1, --- , k, respectively,
and with the same known covariance matrix Z. The u®, ¢ = 1, --- | k, are known and u®
is unknown. Let AY; = (u® — p@)’Z-1(u® — u®) denote the generalised (Mahalanobis)
distance between w; and m; . On the basis of a sample z;, --+ , z» from =, a population
m, 4 =1, -+, k, is to be selected so that Aj; = min; <<k Ab; . Let d; be the decision of
selecting m; . (1) Assume that the ¥, ¢ = 1, .-- | k, are collinear. Then by invariance
under linear transformations on the p-space the problem reduces to locating the mean of
a normal variable with unit variance into one of & consecutive intervals covering the real
line. Hence the theory of monotone procedures for the exponential class of distributions
(Girshick and Blackwell, Theory of Games and Statistical Decisions, pp. 179-193, John
Wiley and Sons, New York, 1954) applies. Let Z be the sample mean and §;;(F) =

(2% — p® — p@OY'Z1 (@ — p@) 4 5 =1, .- k. Then, e.g., for k£ = 2 the family of de-
cision rules: take d; if 8:2(Z) < ¢, take d» otherwise, —» < ¢ < 4+ =, is minimal complete
for a wide class of loss functions. (2) Suppose that the k points u®, --- , u® are vertices
of a (k — 1)-simplex in p-space (p 2 k£ — 1). Define §(Z) = (8:12(Z), +++ , 8ux(Z))’ and simi-

larly 8 (x©@). Then 8(Z) has a (k — 1)-variate normal distribution with mean §(u©®) and
known covariance matrix A, say. If xi-1(a) denotes the 100a percentage point of a x?-
distribution with & — 1 degrees of freedom, then of all level « tests of the hypothesis
Aby = Ak = -+ = At with power depending only on ns’ (u©®)A~15(u©®) the test with critical
region nd' (£)A~18(Z) > xi-1(a) is uniformly most powerful. If &;; (u©®) = —aal;, for all
j #1,0 <X = 1,is the region where d; is the correct decision,? = 1, --- | k, then a unique
minimax solution is found for constant loss functions.

28. Subsamples and Order Statistics (Preliminary report). J. T. CHU aND
Kamarn Ya’Cous, University of Pennsylvania.

Suppose that a random sample of size mn is drawn from a given distribution and the
sample is divided into m subsamples each of size n. The observations in each subsample
may be arranged in order of magnitude. In this way, we obtain m order statistics each of
size n. For subsequent analysis, a subset of observations may be selected, as representa-
tives, from each of the m order statistics. Furthermore, by combining the jth order statistic
of each subsample, one obtains a random sample of size m from the population of the jth
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order statistics in samples of size n drawn from the parent distribution. Various types of
statistical inference based on such divisions, orderings, and selections of a random sample
are being investigated. A number of devices have been found where savings in time and
computation compare favorably against loss of accuracy. Methods which improve the ef-
ficiencies of existing ones are also found.

29. Percentile Estimators for the Parameters of the Exponential Failure Law.
Sarya D. DuBgy, Procter and Gamble Co. (By title)

For the 2-parameter exponential failure law, the percentile estimators of the location
and the scale parameters, based on at most two percentiles, have been derived under three
different possible cases. The sampling and the asymptotic distributions and the expressions
of the kth moments of these percentile estimators have been obtained. The choices for the
cumulative probabilities have been made in such a manner that the corresponding per-
centiles insure asymptotic minimum variance unbiased percentile estimators of the loca-
tion and the scale parameters. In case both the location and the scale parameters are un-
known, the concept of the generalized variance, which is defined as the determinant of the
variance-covariance matrix, has been used to determine two cumulative probabilities en-
suring minimum generalized variance. The smallest sample observation and the 80th per-
centile seem to provide asymptotically most efficient percentile estimators for both the
parameters of the exponential distribution.

30. On Separating a Deterministic Component from a Stochastic Sequence.
FriepHELM EICKER, University of North Carolina.

In the separation of a deterministic component of the form of a linear regression Y3
from a stochastic sequence ¥ , y2, < -+ the attention has been focussed almost exclusively
on the estimation of §. It can easily be seen, however, that often some methods applied for
this estimation cannot be used at the same time for an estimation of the stationary sequence
{z:} in the assumed model y = ¥5 + z. So, for instance, the least squares estimators § of
3, though consistent, may asymptotically not even allow a stationary sequence at all.

In order to make an estimation of § possible {z;} must be submitted to some assumptions
such as (to stay quite general) (a) weak stationarity, with a possibly non-zero mean func-
tion E (z:) = u:, (b) finite second moments E(z}) < const < « only. Through (b) in a
sense the most general class, say S, applicable in the model is described. A sufficient condi-
tion for consistency (in the sense of mean square convergence) of 8, given a certain
stationary sequence with covariances B (m), is 3 m|<n |B(m)|/Amin (Y3 Yx) — 0. For con-
sistency over the whole class (a) (or even over S), N "l)w,,..-,,(Y,'vYN) — o« is sufficient. How-
ever, one easily finds regression matrices Yy of this kind, yet the ‘‘covariance function”
R:(m) = E(:3m#:) of the residuals does not tend to the true one (not to mention an esti-
mation of the entire sequence {z.} at all).

31. On Pairwise Independence. SEYMOUR GEISSER AND NATHAN MANTEL,
National Institutes of Health.

It is well known in statistical theory that pairwise independence is necessary but not
sufficient for a set of p variables to be mutually independent. The example that is usually
cited in the statistical literature is due to S. Bernstein and involves discrete variables. An
example of continuous variables that exhibit this peculiarity is produced and is simply the
joint distribution of correlation coefficients from a multivariate normal distribution with
a diagonal variance-covariance matrix.
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32. On Tests with Likelihood Ratio Criteria in Some Problems of Multivariate
Analysis (Preliminary report). N. C. Gigri, Stanford University. (Intro-
duced by Charles Stein.)

Let X be a p-dimensional column vector having multivariate normal distribution with
unknown mean ¢ and unknown non-singular covariance matrix =. In this paper we have
considered two different testing problems concerning mean ¢ and 2 viz.,

(i) to test the hypothesis that £ lies in Z against the alternative that £ lies in Y where
Z and Y are subspaces of the parametric space of dimensions p — p’ and p — ¢ respectively
®>p">9);

(ii) to test the hypothesis that =—1-£ lies in Z’ against the alternative that =-1.£ lies in
Y’ where Z’ and Y’ are subspaces of the adjoint space X’ of the space of 2’s, of dimensions
gand p’ (p > p’ > q) respectively.

It has been shown that the likelihood ratio test for problem (ii) is uniformly most power-
ful invariant similar; whereas if the sample size N and p’ and ¢ are large then the likelihood
ratio test for problem (i) is nearly uniformly most powerful invariant.

33. Circular Probability Problems. WirLiaMm C. GueENTHER, The Martin Co.
and University of Wyoming.

When a circle C; of radius R is dropped upon a fixed circle C; of radius D, several inter-
esting and useful problems arise. Two of these involve (a) the probability that C; covers a
randomly selected point within C:, and (b) the probability that C; covers a randomly
selected point on the circumference of C; . The first problem has been considered by others
and results may be found in Rand RM 330. The second problem is considered and the rela-
tionship between the two problems is observed. The three dimensional counterparts are
also considered. Tables are included.

34. An Application of the Sequential Probability Ratio Test to Finite Populations.
PauL GuNTHER, Armour Research Foundation.

Let #1, « -+, x be the values assumed by a finite population consisting of n members.
It is desired to derive a sequential procedure to predict whether y, = D iy z;is = C or
< C,where C is specified. It is assumed that the finite population is in turn a random sample
from a normally distributed superpopulation f(z; ; 8) with unknown mean 6 and known
standard deviation ¢. (This can be considered also in the sense of an a prior: distribution.)
Further, 0 is assumed to be equal either to 6, or 8o (6; > 6,), each with (a priori) probability
1. Define @ = Prob (predicting y, = C/y. < C), as determined from the a prior: distribu-
tions, and similarly for 8. The SPRT leads to withholding a prediction and taking further
observations if B < {f(yi/y» = C)/[f(Wi/ys < C)]} < A where y; = D jmz;; A and B
are determined in the usual manner; and f(-) is weighted by 6o and 6, . If C = n% (61 + 60),
the acceptance numbers A; are determined from the equation exp (—27:D;) =
(A + A4)' = N(—=T: — Dy))/(N(=T: + D;) — (1 + A)7'); where

Ti= (A: — i0)/((n — i)o), Di= (n—i)¥Afe, 6= (6. + 60)/2,
A= (6, — 6)/2, N(-) = cumulative normal distribution.

This equation is easily solved graphically. As n — «, the test approaches the usual Wald
SPRT. A numerical application is made to a problem in ‘“‘budget control.”” A derivation
is also possible without resorting to the a priori probabilities of 6 and 6, .
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35. On Step-Down Procedure in Simultaneous Multivariate Analysis of Variance
(Preliminary report). P. R. Krisuna1aH, Remington Rand UNIVAC.
(By title)

Let X denote an n X p matrix whose rows form n independent vectors having p variate
normal distributions with a common covariance matrix = and means given by E(X) = Mé,
M:nXm,0=mX p,rank M = r < m = n, where M has known elements and is called
the ‘‘design matrix,” and 0 is unknown. Now, consider the K orthogonal hypotheses
H;:Ci6 = 0,7 =1,2, ---, K, against the alternatives 4;:C:0 = 7; . If the variates can be
arranged in some order according to their importance, the hypotheses H, , --- , Hg can
be tested simultaneously by using the ‘‘Step-Down Procedure’’. This procedure was first
used by Roy and Bargman (these Annals, 1958) for testing the hypothesis of multiple inde-
pendence of sets of variates when the parent population is multivariate normal. In the
present paper, the tests of significance are derived for testing the hypotheses H, , --- , Hg
simultaneously by using the ‘‘Step-Down Procedure’’. The confidence bounds on meaning-
ful parametric functions are also derived. The extension of these results to random models
is under investigation.

36. Linear Hypothesis with Linear Restrictions. ANDRE G. LAureNT, Wayne
State University.

Let Y be weakly spherical (or make it so by changing the definition of the inner product)
with E(Y) = p = A0, where 4 is n X k of rank r < k, with column space @, restricted by
Lo = 0, L’ = (R, P'), with R nonestimable, where R is s X k of rank s £ k — r and
Po estimable where P is ¢t X k of rank ¢ < r and restricts p to w. Completing R = O to
nonestimable R*6 = O, where R*is (k — r) X k of rank k¥ — r, makes 8 (hence any M6)
“pseudo estimable’’ i.e., with structure (C, u), C € @ (or w) under £ (or w), with best esti-
mate § = (C, Y). Let L* = (R*, P’).

A ’ */\ -1 ’
(5)- (250 () wommsr e
with A’AB} + L* B} = I and BIL* = 0. Several proofs of the ahove equations are given
as well as geometrical interpretations. If 4 is of full rank, R = O, obtainingd,, is straight-
forward. These results extend and generalize those of P. Dwyer and others.

37. The Effect of Convergence to Normality on Tests of Hypotheses. LLoyp J.
MoxTziNngo AND NorMAN C. Severo, University of Buffalo. (By title)

Let X be a random variable with mean g, and standard deviation ¢, , and let the dis-
tribution of X tend to normality as some function of the parameters n(us , 0z) — no . The
result of applying normal theory tests of hypotheses on the mean or variance to a sample
from the distribution of X is considered. Denote by P, the power of a test based on a sample
of size n (n fixed) from the distribution of X, and by P the power of the test if X were
normally distributed. Then sufficient conditions are given for which P, — P as

Uz, 02) = Mo .

38. On the Asymptotic Normality and Independence of the Sample Partial
Autocorrelations for an Autoregressive Process. V. K. Murriy, Stanford
University. (By title)

For a stationary autoregressive model of order s, the partial autocorrclation cocfficients
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of orderj,5 =0,1,2, --- , s — 1 are defined; the partial autocorrelation coefficient of order
zero being the same as the autocorrelation coefficient of order one. Denoting these s param-
eters by p1, 7, -+, ms—1, it is shown in this paper that their sample images namely
T1, P1, * - , Ps—1 are asymptotically independently normally distributed with means equal
to the corresponding population values and asymptotic variances given by

Var (n) = 271 — p}) (A — @) ++» (1 — 7)),
Var (p;) = n'(1 — a) (1 — wja) +-- (1 — mea), j=1,2,---,s—1,

where 7 is the size of the sample from the autoregressive process of order s. The partial
correlogram of the model and application of the result are discussed.

39. On Fitting a Linear Trend and Testing Independence when the Residuals
Form a Markov Process. V. K. MurTHY, Stanford University. (By title)

In this note we are studying the problem of fitting a linear trend when the residuals are
serially correlated according to a first order Markov scheme. An iteration method for solv-
ing the maximum likelihood equations is proposed and an explicit criterion for the con-
vergence of the iteration process is obtained. It is incidentally shown that for large samples
the serial dependence may be neglected and ordinary least squares analysis used for esti-
mating the trend. A general result in this direction was proved by Herman Wold and Juréen
Lars, [Demand Analysis, John Wiley and Sons, New York (1953)]. The asymptotic variance-
covariance matrix of the maximum likelihood estimates and the likelihood ratio criterion
for testing p = 0 are obtained. Extending a result of Ogawara [Ann. Math. Stat, Vol 22
(1951), pp. 115-118], the problem of regression when the residuals are serially correlated
according to the first order Markov scheme, is reduced to the classical case; in the case of
fitting a linear trend exact tests for the regression parameters and the hypothesis p = 0
are derived. Illustrating the iteration method an application to the data on the average
yield per acre of potatoes from 1903 to 1932 of the United States is worked out.

40. On the Cumulants of a General Renewal Process. V. K. MurTHY, Stanford
University.

In this paper the results of Smith on the cumulants of a Renewal Process are extended
to the case of a General Renewal Process. After establishing the asymptotic representation
theorems for the #-moments and ¥-cumulants of a General Renewal Process, the table of
the first eight cumulants of a Renewal Process has been extended to the case of a General
Renewal Process. A theorem is proved leading to a check on the calculations. As a particu-
lar case of the General Renewal Process, the cumulants of the ‘“Equilibrium Process’’ are
obtained.

41. Some Distribution-Free Multiple Comparison Procedures in the Asymptotic
‘Case. PETerR NEMENYI, S.U.N.Y. College of Medicine at Brooklyn.

By means of a generalization of Stuart’s transformation for correlated variables [J.
Roy. Stat. Soc., Ser. B, Vol. 20 (1958), 373-378] and by an alternative method, it is shown
that existing tables for multiple comparisons of normal means also apply to a large family
of asymptotic permutation procedures, including Steel’s rank and sign tests, some median
tests, and multiple comparisons based on Kruskal-Wallis rank totals. The tests, designed
for translation alternatives, can also be adapted to the problem of differences in spread
(but in this case it is more difficult to obtain confidence intervals).

The tabulation of (1 — a)V* and 3[(1 — «)'* 4 1] points of various one- and two-sample



922 ABSTRACTS

statistics (e.g., for setting simultaneous sign-test confidence intervals on k& median treat-
ment effects) is also advocated, and some tables are provided.

42. Formulation of a Model Containing a Chance Mechanism according to
which Observations are Missed: The Randomized Block Design. Junsiro
OcGawa, Nihon University, Tokyo, Japan AND BERNARD S. PASTERNACK,
New York University Medical Center. (By title).

In this paper an attempt has been made to introduce a chance mechanism according to
which observations are missed into the model and subsequent analysis of the randomized
block design. By partitioning the ‘‘design matrix’’ for the randomized block design into
(®:¥), it is possible to incorporate the process of randomization for this design directly
into the theoretical model. The exact distribution of the sum of squares due to treatments
contingent upon the incidence matrix for treatments, ®, being random, and the incidence
matrix for blocks, ¥, being fixed, can then be rigorously obtained.

When there is an a prior: probability that observations may be missing in a randomized
block design, this may be accounted for in the model by introducing a set of mutually inde-
pendent chance variables

" = {0 with probability p, if z, is missing
* 1 with probability 1 — pu = gu if . is not missing.
The vector m’ = (my, mz, -+, ma) is called the missing observation vector. The probability
distribution of m’ is given by J] .. %™ ¢%*. On the basis of this model, a modified (F)
test statistic is obtained. The extension of this approach to other more complex designs is
formal. Whether or not it is possible to obtain the exact or approximate distribution of this
statistic is, at the moment, an open question.

43. On Some Methods of Estimation for the Logarithmic Series Distribution.
G. P. PatiL, University of Michigan.

Applications of logarithmic series distribution have been discussed among others by
Fisher (1943), Williams (1943, 1944), Harrison (1945) and Kendall (1948). Problem of esti-
mation, however, does not seem to have been thoroughly investigated. This paper provides
different estimates for the parameter of the logarithmic series distribution and investi-
gates their efficiency and the amount of bias in certain special cases.

44. Some Asymptotic Properties of the Negative Binomial Distribution. Vivian
Pessin, Children’s Hospital, Buffalo, N. Y. (By title) (Introduced by
Norman C. Severo.)

The following two theorems have been proved:

Theorem 1. The negative binomial frequency function is asymptotically normal as N /a —
», Let

e V(1 \v(x+z-1
P(v—x)—(m) (1+a)( x ), z=0,1,2:-;a>0A>0

Let mo = [(A\ — 1)/a] — u((\ = 1)@ + a))}/oa, 60 = (A — 1)(1 + «))/oa, where ¢ is an
arbitrary constant > 0, and u is an arbitrary constant. Let y = (z — mo)/o0 . Then, for
fixed z, and for « bounded away from 0 and from o,

limy jgae @(n = y) = ¢ @)t exp (— (y — n)*/20), —o <y < o,
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Theorem 2. The negative binomial frequency function is asymptotically the Gamma
frequency function as « — 0, for fixed A such that 0 < A < 1. Using the same notation as
in the first theorem, let m; = N — 1, o1 = k((1 + a)/a), where k is an arbitrary constant
> 0. Then lima,0 Q(n = y) = (Bre~*y>1)/(I'(XA — 1)) = g(y), which becomes the gamma
frequency function when g(y) is defined to be 0, for y < 0.

45. On Horvitz and Thompson’s 7T-Class Estimators (Preliminary report).
S. G. PraBHU-AJGAONKAR AND B. D. Tikkiwar, Karnatak University,
Dharwar, India. (By title)

Horvitz and Thompson (J.A4.8.4., 1952), while discussing sampling with varying prob-
ability and without replacement, have given three classes of estimators. If an empty class
is that where the unbiased estimators independent of population values do not exist, it is
shown that their T'i-class is in general an empty class when sampling with varying prob-
ability is adopted. However, when Midzuno’s system of sampling is adopted with replace-
ment, such a class of estimators exists and has a minimum variance unbiased estimator in
the class independent of the population values. The T;-class, which is non-empty, has no
minimum variance unbiased estimator independent of the population values even when
simple random sampling is adopted. The non-empty 7T.-class is known to have only one
unbiased estimator and so is a minimum variance unbased estimator. It is noted that for
Midzuno’s system of sampling with replacement T';-class estimator has a smaller variance
than that of the minimum-variance unbiased estimator of T-class. It is further noted for
sampling with varying probability and with replacement that the minimum variance un-
unbiased estimator in the over all class consisting of the classes T'; and T is the unbiased
estimator in the 7', class. However, the relative efficiency of T’;-class estimator and an esti-
mator in T’;-class depends upon the probability system adopted.

46. The Role of the Multivariate Edgeworth Series in the Random Walk Prob-
lem. J. F. Price aAND W. M. StoNE, Boeing Airplane Co., Seattle, Wash-
ington, anD J. D. WHEELOCK, Oregon State University.

For the random walk in N-space denote the vth step by the random vector
py = (COS @15 , COS @25, *** , COS ¢Ny) Where cos ¢x» (K = 1,2, -<. , N) is a direction cosine.
The point z, attained after n steps from the origin is then the resultant z, = p1 + p2 +
+++ =+ pn . The vectors p, are independent (and identically distributed) so that £ = limu»w Zn
follows the N-dimensional normal distribution. The paper formally expresses the proba-
bility density function of x, as a multivariate Edgeworth series and deduces therefrom, for
N = 2, the asymptotic “modified Pearson” series discussed by Greenwood and Durand
(Ann. Math. Stat., 26: 233-246 and 28: 978-986) for the distance r, from the origin. This
approach has the advantage of using known moments (or cumulants) with maximum ef-
ficiency, requiring only those moments necessary in the determination of the polynomial
coefficients of a given power of 1/n, in contrast to the Laguerre series approach previously
employed. A table of probabilities P(R < r,) for n = 4, 5, --- , 24 was constructed by
quadrature from the known exact distribution for N = 3, and is presented for comparison
with results from the modified Pearson series.

47. On a Mathematical Model for Poliomyelitis Vaccine Effectiveness (Pre-
liminary report). Dana Quape, Communicable Disease Center, Atlanta,
Georgia.

A linear relationship between the logarithm of the attack rate of paralytic poliomyelitis

and the number of doses of killed-virus vaccine received, which ‘‘indicates that each suc-
cessive dose reduced the remainder of the susceptibles by the same proportion as did the
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first dose’’, was discovered by Dr. Jonas Salk (The Lancet, October 1, 1960, pp. 715-723).
This model is made explicit and various mathematical and statistical problems which it
entails are considered.

48. The Distribution of the Ratio of the Variances of Variate Differences in
the Circular Case. J. N. K. Rao anp G. TiNTNER, Iowa State University.

In time series analysis, the variate difference method is used to test the order of the
finite difference at which the trend or the systematic part in the time series is approximately
eliminated. There is no exact test available in the literature except for the one proposed by
Tintner (‘“The variate difference method,”” Bloomington, Indiana, 1940) based on a method
of selection which uses only a portion of the observations. In this paper, the statistic
Vi4+1/Vr is proposed to test that the trend is approximately eliminated at the kth finite
differencing of the series where V; is the variance of the series of the kth differences. Its
exact distribution assuming that the observations are NI (0, o2) is derived under a circular
definition of the universe. The lower 5% and 1%, points of the statistics V2/V; and V;/V.
are tabulated for various values of N, the size of the sample. In practice, one uses the non-
circular statistic with these percentage points for the circular statistic as an approximation,
especially with long time series.

49a. Estimation of Failure Rates of Systems in Development. Davip RuBin-
sTEIN, General Electric Company.

Given an m X o matrix (C;;) of populations of components with the corresponding
matrices: (\;;) of failure rates, (7';;) of test times, (X;;) of the number of failures, (a:;) of
acceptance numbers. X;; are independent Poisson random variables with parameter
i, Tij-ai; are nonnegative integers or . Components from population Cf with failure
rate A¥ will be used in the system if Cf = C;; where X;; < a;; and 7 < j’ for any j’ for
which Xi; < ai; .

Let 8;; = 0if Xi; > ai;, 1 if Xij < aij . Let &s; = 0if Xi; > ai; + 1, Xij/Ts; if Xi5 <
ni; + 1. Under rather general conditions, Sy 2Pk [T @ — 8a) is an unbiased
estimate of the system failure rate of Y 7.1 Af in the sense that difference of the two ran-
dom variables has the expected value zero. Let 63; = 0 if X” > a4+ 2, Xi; (X — 1)/T%
if Xi5 = as; + 2, Xii/Thif X5 S nej + 1. D1 P8 Hk-l a- B,k) is an unbiased
estimate of

[Z > a1 1—s.k)—zx,].

t=1 jm=1 k=1 =1

49b. Determining Bound on Expected Values of Certain Functions. BERNARD
Hargis, University of Nebraska.

This extends some results given by the author in ‘“Determining Bounds on Integrals
with Applications to Cataloging Problems” (Ann. Math. Stat. Vol. 30, 1959). Let g(x) be a
continuous function, not linearly dependent on the first ¥ monomials, whose first k deriva-
tives exist and are monotonic; g , pz , - -+ , px are known constants and the first k¥ moments
of an unknown distribution function F(z). The sup(inf) E{g(z)} is computed, the sup(inf)
being taken over all distribution functions, whose first k moments are given by w1, u2,

, . The extremal distributions are characterized, and computed explicitly for k < 3.
In addition, some applications are given.

50. Convergence to Normality of Functions of a Normal Random Variable.
NormaN C. Severo AND Lroyp J. MontziNco, University of Buffalo.
(By title)

The asymptotic distributions of functions of a normal random variable are investigated
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as some function of the parameters tends to a limit. It is assumed that the functions of the
normal variate will be defined in such a way as to be real for all values of the variate. In
particular, if Y is a normal random variable with mean g, and standard deviation ¢ , and if
X = Y?, where p > 0, has mean p. and standard deviation o , then X is asymptotically
normally distributed with mean u, and standard deviation o; as 7 = ps/o. — . If p <0,
X is asymptotically normally distributed with mean p;'[1 + O (»~?)] and standard deviation
(pud /7)1 + O (n~2)]%. Sufficient conditions on a function h are given for the transformed
variate X = h(Y) to be asymptotically normal with mean h(y,) and standard deviation
b (uy)oy as m — .

It is shown that, for a large class of transformations A, the variate X = h(Y) is asymp-
totically normal as ¢, — 0 with mean p, and standard deviation o, providing they exist. If
they do not exist, the asymptotic mean and standard deviation are h(u,) + 0(s7) and
1/ (uy)oy[1 + O(o})]t. The condition h’(u,) 5 0 is shown to be necessary for convergence to
normality. Furthermore, the asymptotic distribution of A (Y) is characterized when the
first m derivatives of k, at u, , are 0.

51. A Probability Model for Couple Fertility. S. N. SingH, University of Cali-
fornia, Berkeley.

A probability distribution for the number of conceptions to a couple (a male and a fe-
male leading a married life), during a given time interval T, is derived on the assumptions:
(a) the probability of a virtual conception in a unit of time is p, independently of virtual
conceptions in any other units of time, where 7' is assumed to contain T units of time. The
probability of conception in the first unit of time is p. (b) if there is a conception in a cer-
tain unit of time, then there is no conception during next h units of time. 4 is constant.
(¢) a couple belongs to one of two mutually exclusive groups A and B during time T'. Group
A consists of sterile couples and couples who choose to be so, group B consists of couples
not belonging to group A. The group B is homogeneous in the sense that any couple of
group B has the same p, the probability of conception in a unit of time. Estimates of param-
eters are based on sample mean and zero cell frequency. The asymptotic variances of the
estimates are derived. The distribution has been applied to two examples given by Dande-
kar (Sankhya, Vol 15 (1955), pp. 237-250).

52. A Method for Computing the Cumulative Distribution Function of the
Product of Two Dependent i-Variables. RosEpiTH SiTGrREAVES, Teachers
College, Columbia University.

We suppose we have three variables, y: , 2, and a, distributed independently of each
other; the first two are normal with zero means and unit variances, and the third has a
chi-square distribution with n degrees of freedom. The marginal distribution of each of the
variables &, = y1(n/a)} and &, = y2(n/a)}, is thus Student’s ¢-distribution with n degrees of
freedom, but the two t-variables are not independent. In some problems we are interested
in computing the cumulative distribution function of the product #i¢. . An integral repre-
sentation is found for the probability that this product is less than a specified value. This
integral can be evaluated relatively easily by numerical integration to any desired accuracy.

53. A Monte Carlo Analysis of the Serial Correlation Coefficient. Joun S.
WarTe, General Motors Research Labs.

Let (x:) be a discrete stochastic process satisfying the auto regressive equation z, =
af;_1 + u; where the u’s are NID (0, 1). The limiting distribution of &, the MLE for «, is
known (J. S. White, Ann. Math. Stat., Vol. 30 (1959), 831-834) except when o = =+1. In
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this paper the results of a Monte Carlo analysis of the distribution of & is given. Samples
of size n = 10, 20, 50, 100, and 500 were drawn from populations having « = —2., —1.1,
—1.0,-.9,—.5,0, .5,.9,1.0,1.1 and 2.

54. Distribution Function for Randomized Factorial Experiments. S. ZAcks,
The Technion, Israel Institute of Technology anp S. EHRENFELD, New
York University.

In a previous paper on Randomization and Factorial Experiments [S. Ehrenfeld and
8. Zacks, These Annals, Vol. 32 (1961), pp. 270-297] two randomization procedures,for choos-
ing fractional replications, were studied. These procedures have been designed to yield
information on a subgroup of preassigned parameters. Schemes of the analyses of variance,
associated with each of the proposed randomization procedures, were also given. The ob-
jective of the present paper is to study the distribution functions of the associated test
statistics, and to establish procedures for the determination of test criterions for given
levels of significance, as well as the power of the tests.

The distribution functions of the test statistics, for testing the significance of the chosen
parameters, depend on the nuisance parameters (those which do not belong to the preas-
signed subgroup) in a manner that is determined by the randomization procedure. Since
the experimenter generally lacks detailed information on the nuisance parameters, the
problem is to appraise the sensitivity of the test functions (criterions) to variations in the
nuisance parameters.

It is shown that the effect of the nuisance parameters on the distribution function of the
test statistics is through statistics of non-centrality, analogous to the parameters of non-
centrality of the F-statistics in the non-randomized case. The low order moments of the
statistics of noncentrality are studied, and the distribution functions of the test statistics
are approximated by linear contrasts of double non-central F-distributions multiplied by
the central moments of the statistics of non-centrality.

(Abstract not connected with any meeting of the Institute.)

1. Some Property of a Sequence of Random Events. MarEk Fisz, University of
Warsaw, Poland and University of Washington. (By title)

As the author is aware, the following simple theorem has never been published. Denote
by An(n = 1, 2, ---) a sequence of random events, B = nA-,; , Pn = P(4,),
P(An+1|A1 <A, ) Assumethat0<p,.<10<v,.<l(n= 1,2, --+). ThenP(B) >0
1f and only if (%) 21 v, < . It is known that if both of the relatlons Zl Pn = © and
(+#) % va = ® hold, then P(lim, sup A,) = 1. If, however, (#+x) D1 pn < ® and (xx)
hold, then by virtue of the Borel-Cantelli Lemma, P(llmn sup A,) = 0 while the probability
of occurrence of at least one of the 4, is positive. If the A, are independent, relations (x)
and (x##) are equivalent and the author’s theorem asserts P (B) > 0 while the Borel-Cantelli
Lemma asserts the weaker relation P (lim, sup 4,) = 0.

CORRECTION TO ABSTRACT
“MOMENTS OF THE RADIAL ERROR”

By ErnEsT M. SCHEUER

The following corrections should be made in the above-titled abstract (4dnn. Math.
Stat., Vol. 32 (1961), p. 638). Replace sentences two and three by the following:

Let0'1 = 7{(0'11 +02) + [(011 — 022)? + 4]}, 03 = ’H(O'u + 022) — [(011 — 022)? + 40’12]”,

(01 — 0%)/ot. Then the moments about the origin un of the radial error B = [z} + x5}

are u, = 21T [3(n + 2)1F (—34n, 3, 1; k2) where F(a, b, c; 2) is the hypergeometric function.



