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1. Introduction and Summary. The use of 2-associate PBIB design is fairly
common in experimental work. However, PBIB designs with more than two asso-
ciate classes are not widely used because of the complicated nature of the analysis
and construction involved. Recently, in an interesting paper [2], Shah constructed
a number of 3-associate PBIB designs by what may be called the matrix sub-
stitution method. In this method, the incidence matrix of the 3-associate PBIB
design is constructed by replacing the integers of a balanced matrix in S integers
(for example, the matrix might be the incidence matrix of a BIB design, that is,
a balanced matrix in two integers) by the incidence matrices of S associable
BIB designs. The present author [1] and Shah [3] have shown that the above
method may be used to construct a PBIB design with 2m -+ 1 associate classes
by replacing the integers of a PBIB design with m associate classes by the inci-
dence matrices of two associable BIB designs. Shah [3] has also given a simple
method of analysis for PBIB designs with 2" — 1 associate classes constructed
by the matrix substitution method. Thus, Shah’s method of analysis may be used
to analyze PBIB designs with 3 and 7 associate classes (corresponding to n = 2
and 3) which are of practical interest. In the present paper, simple methods of
analysis for a class of PBIB designs with 3 and 5 associate classes are given. The
method given here for PBIB designs with three associate classes provides an
alternate method, and it is hoped that this method is more simple and direct
than that given by Shah.

2. Notation and some known results. The symbol ‘®’ will be used to denote
the Kronecker product of two matrices. Thus, if A = (a;;) and B = (b;;) are
two m X n and p X ¢ matrices we have,

a B, (137 B, e Qi B
A®B— . ..
A1 B, am2B9 cee Amn B
The following square matrix:
A, A, -+, A,
A, , A, , ottt A,
A= . . e .
A,, A, --- A
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where A; and A; are scalars or square matrices of the same order, will be denoted
by (Ar\A:),, where the subscript v stands for the order of A when A, and A, are
considered as its elements. It can be easily verified that

(2.1) (ciAN\CA2), = I(v) ® (ciAr — cAs) + E(v) ® cA;,

where ¢; and ¢, are scalars, I(v) is the » X v identity matrix, and E(v) is the
v X v matrix with all elements equal to unity.

Every design will be denoted by its incidence matrix. Two designs will be called
associable if they satisfy the definition given by Shah [2]. It is known that, if N,
and N; are associable BIB designs with parameters v;, by, 70, ko, Mo ; 01, b1, 71,
ki, Moy and we = m, na = n, and, if A is a PBIB design with parameters v, , by,
To, ko y Nz, N2, c vy Am2 ; Paw(u, 'y g = 1,2, .-+ [ m), then the design N, ob-
tained from A by replacing the integer < by N, (¢ = 0, 1), is a PBIB design with
2m -+ 1 associate classes and parameters v = vy ,b = biby ,7 = 1172 + (v2 — 75)70,
k = klkg + (1)2 - ]‘Cz)]{'o .

Let y.; denote the yield of the plotin the jth block of N to which the 7th treat-
ment is applied. For the purpose of the analysis we assume the model

(2.2) Yij = a+ i+ b, + 5,

where «, {;, b; are respectively the general effect, the effect of the sth treatment
and the effect of the jth block. The ¢;; are independent normal variates with
mean 0 and variance o°. Let T; and B; denote respectively the total yield due to
the 7th treatment and the jth block of N. If the column vectors of
(Tl, T2’ ) T,,), (BlyAB27 7Bb)7 (tl,t2’ )tv) and (f1)£27 ,fv) are
denoted by T, B, t, and t respectively, then it is well known that the reduced
normal equations for the intra-block estimation of treatment contrasts are

(2.3) Q = Ci,

where

(2.4) Q =T - (1/k)NB,
and

(2.5) C =rI(v) — (1/k)NN".
The adjusted treatment sum of squares is equal to
(2.6) tQ = ;fiQ,-.

TFurther, if
(2‘7) i’t = dilQl + di2Q2 + ctt + dinv

is a solution of the normal equations, then the variance of the best estimate of
any estimable parametric function > icds is given by

(2.8) T’(Zi edi) = (; ; cicidi)o.
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Let N be a PBIB design with parameters v, b, 7, k; Ar,Aa, *+, Am ;
Pl (u,u'yqg=1,2,--- ,m). Definem + 1v X v matricesB, (¢ = 0,1, --- , m)
as
(29) Bq=(b¥j) i)j=1’27"'7v’ q=0717"')m7
where

b; = 1 if the 7th and jth treatments are gth associates in N
= 0 otherwise,

with a convention that every treatment is its own Oth associate. Then it is easy
to show that

(2.10) By+ B, + -+ + B, = E(v),

and

(2.11) NN’ =By + MBy + -+ + A\.Bn .
3. A Lemma.

LemMa 3.1: Let A be a 2-associate PBIB design with parameters vy, be , 72, ks ;
Az, Aa2 5 Phur and let No and Ny be two assoctable BIB designs with parameters v, ,
bi, 7o, ko, o1, b1, 11, ki, A uand 9. If N 4s a design obtained by replacing
the integer © in A by the matriz N; (¢ = 0, 1), then
(3.1) NN’ = AA’ ® [cI(v1) + E(v1)] + E(v2) ® [esl(v1) + caE(m1)],
where

e = (rn+r—2u) — (M + X — 29),

c = M+ Ao — 21,

cs = [baro — 2r2(ro — p)] — [b2ho — 2r2(N0 — n)],
Cy = bz)\o —_ 27‘2()\0 - ’)]).

Proor: If we consider N as a partitioned matrix with elements Ny and Ny, it
is easy to verify that the (¢j)th element in the product NN’ is equal to

rsNiN; + (by — r2)NoNg if i = j,

MeNiNT A+ 2(rs — M) NoNT 4 (b2 — 2r5 + Aiz) NoNg
if the treatments 7 and j are first associates in A,

AosNiNT + 2(72 — Na2)NoN7 + (b2 — 212 + M) NoNg

if the treatments ¢ and j are second associates in A.
Defining B, (¢ = 0, 1, 2) as in (2.9), it follows that

NN’ = By ® [:N;N7 + (b — m)NeNg] + B, ® [)\leN; + 2(r2 — \2)NoN;
+ (b2 — 2rs + Niz)NoN] + By ® DoNiN1 + 2(72 — No)NoN;
+ (be — 2ry + A2)NoNg]

= [rBo + MeBr + AeBy] ® NiNi + [(b2 — 2r2)(Bo + By + By) + mBo
+ 2By 4 MzBs] ® NoNg + 2[r2(Bo + By + Bo) — (r2Bo + MeB1 + ABy)]
® NoN; .

(3.2)
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From (2.10) and (2.11) we have
By + B: + By = E(12),  7Bo 4+ MeBi 4 AB: = AA/,
Hence from (3.2) it follows that
NN’ = AA’ ® [N:N{ + NoN; — 2NoNi]
+[E () ® [(b: — 2r2)NoNG + 2r,NoN1].

Since Ny and N; are associable BIB designs with parameters of association u and
7, it follows that

(3.3)

NoN¢ = (ro — M)I(1) + NE(21),
NiN: = (11 — M)I(n) + ME(n),
NoN{ = (& — n)I(n) + 1E(w1).
Substituting for NoNg , N;N7 and NoN; in (3.3) it is easy to verify that

NN’ = AA’ @ [al(v1) + c:E(v1)] + E(2) ® [csl(1) 4+ aE(v)],

which completes the proof.

Most of the designs of practical interest will occur when N is taken as a null
matrix or as the incidence matrix of a randomized block design. The expression
for NN’ may be further simplified in these two cases. The values of ¢;, ¢z, ¢3, ¢4
are given below for the two particular cases:

Case i:

No = 0(?)1 X b1)7
where 0(v; X b;) is the »; X b; null matrix. Since 7o = ko = Ao = u =9 =0,
wehavece, =11 — N, = N, ¢; = 0and ¢cs = 0.
Case ii:
No = E(v1 X by)

where E(v; X b1) is a v; X b; matrix with all elements equal to unity. Since
To = )\o = bl,ko= Vi, 0 =10 = rl,wehaveq =N —)\1,62=)\1+b1—27‘1,
C3 = 0 and Cy = b2b1 —_ 27‘2(b1 - 7‘1). '

It is known that N defined in Lemma 3.1 is the incidence matrix of a PBIB
design with five associate classes. The reduced normal equations for the intra-

block estimates of treatment comparisons are Q = Ci, where
(3.4) C = rI(vw:) — (1/k)NN, r = rge + (v2 — )70,
' k = ks + (v — ka)ko .

4. Analysis of the design N in particular cases.
Case (i) : Let A be a BIB design with parameters vs, b2, 72, k2 , M2 = Aoz = As.
We then have AA’ = (7, — A2)I(v2) + ME(v:). Hence from Lemma 3.1

NN’ = [(7‘2 — )\2)1(?)2) -+ )\2E(?)2)] ® [Cll(?)l) + C2E(vl)]
+ E(v2) ® [csl(v1) + csE(v1)].
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Hence
(4 1) kc = [Tk —_ cl(r2 —_ )\2)]1(1)2) ® 1(1)1) - (03 + Cl)\l)E(vz) ® I(vl)
' — (s — N)I(1) ® E(v1) — (es + M) E(v2) ® E(vy).

Now let the number pair (4j) denote the jth treatment which replaces the sth
rowof A(z=1,2,-+-, 0,7 =1,2, -+, vy) in N. This means that the rows
of N are numbered as (11), (12), ---, (1vz), (21), (22), ---, (202), - -+, (v11),
(01:2), + -+, (viw2). Also, let ¢;; and Q;; denote the effect and the adjusted total
yield of the treatment (4j). In view of (4.1) the normal equations can be written
as

inj = ulfi,- —_ ugfi. - ugi‘.j _ uf y
where
w =1k — ci(re — No),

uz = ¢ + ah,
(4.2)

Uz = 62(7‘2 - )\2),

Us = €4 + G2z,

and #;., £.; and {.. have their usual meanings. Taking the additional equation

.. = 0, we can solve the normal equations uniquely and get the solution
(4.3) iy = diQi; + doQi. + diQ.;,
where

d, = k/ul , dy = kug/[ul(ul — Uzuz)], d; = ]ﬂu3/[ul(ul - vlub’)],

and Q.. and @.; have their usual meanings. Hence, from (2.6), the adjusted treat-
ment sum of squares for testing the overall differences between the treatment
effects is

(4.4) gives a very simple expression for the computation of adjusted treatment
sum of squares from the adjusted treatment totals. Using (2.8) in the solution
(4.3) we can get the variances of the estimates of various elementary treatment
comparisons. These are given in Table I.

Case (ii): Let A be a group divisible design with parameters v, = mn, by, ry,
ks 5 N2, Aee . If the jth treatment in the ¢th group is numbered as (7 — 1)n + j

(=12 -+ ,mj =12 --- n) it is easy to verify that
(4.5) AA' = (ANAy)m = I(m) ® (A — Ay) + E(m) ® A,
where

A = (rs — M2)I(n) 4+ AM2E(n),

A2 )\ng(n).

I
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TABLE 1
No. Treatment Comparison. Number of Comparisons. Variance of the estimate.
|

1. tij — tij(§ # 5 v (v — 1) 2(dy + ds)o?

2. tij — toj(@ #7') vz (v — 1) 2(dy + da)o?

3. t.‘j - t;"j’('l: # i’,j # ]I) 0102(1)1 b 1)(1)2 el 1) 2(d1 + dz + dg)a’z
Hence
(46) AA' = (r, — M2)I(m) ® I(n) + (M2 — A2)I(m)

® E(n) 4+ ME(m) ® E(n).
Therefore, from Lemma 3.1,

NN = (7k — w)I(m) ® I(n) ® I(v1) + ud(m) ® E(n) ® I(n)
(4.7) + wE(m) @ E(n) ® I(v1) + ud(m) ® I(n) ® E(n)
+ ul(m) ® E(n) ® E(vn1) + wE(m) ® E(n) ® E(u),

where
Uy = rk — ei(rs — A2),
Uy = (M2 — Aa2),
(4.8) Uz = C3 + Cihez,
us = c2(re — Ai2),
us = C2(A2 — Ne2),
Us = C4 + Colgz .
Hence

EC = wlI(m) ® I(n) ® I(v;) — ud(m) ® E(n) ® I(v)
(4.9) — wE(m) ® E(n) ® I(v)) — ud(m) ® I(n) ® E(v1)
— usl(m) ® E(n) ® E(v1) — wE(m) ® E(n) ® E(v).

Let the number triplet (7j¢) denote the ¢gth treatment in N which replaces the
treatment numbered (7 — 1)n + jof A (4 =1,2,---,m,j =1,2, -+, n,
g=1,2 -+, 0). Also, let t;;, and Q,;, denote the effect and the adjusted total
for the treatment (7jg). In view of (4.9), it can be verified that the reduced nor-
mal equations may be written as

(410) injq = ulfijq - Uin.q - uai‘.‘q - u.;f,»j. - u5£¢.. - uﬁf y

where £;., etc., have their usual meanings. Taking the additional equation {... = 0,
we can solve (4.10) uniquely and get the solution as

(4.11) fijq = diQijq + d2Qi.q + dsQij. + diQs.. + dsQ..q,
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where
di =k/uw,  do = kwp/lun(u — nw)),  ds = kus/fus(us — vius)],
ds = {k/[u(ur — nus — vy — nvus) ]}
Aua(us + nus)/(ur — nu2) + us(ua + v1us)/(ur — viu)},
ds = Fus/[ur(wr — nug) (w1 — nuy — mnug)l,

and u;, us, - -+, etc., are defined as in (4.8) and Q.. - - - , etec., have their usual
meanings. Hence the adjusted treatment sum of squares for testing the overall
differences between the treatment effects is

Y Z Z Qhia + 22 Z Qi+ ds 2 Z Qi)

4.12 '
(4.12) + d> Q.+ ds 2 Q.

The variances of the estimates of various elementary treatment comparisons are
given in Table II.

Case (iii): Let A be a Latin Square type of design with parameters v, = 7’, by,
72, k2, A2, M2 . The association scheme of the design is determined by the rows
and columns of the n X n array in which the treatments of the design are ar-
ranged. If the jth treatment in the sth row of this array is numbered as
(¢ — 1)n + 7, it is easy to verify that

(4.13) AA' = (A\A,), = 1I(n) ® (A — A,) + E(n) ® A,
where
A = (r; — A\2)I(n) + MoE(n),
A; = (M2 — M2)I(n) + M2E(n).
Hence
AN =1(n) ® [(r: — 2 + M)I(n) + (M2 — M) E(n)]
+ E(n) ® [(M2 — M2)I(n) + A2E(n)].

As in case (ii), after some simplification, it can be shown that the coefficient

TABLE II
No. Treatment comparison. Number of comparisons. Variance of the estimate.
1| tijq — tijer (g # ¢) mnvy(v; — 1) 2(dy + dz2 + ds)o?
2. | tijg — bijra(G # ) mn(n — 1)v, 2(dy + ds)o?
3. | tijg — LijrgG#EFya# () | mn(n — Do(v; — 1) 2(d:1 + dz + ds + ds)o?
4. | tijq — tirjrq@ # 1) m(m — 1)n2, 2(dy + dz + ds + di)o?
5.0 tijq — L@ # 4, ¢ # ¢) | mim — Dn2i(vy — 1) | 2(ds + do + ds + du + di)o?
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matrix C of the reduced normal equations is given by
kC = wl(n) ® I(n) ® I(n) — wlI(n) ® E(n) & I(v;)
+ E(n) ® I(n) ® I(v1)] — wE(n) ® E(n) ® I(v)

(4.14)
— wl(n) ® I(n) @ E(n1) — usfI(n) ® E(n) ® E(v;)
+ E(n) ® I(n) ® E(11)] — uE(n) ® E(n) ® E(n),
where
Uy = rk — 61(1'2 - 2)\12 + )\22),
U = 01()\12 - )\22)>
Ug = €3 + Ciha2,
(4.15)

Uy = 02(7‘2 — 2\ + )\22),
Us = 62()\12 - )\22),
Us = C4 -+ Cohoz .

Let the number triplet (4jg) denote the #th treatment, which replaces the
treatment numbered (7 — 1)n + 7 of A in N. Also, let ¢;;, and Q;;, denote the
effect and adjusted total of the treatment (4jq). Using (4.14), the reduced
normal equations can be written as

(416) ]{IQHQ = ulf,-,-q - uz(f,'.q + i.jq) el usf..q — u4f,-,-. -_ 1,4,5(5z —I'- f,) bl uei ,

-, ete., have their usual

where wuy, us, -+, etc., are as in (4.15) and #;.,,
= 0, we can solve the equations

meanings. Taking the additional equations ...
(4.16) uniquely and get the solution as

(4.17) L0 = diQijg + d2(Qig + Q.jo) + dsQis. + da(Qic. + Q.;.) + dsQ..q,

where

d = k/uy, dy = kus/{ur(wy — nup)), ds = kus/[ur(ws — vyua)l,

TABLE III
No. Treatment Comparison. Number of comparisons. Variance of the estimate.
L. | tijq — tijer(q@ # ¢') (v — 1) 2(dy + 2ds + ds)o?
2. | tijqg — Llijrq OT bijq — tivig 2n2(n — 1), 2(dy + d2 + ds + dy)o?
G #=7,5#7)
3. | tijq — tijrgqr OF tijq — tirjg 2n2(n — Doy — 1) | 2(dy + 2ds + ds + ds + 2ds)a?
GC#=dj#5,9#d)
4. ti,’q - t,'ljlq(’l: # ’l:', ] # jl) n’(n - 1)21)1 2(d]_ + 2d2 + d3 + 2(.14)0‘z
5. tijq el til,'l,,'(’l: # 7:’, J # j’, n(n —_ 1)1)1(01 - 1) 2(d1 + 2d2 + d3 + 2d4
q#4q) + ds)o?
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ds = {k/(v1 — nus — viug — noyus)} {[ue(ue + nug)l/lus(us — nug))
+ [u4(u2 + Ulus)]/[u1(u1 —_ v1u4)] + U5/u1},
ds = {k/(u1 — 2nus — nus)}{[2ua(us + nug) ]/ [ur(ur — nus)] + us/ui}.

Hence the adjusted treatment sum of squares is given by
d 2 Z ; Qe + da( 2 ; Qi+ 2 ; Q) +ds 2 Z Q5.
T Fi 7

(4.18) '
+ d4(Z: Q. + Z Q') + ds ; Q..
2 7
The variances of the estimates of various elementary treatment comparisons
are given in Table III.
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