ON FIDUCIAL INFERENCE!
By D. A. S. Fraser

University of Toronto®

1. Introduction. The subject of fiducial probability was introduced thirty years
ago by R. A. Fisher. In the original paper [8] entitled “Inverse probability”
Fisher discussed the importance of the maximum likelihood method and then
produced a fiducial distribution for a parameter in roughly the following manner.
Let T be a maximum likelihood estimate of a parameter 6. The distribution
function for T given 8, F(T | 0), has a uniform distribution on the interval
[0, 1]. Differentiating partially with respect to T’ gives the probability density
function for 7 given 0:

3 me
HF(T|0)

Differentiating partially with respect to 6 gives a function treated as a density
function for “the fiducial distribution of a parameter 6 for a given statistic T.”
From this density function, “fiducial limits” for the parameter 6 given T’ can be
calculated.

As an illustration Fisher treated the correlation coefficient » for sampling
from a normal bivariate population having correlation p. The supporting inter-
pretation for the fiducial method in this example seems to me very much like a
present-day confidence argument. This, I gather, led Professor Neyman in 1934
[14] to present his theory of confidence intervals as an extension of the fiducial
method. Both Fisher and Neyman have since emphasized that the theories are
different and the recent literature stands in testimony to the large separation
now existing between them.

Today I shall review some of the problems that have been analyzed by the
fiducial method and discuss briefly some of the results obtained for these prob-
lems; also, I shall put forward a mathematical framework® within which I feel
fiducial probability has a clear frequency interpretation for a large class of prob-
lems. A natural beginning is Fisher’s [2] statement: “By contrast, the fiducial
argument uses the observations only to change the logical status of the parameter
from one in which nothing is known of it, and no probability statement about it
can be made, to the status of a random variable having a well defined distribu-
tion.” Such statements have perturbed many mathematical statisticians.
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662 D. A. S. FRASER

2. A simple example yielding a frequency interpretation. Consider a sample of
n observations from a normal distribution with unknown mean g and known
variance. A sufficient statistic is the sample mean &. For simplicity suppose the
known variance to be such that Z is normally distributed with mean u and variance
1. The information concerning frequency distribution can be described in several
ways. First, it can be described by means of the frequency distribution of Z;
see Fig. 1. Second, it can be described in terms of the frequency distribution of
the error ¢ = & — u; see Fig. 2. Borrowing from notions in the theory of measure-
ment we might then say that u was “measurable” in the sense that & which can
be observed is in error, or fluctuates, in known frequency form about u. As a
third way consider the following. In the light of the available information con-
cerning frequency distribution, let u* designate possible values for the parameter
relative to an observed &; see Fig. 3. The statistical problem admits free transla-
tion on the Z axis. Consider g very large number of samples from normal distribu-
tions within the specifications of this example. In each case translate the sample
mean to the value in Fig. 3. The parameter values will be correspondingly trans-
lated. Simple mathematics then shows that the frequency distribution of these
translated means p* is normal with center 'at £ and with unit scale parameter.
There is thus a frequency distribution of parameter values u* that might have
produced the observed Z. A probability statement of the form

Pr{z — 196 < p* < Z 4 196} = 95%

can then be made with Z fixed and with u* treated as a variable designating
possible values for the parameter. The asterisk on the p can even be omitted
provided we keep the interpretation just given. Translation of any kind of re-
peated sampling (n fixed) so that sample means are moved to the observed &
will yield fixed frequency (95 % in the case just given) for the event, the popula-
tion means falling in any prescribed interval about . The process leading to the
above probability statement might be compared with a gambling game in which
the dice are rolled but concealed from view; bets made; then the dice exposed.
With honesty, or with perfect concealment, such a game would be equivalent to
one in which the bets are made before the dice were rolled.

In this example, the freedom of translation has, I feel, produced a precise
frequency interpretation for fiducial probability.

3. A generalization of the simple example. Let % be a sample space for a
sufficient statistic x;let G be a group of transformations on & with typical element
h; let Q be a parameter space with parameter 6. Suppose that the spaces &, G, @
are identical and hence are groups, and that the distribution of = for any param-
eter value 6 is obtained by using 6 as a transformation (left group multiplication)
applied to a variable g with a fized distribution; g will be referred to as the error
variable and its distribution as the error distribution. With this formulation the
specification, i.e., the family of possible distributions, is invariant under each
transformation belonging to the group @G, indeed (hz) = (h8)g for 4 in G shows
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that the variable hz has parameter h6 when x has parameter 6. Further details
on this generalization may be found in [10].
The equation £ = 6g can be simply manipulated to produce

g = 0"z

Since g has a fixed frequency distribution this equation shows that 6 'z is a
pivotal quantity (a function of the parameter and the sufficient statistic that has
a fixed frequency distribution). A simple analysis [10] then shows that 6~z is
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essentially unique among invariant pivotal quantities. The frequency informa-
tion in the specification of the problem can then be compactly formulated in
terms of the fixed distribution for the error variable g. From this latter formula-
tion the distribution of z given 8 can be obtained from the equation z = 6g
and the distribution of 8 given x from the equation § = zg~'. A simple interpre-
tation of this second equation is in terms of possible values  for the parameter:
let  be an observed value from the sufficient statistic; consider the sufficient
statistic with distribution determined by some parameter value; use a variable
transformation to transform the variable sufficient statistic into the fixed value
x; the parameter value will correspondingly be transformed into a frequency
distribution—the fiducial distribution given by equation § = xg~".

Suppose now that the distributions can be described by means of density
functions. The natural ‘“carrying” measure on a group is the invariant or Haar
measure." Let u designate the left Haar measure on G; it has the property:
w(hH) = u(H) for all h in G and all H C G. A related measure is right Haar
measure; designate it by »; it has the property v(Hh) = v(H) for all h in G and
all H < @. The modular function A(h), defined by u(Hh) = A(h)u(H) (which
holds for all H), gives the relationship between left and right Haar measures:
du = Adv.

Let p(g) be the probability density function for the error variable g with
respect to left Haar measure; accordingly, the probability element for g is

(1) p(g) du(g).

Simple analysis [10] then shows that the probability element for x given 6 is
(2) p(67x) du(z),

and for 6 given r is

(3) p(67w) A(x) dv(6).

This last expression describes a standard conditional distribution for 6 given x
within the mathematical model just presented. The freedom to make transforma-
tions can thus be used to remove the rigidity that results when seemingly undue
emphasis is placed on the “origin” in the coordinate system.

4. Sampling from a normal distribution. Consider a sample of size » from a
normal distribution with unknown mean and variance. The sample mean and
standard deviation (&, s) form a sufficient statistic for the parameter (u, o),
the mean and standard deviation of the normal distribution. For most physical
problems from which this statistical problem might have been abstracted, the
origin and the unit for measurement are arbitrary or conventional; a natural
group of transformations then is that involving location and scale changes. The
multiplication of this group then yields the representation

4 See, for example, Chap. XI in Halmos, [11].
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(i’ S) = (u7 V)g = (“) 0') (;%’ (ﬂ/—%(—l—)}) )

which expresses the distribution of (£, s) in terms of relocation (u) and rescaling
(o) of the distribution in the standardized case; here z and x are independent
variables, standardized normal and chi on n — 1 degrees of freedom respectively.
The formula for group multiplication is (a, b) (¢, d) = (a + be, bd). By working
from this fixed error distribution for g it is straightforward to calculate the condi-
tional distribution of (&, s) given (u, o), or the conditional distribution of (g, o)
given (Z, s), the latter being the fiducial distribution. These are ordinary condi-
tional distributions resulting from the freedom of location and scale.

A frequency interpretation for the fiducial distribution of u given (&, s) can
proceed as follows: let (&, s) designate the observed vaues; consider a long
sequence of parameter-observation combinations in which the parameter may
stay constant or may vary;in each case relocate and rescale to bring the sample
mean to the fixed Z and the sample standard deviation to the fixed s; these trans-
formations then carry the parameter values into a frequency distribution which
simple analysis shows to be Student’s distribution located at & and scaled by
s/n’. This is the fiducial distribution of u given (Z, s).

The general expressions for probability elements in the preceding section can
easily be specialized. Left Haar measure under the location-scale group has
measure element d ds/s” and right Haar measure has element dz ds/s; the modu-
lar function is A(Z, s) = 1/s. The probability element for (Z, s) given (u, o) has
the form

nt n o, 2 1 (n —1)s
@mie P [‘ﬁ (&= w ] TGm—1) 7 [‘” pre ]
) ((n — l)sz)“”—a) 2s(n — 1) , _dz ds
20t 27 0 Te

(Note the rearrangement so that left Haar measure is used for the measure
element.) The probability element for (u, o) given (Z, s) is then easily seen to be

) ((n — 1)81)%(1‘_3) ) 2s(n — 1) & 1 duds
2g2 202 s s

(4)

(5)

This probability element for (u, ) given (Z, s) admits a precise frequency inter-
pretation in terms of possible parameter values corresponding to the particular
(&, s). Consequently it can be integrated to produce marginal frequency distribu-
tions with similar interpretations for “variables” such as u, o, 4 + 1.960, always
of course, given (&, s). These fiducial distributions correspond to those given by
Fisher (e.g., in his Statistical Methods and Scientific Inference [2]).

The use of location and scale transformations has led to a mathematical
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framework for a problem that Fisher treated in a physical setting. With a few
deletions I quote from Fisher [9]: “A complementary doctrine . . . violating . . .
the principles of deductive logic is to accept a general symbolical statement
such as

Pr{(—ts) Sp=s(@+1is)) =a

as rigourously demonstrated and yet, when numerical values are available for
the statistics £ and s, so that on substitution of these and use of 5 per cent.
value of ¢, the statement would read

Pr{92.99 < p < 93.01} = 95%,

to deny to this numerical statement any validity. This evidently is to deny the
syllogistic process of making a substitution in the major premise of terms which
the minor premise establishes as equivalent. ... [This is used to support] the
assertion that if u stands for some objective constant of nature, or property of
the real world, such as the distance of the sun, its probability of lying between
any named numerical limits is necessarily either 0 or 1 and we cannot know
which unless the true distance is known to us. The paradox . . . requires that
we should wilfully misinterpret the probability statement so as to pretend that
the population to which it refers is not defined by our observations and their
precision but is absolutely independent of them. As this is certainly not what
any astronomer means and is not in accordance with the origin of the statement,
it seems rather like an acknowledgment of bankruptey to pretend that it is.”
The framework I have suggested puts emphasis on the error variable “g’’ and
on the freedom from an artificial origin in the coordinate system. In this frame-
work there seems to me to be little basis for criticizing the fiducial method.

6. A further generalization. The model in Section 3 can sometimes be applied
within more general problems if there is an ancillary statistic. Let (x, a) be an
exhaustive statistic for estimating the parameter 6; that is,

(i) The conditional distribution given the statistic (z, @) does not depend
on 6.

(ii) .No reduction can be made in (z, a); that is, no non-trivial function of
(2, a) exists that satisfies (i). Suppose now that a is an ancillary statistic, a
statistic having a fixed distribution regardless of the value of 6. In this situation
z can be interpreted as a sufficient statistic for 8 given the value of the ancillary
statistic a. In a sense a describes a situation in which one is caught, and in which
z is sufficient for 4.

For some problems of this type it may be possible to apply the model in Sec-
tion 3 to the conditional problem involving the distribution of z given the value
of the ancillary statistic a.

6. The problem of location and scale. In 1938 E. J. G. Pitman [15] gave an
extensive treatment of interval estimation for problems of location, of scale, and
of location and scale. These problems lend themselves to the methods in the
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preceding sections and the fiducial distributions can be obtained very simply.
Consider the problem of location and scale; the other problems can be treated
similarly.

Let (1, -+, z,) be a sample of n from the distribution having density func-

tion
1,.{x—
;f( 0’ ):

where f is a specified function and u, ¢ are the parameters of location and scale.
The density function for a sample of = is

().

To have the transformation properties for the fiducial method, statistics of
location and scale are needed; the sample mean and standard deviation are a
simple and convenient choice; any ot} . pair would serve, however. The remain-
ing information in the sample (x;, -+, z.) can be described by the relative
spacing of the sample values, ’

a= (=% ... =Wm—2%

s H H s H
which is called a configuration statistic and describes the “shape’ of the sample
without reference to its location and its scale. (The elements in the expression
for the statistic above satisfy two constraints and as a result any designated pair
of elements could be omitted from the expression.) The invariance of the con-
figuration statistic under location and scale changes shows easily that it has a
fixed distribution independent of (u, ¢) and hence is ancillary; its distribution
will however depend on the form of the density function f. The statistic (&, s) is
conditionally sufficient. The combination (x, a) here is not exhaustive in the
sense that the reduction can be made from the ordered observations (z;, -« , 2,)
to the unordered observations {x, --- , x,}; this has, however, no effect on the
argument here.

The approach put forth in Section 5 is to examine the problem conditionally
given the ancillary statistic a. For this, the joint density for (&, s, a) given
(u, o) is needed. The Jacobian of the transformation from (z;, :-:, z.) to
(&, s, a) where two of the elements of a are omitted turns out to depend on
(£, s) through a factor s *. From this, it follows that the conditional probability
element for (&, s) given (a, u, o) has the form

(6) %Hf(xi — u) LS. diszds;

o

the measure element is arranged to exhibit left Haar measure. The formulas of
Section 3 and the Haar measure results in Section 4 then produce the following
fiducial element for (u, o) given (Z, s, a):



668 D. A. S. FRASER

™ EILr () o

The frequency interpretation of this fiducial element is in terms of possible values
for (u, o) relative to (Z, s), all given the value of the ancillary statistic a.

7. The relationship of fiducial distributions and prior distributions.’ Consider a
statistical problem of the form introduced in Sections 3 or 5, and suppose that
there is an a prior: distribution for the parameter 6 having a density function with
respect to Haar measure; let the a prior: probability element be

n(0) dv(6)

with respect to right Haar measure. The analysis of Sections 3 or 5, which ignores
prior distributions, produces a fiducial probability element

kp(67'z) dv()

for the parameter given the sufficient or conditionally sufficient statistic z.
The prior distribution can be combined with the observational results in two
ways: .

By a Bayes argument. The formal joint probability element for z and 8 is

n(0) dv(0)p(0'z) du()
which yields the following a posterior: element for 9 given z:
(8) kn(8)p(67'z) dv(8).

By a joint distribution argument. Consider the joint distribution of the prior
0 and the possible values # given the observation z. Introduce the condition
0 = 6 with respect to right Haar measure. The resulting conditional distribution
for 0 is just that produced by the Bayes argument in the preceding paragraph.

Thus within the transformation framework of Sections 3 and 5 the information
about 0 extracted from the observations by means of the fiducial argument can
be combined in a logical manner with prior information and be entirely con-
sistent with the Bayes approach.

Some other results on the relationship of fiducial probability and prior proba-
bility are the following. Lindley [12] has proved for a real-valued parameter that
the fiducial distribution is a Bayes posterior distribution if and only if the param-
eter is essentially a location parameter. D. R. Brillinger in unpublished research
at Princeton University has proved that the fiducial distribution is a Bayes
posterior distribution if the transformations on the sample space form an r-
dimensional Lie group and the sample and parameter spaces are r-dimensional
manifolds. In the framework of Sections 3 and 5, setting n(8) = c in the formula
for the Bayes posterior distribution (8) gives the formula for the fiducial prob-
ability element. Thus the fiducial distribution is a Bayes posterior distribution if

u do
-

1 -
IS

5 For the details of the analysis in this section, see [10].
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the sample and parameter spaces are identical to the transformation group and
the distributions are given by means of density functions with respect to right
Haar measure.

8. Combining fiducial distributions from separate systems.’ Suppose there are
two systems concerned with a parameter 6 and suppose that each is of the form
introduced in Sections 3 or 5. Let x be a sufficient statistic, and p(g) be the
density function for the random “error” in a first system, and lety, g(h) be the
corresponding ingredients of the second system. Consider the following three
methods of combining the information from these two systems.

By direct combination of fiducial distributions. The first system produces
the fiducial element p(6i'x) dv(6,); the second system the fiducial element
q(67'y) dv(6,). A reasonable method of combining these is by reference to the
condition 6, = 6, re right Haar measure. The resultant fiducial element for 6 is

kp(67'z)q(67"y) dv(6)

By a Bayes argument. If the fiducial distribution from the first system is used
as a prior distribution for the second system, the resulting posterior distribution
is just that obtained by the first method of analysis.

By an overall fiducial argument. If the combined observational system admits a
sufficient statistic then the combined system has the form in Sections 3 and 5
and yields a fiducial distribution. A modest amount of analysis shows that it is
just the distribution obtained by the first two methods.

If the combined system does not have a sufficient statistic it at least has a
conditionally sufficient statistic given an ancillary statistic, since the orbits in
the product space for (z, y) generated by the transformations in the group
may be taken as values of an ancillary statistic and the positions on an orbit may
be taken as the values of the conditionally sufficient statistic. The fiducial dis-
tribution then obtained by the method suggested in Section 5 is just that ob-
tained by the other methods.

In the Pitman location-and-scale problem consider separate groups of observa-
tions and treat them as separate systems. The results described above then show
that the fiducial distributions from the separate groups can be combined by
either of the first two methods yielding the overall fiducial distribution based on
the ancillary statistic. Thus the ancillary statistic itself is generated by a general
fiducial argument.

9. Fiducial probability and statistical inference. The results concerning fre-
quency interpretation and freedom of handling of fiducial probabilities have, I
feel, some general implications for statistical inference. A formal statistical prob-
lem contains certain basic information concerning possible frequency functions
for the variables being observed. This has been called the specification by Fisher.
If the specification has the transformation properties of Sections 3 or &, then the

¢ For the details of the analysis in this section, see [10].
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fiducial argument gives a frequency distribution of possible parameter values
given the data. In this framework then fiducial probability gives an answer to the
question D. R. Cox [5] in his 1958 paper felt that statistical inference should
answer: “What do the data tell us about 6?”

In addition, many statistical problems pose some question concerning the
parameter or concerning some function of the parameter. The interpretation of
fiducial probability in this paper suggests to me that the answering of such ques-
tions can be and perhaps should be a separate part of the analysis which would
use from the observations only the fiducial distribution; in fact, accepting the
fiducial distribution as a frequency distribution of possible values for the param-
eter allows the answering of questions concerning the parameter even in cases
where the transformation properties do not hold for these questions. Some
support for this suggestion may be found in the result in the preceding section,
that the fiducial distribution can be combined in a logical manner with the prior
distribution and still be consistent with Bayes. A statistical inference would then
involve combining with logic and judgment the fiducial information and any
other information—of frequency form, or of a restriction on the parameter range,
or of personal probability form. Marginal distributions of parameters, even if
related to fixed points in the sample space, would have a frequency interpreta-
tion.

10. The Behrens-Fisher problem. The specification of the Behrens-Fisher
problem describes two samples from normal populations with unknown param-
eters. The problem is to estimate or make tests on the difference in population
means. For a first system let (Z; , s;) be the sufficient statistic for (u; , ¢1) based
on a sample size n; and for the second system (&, s;) for (uz, o2) based on a
sample size n, .

The specification for each system admits scale and location changes and these
would often be reasonable for the problem in a physical setting. For the first
system repeated sampling from the random error variable yields the following
fiducial distribution for pu; :

o= & + hs/ \/"71

where t; is the variable and it has Student’s distribution with n, — 1 degrees of
freedom. Similarly for the second system repeated sampling from the random
error variable yields

pe = & + hSs/A/Ny

where #; is the variable and it has Student’s distribution with n, — 1 degrees of
freedom. These distributions together provide a distribution for (u;, p) and it
has a frequency interpretation as derived from transformation freedom.

From the joint distribution for (u; , us) the marginal distribution of 4 — u, can
be derived in a straightforward manner; percentage points for this marginal
distribution can be obtained from Sukhatme’s tables.
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In reply to criticisms concerning the error rate of a test based on this distribu-
tion Fisher has stated ‘‘it is irrelevant to the purposes of the test for the experi-
menter is not concerned with repeated sampling from the same population.”
In the transformation framework proposed here the fiducial distribution is
generated by repeated sampling from the error variables and has a frequency
interpretation given the z’s and s’s.

11, Confidence intervals versus fiducial intervals; an example. In 1939 B. L.
Welch [18] considered a simple statistical problem and examined some properties
of a best confidence region and a fiducial interval obtained from the use of an
ancillary statistic. Let (x;, ;) be a sample of two from the uniform distribution
on the interval 6 4 1. The statistic z2 = (z, — ;) /2 is easily seen to have a fixed
distribution and hence is ancillary. The statistic z; = (22 + #1)/2 is then condi-
tionally sufficient for 6.

A fiducial interval with probability 95 % is 21 &= 95%(0.5 — |z,|); it embodies
95 % of the permissible range for 6. A best unbiased 95 % confidence interval is

21 & min {[0.5 — |zl], [0.5 + 22| — (0.5 — 0.95/2)%)}.

The confidence interval embodies the full permissible range for § when that
range (1 — 2l|z|) is small.

The fiducial interval is also a confidence interval and consequently from the
confidence point of view falls short of being optimum. Welch plots for each inter-
val the probability that it covers a value A away from 6. Over most of the range
of A the confidence interval has a smaller probability, and nowhere larger.

There is however another side to the comparison. When the permissible range
for 6 is small the confidence interval embraces not 95% but the full range of
possible values for 6. It is not hard to see what is happening: when the range of
permissible values is short the confidence interval takes the full range on the
grounds that in probability there may be another occasion when the range of
permissible values is larger and less than 95 % can be chosen and still maintain
the long run 95 % average. Is the long run average more important than the
specialized knowledge of the particular situation?

The comparison between the intervals thus involves a conflict between a
general principle and specific knowledge for data in hand. In his 1958 paper Cox
emphasized the second of these. Recent papers by Buehler [4] and Wallace [17]
are concerned with this sort of conflict and use notions of relevant subsets and
strong exactness. There are certainly good grounds, I feel, for ignoring a general
principle when it is in conflict with data-specific knowledge. My preference
weighs heavily in favour of the fiducial interval for Welch’s example.

D. R. Brillinger, in unpublished research at Princeton University, has proved
that a fiducial region chosen to be invariant in the transformation framework is
also a confidence region. An advantage of the frequency interpretation in terms
of an error variable is that it is applicable when the fiducial region has its form
based on the variable being observed, the case not covered by Brillinger’s result.
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12. The Creasy-Fieller problem. The problem of finding an interval estimate
for the ratio of the means of two normal distributions was examined by Miss M.
A. Creasy [6] and E. C. Fieller [7] in papers presented to the Royal Statistical
Society in 1954. The papers drew attention to differences between the fiducial
and the confidence methods and provoked interesting discussion [6] [7] bearing on
these differences.

The specification in its simplest form describes independent variables x and y
that are normally distributed with means u and » and with known variance. The
problem is to focus on the parameter & = u/» and find some sort of interval
estimate.

Fieller used the pivotal quantity

Yy — ax
1+ 2a + oAt
and from it obtained regions for the parameter « by manipulations standard to
the confidence method. The regions are certainly confidence regions; Fieller,
however, used the term fiducial for them, but there seems to be some doubt
whether the method of derivation fits the fiducial pattern implicit in Fisher’s
work.

Miss Creasy proceeded differently. She combined the separate fiducial distri-
butions for u and » to obtain a joint fiducial distribution and then integrated to
obtain a marginal fiducial distribution for « = w/v. Fiducial limits were then
calculated from this distribution.

The pivotal quantity used by Fieller is not compatible with the location
transformations natural to the variables x and y. His regions have a confidence
frequency interpretation but they do not seem to me to have a frequency in-
terpretation given x and y.

From the transformation point of view Miss Creasy’s procedure extracts what
the data have to say in a frequency sense about the parameters u and ». This
frequency information is then taken at its face value and used to obtain the
marginal distribution of the parameter of interest. The fiducial distribution has
a frequency interpretation in terms of error variables and its derivation seems to
fit the pattern implicit in Fisher’s work.

In"this simplest form of the problem, an interval obtained by Miss Creasy’s
method is always contained in the interval at the same frequency level obtained
by Fieller’s method. As a result, if the intervals are evaluated from the point of
view of repeated sampling from the same population, then the probability with
which the Creasy interval covers the value of the parameter must be less than
the corresponding probability for Fieller’s confidence interval and hence less than
the Creasy interval’s fiducial probability.

The general tenor of the discussion following the Creasy-Fieller papers
favoured the approach used by Fieller—it had the backing of confidence theory.

13. Regression analysis. Consider linear regression analysis with normally dis-
tributed errors. Let «, B1, - -+, B, designate the regression parameters and o
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the scale parameter of the error distribution. Also let a, b, , - - - , b, designate the
least-squares fitted regression coefficients and s the standard deviation about
regression. The fitted coefficients ¢, b = (b1, ---, b,) have a multivariate
normal distribution with means @, 3 = (8, - --, 8,) and covariance matrix of
specified form but scaled by o*; let n(a, b|a, 8; o) designate its probability
density function. The standard deviation s has a x type of distribution scaled by
o;let x(s| o) designate its density function. A natural group of transformations
involves location changes for each regression coefficient and a scale change for the
regression coefficients and error scale-parameter. The probability element for
a, b, s given a, 8, can be written

da db d,
n(a,b| a8 o)x(s| 0)-s"" L2

where- the measure element is arranged so as to exhibit left Haar measure.
Formula 3 in Section 3 then gives the fiducial probability element for «, 8, o
given a, b, s:

1 dadpds

p+2
n(a,b|a, 8, c)x(s| o) " - peee] >

This distribution for «, 3, ¢ can be described by the equations
a=a—|—awo, ﬂ,;=b¢+0"wi, 0'=8‘\/f/x

in terms of variables wy, - - -, w,, x, the w’s having a multivariate normal dis-
tribution with means 0 and with covariance matrix equal to the inverse of the
matrix of inner products of the structural vectors corresponding to the parameters
a, B, -+, Bp, and x being distributed as a x variable with the usual ‘error’
degrees-of-freedom.

In certain cases of nonlinear regression the space for the mean of the basic
variables may be contained in a linear subspace of slightly higher dimension.
It then seems reasonable to calculate the fiducial distribution for the regression
coefficients in the linear subspace and then condition it according to permissible
parameter values. If the sample size is large enough most such problems become
approximately linear and the fiducial method can be applied directly.

If the error distribution form is something other than the normal, the least
squares estimates will in general not be sufficient. The transformation method
can, however, still be used but in relation to an ancillary statistic—a value of the
ancillary statistic corresponding to an orbit under the transformation group.

14, The correlation coefficient. Consider estimation problems concerned with
sampling from a bivariate normal distribution. Let &, §, su, si2, S» be the suffi-
cient statistic estimates for the parameters u, », 011, 012, 092 -

In the original paper [8] on fiducial probability Fisher produced a fiducial
distribution for the correlation coefficient p = a5/ (0110'22)% by the method
outlined in Section 1 of this paper. In the discussion following the Creasy and
Fieller papers [6] [7] Fisher produced a fiducial distribution for (g, »). Mauldon
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[13] obtained several alternative pivotal quantities and hence several alternative
fiducial distributions for the parameters. Quenouille [3] in his recent book, The
Fundamentals of Statistical Reasoning, gives a set of rules for handling fiducial
probabilities and applies them to this bivariate problem. There seems to be a
general lack of consistency among these results. Various transformation groups
can be used on the basic sample space for sampling from the bivariate normal
distribution. One group that might be natural in certain situations is formed from
the following kinds of transformation: scale and location changes for x; changes
in y that are of linear regression form on x; changes in scale of deviations from
the linear regression. The resulting model is of the form discussed in Section 3
and a fiducial distribution of the five parameters can be derived. From this
joint distribution a marginal fiducial distribution for the correlation coefficient
can be obtained; it will have a frequency interpretation in terms of repeated
sampling from the error variable.

The transformation group just given can be used with the roles of z and y
interchanged—that is, with regression of z on y. From this, a marginal fiducial
distribution for the correlation coefficient can be obtained and it will in general
be different from the fiducial distribution mentioned in the preceding para-
graph. This second fiducial distribution also has a frequency interpretation but in
terms of a different kind of random error transformation. These two distributions
appear symmetrically one with respect to the other and hence must be different
from the fiducial distribution in Fisher’s original fiducial paper [9]. The only
frequency interpretation for the original fiducial distribution that I can see is the
frequency interpretation that customarily goes with confidence intervals.

This multiplicity of fiducial distributions for the correlation coefficient perhaps
reflects certain inadequacies of the correlation coefficient, and hence of the
bivariate normal for the strong statements of the fiducial method. Additional
structure in the form of suitable or reasonable transformations on the sample
space gives some unity in terms of relative positioning of points and can yield a
fiducial distribution with a frequency interpretation that in effect states where
the parameter might be relative to the observation. Perhaps this additional
information from the physical situation is necessary before we can make the
strong statements of fiducial probability.

15. Addendum. Prof. Allan Birnbaum has given a paper at this meeting
describing some results of his on the topic “informative inference.” Consider the
case of two parameter values 6; and 6, and distributions that admit symmetry of
the likelihood ratio.

There is then a unique decomposition into simple experiments ordered by
“more informative than.”” These simple experiments are symmetrical. This model
lends itself nicely to the transformation argument of fiducial probability. A value
for the ancillary statistic corresponds to the particular simple experiment one
finds oneself in. Within that simple experiment the permutation group on two
elements can be used and a fiducial distribution on the two parameter values
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derived. The ratio of fiducial probabilities turns out to be the ratio of the likeli-
hoods. This fiducial distribution has a frequency interpretation given the ob-
servation.

This is an example of the use of fiducial probability when the sample space is
finite. The method of Sections 3 and 5 is of course valid for finite groups and thus
extends, in this direction, the usual usage of fiducial probability.

16. Bibliography. Tukey [16] gives a bibliography of fiducial probability; a
more extensive bibliography appeared in the handout for the 1958 Wald lectures
given by Tukey at the August 1958 meeting of the Institute of Mathematical
Statistics.

17. Acknowledgments. Professor L. J. Savage and Professor J. W. Tukey
read a preliminary write-up of this paper and offered extensive and penetrating
comments. Some of these I was able to incorporate into the paper; others, due to
differences in our viewpoints I preferred not to include. I thank them with deep
appreciation for their help and for the time and consideration they gave this

paper.
Mr. David Brillinger and Mr. Collin Mallows also read the preliminary write-
up and offered helpful comments. I appreciate their help, and thank them for it.
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