A CONVEXITY PROPERTY IN THE THEORY OF RANDOM VARIABLES
DEFINED ON A FINITE MARKOV CHAIN

H. D. MiLer'
Statistical Laboratory, University of Cambridge

1. Summary. Let P = (p;:) be the transition matrix of an ergodic, finite
Markov chain with no cyeclically moving sub-classes. For each possible transi-
tion (j, k), let H ;z(x) be a distribution function admitting a moment generating
function f;(%) in an interval surrounding ¢ = 0. The matrix P(t) = {pufi(?)}
is of interest in the study of the random variable S, = X; + -+ 4+ X, , where
X, has the distribution H () if the mth transition takes the chain from state
7 to state k. The matrix P(¢) is non-negative and therefore possesses a maximal
positive eigenvalue ay(¢), which is shown to be a convex function of #. As an
application of the convexity property, we obtain an asymptotic expression for
the probability of tail values of the sum S, , in the case where the X,, are inte-
gral random variables.

The results are related to those of Blackwell and Hodges [1], whose methods
are followed closely in Section 5, and Volkov [4], [5], who treats in detail the
case of integer-valued functions of the state of the chain, i.e., the case fi(f) =

exp(Bit) (B: integral).

2. Introduction and notation. Let k,.(m = 0, 1,2, .. .) be the state at time m
of a finite N-state ergodic Markov chain with no cyclically moving subclasses
and with transition matrix P = (p;), where pjx = Pr (kn = k| kna = J),
J, k=1, .-, N. The distribution of k, is unspecified, since we shall mostly deal
with probabilities conditional on ko . It follows that P is a non-negative, primi-
tive and irreducible matrix. Let H;(z) be a distribution function associated
with the transition (7, k) (ps# % 0) and let f;(t) be the corresponding moment
generating function, i.e.,

 fa(t) = f_: e'* dH ().

We shall suppose that each fj(t) is analytic in a strip which strictly contains
the imaginary axis of the complex ¢-plane. There will therefore be a maximal

strip
(2.1) uo<Re(t)<u6 (—> Su<0<u < ©),

in which all the f;;(¢) are analytic.
Let X,,,m = 1,2, -+, be a random variable having the distribution H ()
if kmy = 7 and kn, = Fk, ie., if the mth transition is (j,k), and let
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S, = X1+ --- 4+ X, . Let P(¢) be the matrix {p;if;(#)} and let
(2.2) (P} = {pif5’ (1},

where P* = {p$’}. Then f{;’(¢) is the moment generating function of S, condi-
tional on the n-stage transition from state j at time O to state & at time n. Thus

(2.3) £ (1) = Blexp(tSa) | ko = j, ku = K.

For real ¢, the matrix P(¢) is non-negative and therefore it has a maximal
positive eigenvalue, the Perron root, which we denote by a;(¢). Thus ;(0) = 1,
and, for real ¢, a;(¢) has the properties (i) ay(t) > 0, (ii) ea(¢) > |a;(t)|, where
ai(t),j = 2,3, -+, N, are the remaining eigenvalues of P(t).

We shall say that f(¢) is a degenerate moment generating function if it is of
the form ¢ (8 real) and we shall say that P(¢) is degenerate if it is of the form

(2.4) P(t) = "D(H)PD )},

where D(t) is a diagonal matrix of degenerate moment generating functions.
If P(t) is degenerate, then the sum S, is also degenerate in the sense that given
ko = 7, k. = k, S, is deterministic and of the form S, = ng8 4 8; — Bi, where
D(t) = diag {exp(Bt)}. -

Let (pr), k =1, ---, N, be the unique ergodic distribution associated with
P. Then, if ko has the distribution (p;) and if we take expectation unconditional
on ky , it is easy to show that E(X;) = a;(0). Thus o;(0) is a measure of the
ultimate drift of S, .

3. Some properties of non-negative square matrices. For the sake of clarity
we quote the following properties of non-negative square matrices from the paper
of Debreu and Herstein [3].

(a) Let A = 0 be an irreducible (indecomposable) square matrix, and let a;
be its maximal positive eigenvalue. Then «; is a simple root of the equation
|aI — A| = 0, and there exist strictly positive left and right eigenvectors cor-
responding to0 a; . If ¢ is any other eigenvalue of A, then |o| £ oy, and if |o] < a;
then A is said to be primitive.

(b) A finite stochastic matrix is the transition matrix of a Markov chain which
is ergodic and without cyclically moving sub-classes if and only if it is primitive
and irreducible.

(e) Let B = (bj;,) be a square matrix with complex elements, and let B* =
(|bjx])- If B is any eigenvalue of B, if A (=0) is irreducible, and if B* £ A
then |8| £ a1 . Moreover |3| = a1 and B*¥ < A together imply that B* = 4;
if B = ae™, then B = ¢*D™'AD where D* = I.

In addition we state the following lemma which we need in Sections 4 and 5.
It is an immediate consequence of the left and right eigenvector relations.

Lemma 3.1. Let A be a non-negative, primitive and irreductble matrix of order
N X N. Let o be its maximal positive eigenvalue with corresponding left and right
positive eigenvectors y = (y;) and x = (x;) respectively, such that yr = 1. Let
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X = diag(z;). Then the matriz oi' X 'AX is a primitive, irreducible, stochastic
matriz with limiting probability vector (x;y;).

4. The properties of a;(t). Let ¢ = w 4 % (u, v real). Then for ¢ lying in the
strip (2.1), the fi(t) and P(t) satisfy the following conditions:

() fa(uw) >0, (i) [fa(®)] = falw), (i) fa(0) = 1,

(41)
(iv) P(w) 20,  (v) {P()}* = P(u),

where, in (v), we use the notation of Section 3(c).

THEOREM 1.

(a) The function ai(t) s regular at each point t = w of the real axis in the strip
(2.1).

(b) An eigenvalue of P(t) is of the form ¢* (B real) if and only if P(t) is de-
generate, i.e., of the form (2.4).

(¢) In the strip (2.1) we have

a(u) = |a;(®)] (G=2,8,--,N;t=u-+ o)

Proor.

(a) Since for each real ¢, a;(t) is a simple root of the determinantal equation
|eI — P(t)| = 0, and since |aI — P(t)| is an analytic function of the two com-
plex variables o and ¢, the result follows from the implicit function theorem for
analytic functions (Bochner and Martin [2], p. 39).

(b) If P(t) is of the form (2.4) then clearly a;(t) = €. If ¢” is an eigenvalue
of P(t), then we put ¢t = % (v real), and it follows from (4.1) (v) and Section
3(c) that P(iv) = €™D(v)P{D(v)} ", where {D(v)}* = I. Thus [fi’ ()| = 1
foreach 7, k and n for which p{f’ > 0, and since fiz’ (4v) is a characteristic func-
tion, we must have D(v) = diag {exp(¢8»)} (Bjrealj = 1, ---, N). Hence
P(t) is degenerate.

(¢) The inequalities follow from (4.1) (v) and Section 3(c).

TurEoREM 2. If P(t) is not degenerate, then ai(t) (¢ real) is a strictly convex
Sfunction of t.

Proor. We have the factorization

(42) ol — P(t)| = {1 — a ()}l — o lan(t)} - {1 — a tan ()
and we consider the ¢-roots of the equation
(4.3) el — P(t)| = 0.

If |of > aa(u) (¢ = u + @) it follows from (4.2) and Theorem 1(c) that
|aI — P(t)| # 0. Thus there can be no t-roots of (4.3) in any part of the ¢-
plane for which |a| > ai(u).

Now suppose a;(u) is a concave function of » in some interval (u’, u"). (The
argument will be simpler to follow with the aid of a diagram of the u, ai(u)
plane). We may choose real numbers @ and b so that the linear function a + bu
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satisfies
(44) a + bu > ar(u) (w <u<u”),

i.e., the line a + bu lies above the curve oy (%) in the interval (u/, v’’). In (4.2)
let « = a + bt. Since

la + bt = {(a + bu)* + 03 = a + bu > as(w) (W < u <u"),
there are no roots of the equation
(4.5) [(a + ) — P(t)| =0

in the strip of the ¢-plane ' < u < u’’. But the ¢-roots of (4.5) are continuous
functions of a, and we may choose values of a and b so that the line a 4+ bu
cuts the curve a;(u) in two points, thus producing two roots of (4.5) in the
strip (w, w’). Thus for a suitable b, there is a value of a, say o, such that for
a > a' there are no roots of (4.5) in the strip (u/, u’’), while for @ < a’ there
are two roots. This contradicts the continuity of the ¢-roots of (4.5) and there-
fore ay(u) cannot be concave in any interval.

Further, a;(u) cannot be a linear function. For if au(u) = 1 + cu (¢ # 0),
say, we can choose a real number 8 so that the function ¢**(1 + cu) is concave
near the point = 0. But ¢*a;(#) is the maximal eigenvalue of the matrix ¢”P(¢),
which is of the same type as P(t), and which cannot therefore have a concave
maximal eigenvalue.

It follows that ay(u) is strictly convex.

_ We may specialize our results to integral random variables. To this end, let
¢;:(z) be a probability generating function associated with the transition (j, k)
and suppose that there is an annulus ro < |2| < R (0=Sr<1<rg< »)in
which all the ¢ (2) have convergent Laurent series. Let Q(2) denote the matrix
{pipir(2)} and we suppose that Q(z) is not of the degenerate form

(4.6) Q(z) = £ZPZ7,

where § is an integer and Z is a diagonal matrix of integral powers of z. For real
and positive z let a;(z) be the maximal positive eigenvalue of Q(z). If we set
2 = ¢, then, by Theorem 2, a;(¢') is a strictly convex function of ¢ (¢ real) and
therefore a;(z), though not necessarily convex, has the property of not having
a local maximum for real positive z. This generalizes the result of Volkov [4]
who demonstrated this property in the special case where ¢ (2) = 2.

We return to the matrix P(¢) as defined in Section 2. The convexity property
of aa(u) (t = u + v) raises the question of whether «;(u) attains its unique
minimum at a finite value of u. The answer is clearly affirmative if a1(0) = 0.
If a1(0) < O say, then either a;(u) continues to decrease as u increases or it
reaches a minimum and then starts increasing. We distinguish between the
cases where the strip (2.1) includes the entire right half-plane (ug = «) and
where it is bounded to the right (ug < « ). Modifications for the left half plane
will be obvious (i.e., for the case where a1(0) > 0).
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THEOREM 3. Let t = u + @ and suppose that P(t) is not degenerate.

(a) Suppose that o:(u) is defined for all u > 0 (i.e., ug = »). Then a neces-
sary and sufficient condition for a;(u) to be uniformly bounded (and so monotonic
decreasing) for all u > 0 is that there exists a diagonal matrix D(t) of degenerate
moment generating functions such that each element of the matriz

(4.7) Q(t) = {D()}'P(1)D(1)

is of the form puqic(t), gin(t) being the moment generating function of a non-post-
tive random variable. In the case of integral random variables, each element of D(t)
and each q;(t) will be the moment generating function of an integral random vari-
able.

(b) Let a;1(0) < 0 and suppose ug < . Then ay(u) attains its unique sta-
tionary minimum at a finite positive value of w if one of the following conditions s
salisfied:

(i) There exists a number u; (0 < wy < uo) such that for each j, k for which
Fi(t) is defined, fiz(u1) Z 0.

(i) For some j, k, fix(u) —  asu — ug—.

Proor.

(a) If (4.7) is satisfied, then P(¢) and Q(¢) have the same eigenvalues. Since
each element of Q(¢) is non-increasing for ¢ > 0, it follows from Section 3(c)
that a;(t) is non-increasing for ¢ > 0 and therefore bounded for all ¢ > 0.

Conversely, if a;(u) is bounded for « > 0, we note that for each j, k for which
pix > 0, and for some finite, real B , Pr (X > Bz) = 0, where X is a random
variable with moment generating function f;(¢). For if not, then we can find n
and j such that Pr (8. > 0| ko = j, k» = j) > 0, which implies that i (u) — o
as u — oo. But this contradicts the boundedness of ai(u) since {an(u)}” =
PSP (w). Thus for each j,k, f;(t) represents a random variable which is bounded

above and we may write

(4.8) fin(t) = exp(Bit)gn(t),

where ;. is real for each j, k and

(49) gu(t) = o(e®) (t— +)

for every € > 0. Let {z;(t)} be a right eigenvector of P(¢) corresponding to the
eigenvalue a;(t). We can choose z;(t) to be the co-factor of, say, the element in
position (1, ) of the matrix [a(t)I — P(¢)] (j = 1, - -+, N). Thus, for each j,
z;(t) is expressible as a sum of products of the elements of [a(¢)] — P(¢)].
Hence from (4.8), (4.9) and the boundedness of ai(t) (¢ > 0), it follows that
there is a finite real number B; such that

(4.10) z;(t) = yi(t) exp(Bit) Gj=1,---,N),
where for each 7 and every ¢ > 0

(4.11) yi(t) = o(e”) (t— +=).
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Let T(t) = diag {x;(¢)}. Then the matrix
(4.12) {rie()} = (DI [TO]'P(2)T(2)

is a stochastic transition matrix for each real ¢ by Lemma 3.1 and hence for all
real t we have 0 < r;(¢) < 1. From (4.12) we have for each j, k

pifie(D)ze(t) = xj(H)aa(t)ra(t),

and from the relations (4.8) to (4.11) it follows that B8 + B8: =< B; for each
7, k for which pj. > 0. The result now follows by taking D(t) = diag {exp (8;t)}.

In the case where each fj;(¢) is the moment generating function of an integral
random variable, each 8, and 8; will be an integer.

(b) In (i), we have ay(u;) = 0 since az(u) is a nondecreasing function of
each of the elements, and thus a;(%) must attain its minimum in the interval
0 < u < w . In (ii) suppose that for some fixed 7, k, fir(u) — © as u — ug—.
We choose n so that P > 0 and since ug < «, we can find C > 0 such that

M (u) = C as u — ug—. Then we have

fea(u)}™ 2 £57(u) 2 papk? Fun(w)fi ()
= CoupsPfi(u) — ©  asu — ug—.

Thus a;(u) — © as w — ug— and the result follows.

We now explore further the properties of «;(¢) in the case of integral random
variables. We first state a well known result concerning characteristic functions
of integral random variables.

LemMa 4.1. Let f(iv) = E(e™*) (v real) where X is a non-degenerate integral
random variable. Then |f(iv1)| = 1 for some v, (v, # 0, —7 = v, = =) if and
only if v/2w s a rational number, say vi = 2wp/q (gcd. [p, ¢ = 1, ¢ > 1),
and f(iv) is of the form €™ g(iv), where m s an integer and g(iw) is a character-
istic function of period 2w/q in v, or equivalently if and only if X only takes values
of the form m + ng (n = 0, £1, £2, - - ; m, q integral, ¢ > 1)

In the following theorem we prove a corresponding result for the functions
a;(1) and it is sufficient to suppose that each f;:(¢) exists only on the imaginary
axis.

THEOREM 4. Let t = w (v real) and suppose that each of the functions f (i)
18 a characteristic function of an integral random variable. Let aj(w) (=1, ---,N)
be the eigenvalues of P(iv) where ay(0) = 1. Then there exists a number v; #= 0
(=7 £ v £ 7) satisfying o;(101) = 1 for some j if and only if vi/27 is a rational

number, say v; = 2wp/q (g.cd. [p, q] = 1, ¢ > 1), and P(iv) s of the form
(4.13) P(iv) = ¢™D(w)Q(w){D ()},
where

(1) Q@) = {pigu(iv)}, each g being a characteristic function of period 2w/q
in v, possibly gy (w) = 1; -

(ii) D(w) = diag {exp(smp)} (my, --- , my integral);

(iii) m 1s integral.
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Proor. If P(iv) is of the form (4.13) then we may take »n, = 27/q and then
exp(#mv;) will be an eigenvalue of P (7).

Conversely, suppose that ¢” is an eigenvalue of P(ivy) (01 0, — v <0, £ 7).
Since {P(#@;)}* = P it follows from Section 3(c) that

(4.14) P(ivl) — ei“DPD_l,
where D* = [, and hence that
(4.15) Ifi%’ ()| = 1, each j, k and n such that pi’ >0.

If £ (4v) is degenerate for each 7, k and n for which p$y’ > 0, then [{P (i)} "]*=
P” for all » and » and thus |ai(@)| = 1 (all v). Hence, again by Section 3(c)
P(®) = a()D()P{D(v)}™ where D(v) = diag{d;(v)} (|d;(v)] = 1
j=1,---,N).For each j, k and all sufficiently large n, therefore,

{a1(2)}" d;(v){du(0)} ™

is a degenerate characteristic function, so that a;(iv) must be of the form e
(B real and constant). It follows from Theorem 1(b) that P(iv) is of the form
(4.13) with Q(&v) =

Otherwise, for some J, k and n, f§ (4v) is not degenerate and hence »; = 2mp/q
(g.ed. [p,q]l = 1,9 > 1) by Lemma 4.1. In virtue of (4.15) we may write

ifv

(4.16) f,(,?)(w) = exp(zm,,, )gi (@), each 7, k, n such that p(“) >0

where g$#’ (i) is a characteristic function of perlod 21r/q and m{y’ aninteger.

In (4.14) let D = diag {exp(4B8;)} (B real,j = 1, , N). Then (4.16) (with
v = v, = 2mp/q) implies that
(4.17) 2epmi? /g = no + B; — B + 2NV, N integral,

for each j, k and n such that p{i’ > 0. By evaluating (4.17) at n and n + 1
(where n is such that P* > 0) we obtain

o = 2xpm/q + 2Mm, m, M integral,
and (4.17) for j, h and k, h gives the result
(4.18) Bi — B = (mi) — mii))2ap/q — 2(N§ — N@)w
Since the left hand side of (4.18) is independent of & we may take
exp {1(8; — Br)} = exp {¢(m; — my)27p/q}, my, + -+, my integral.
Now from (4.17) we see that (writing mj = mS)
mp2rp/q = (m + m; — my)2wp/q + 2N, Nj: integral.

Hence mj, = m + m; — my + Njg/p. Thus Njg/p must be an integer and
since g.c.d. (p, ¢) = 1 we must have mj, = m + m; — my, + ¢M j, , M j, integral.
From (4.16) with » = 1 it follows that P(sv) is of the form (4.13).

If f(4v) is the characteristic function of an integral random variable, we may
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say that f(iv) is expressed in its lowest terms if f(i) = ¢*™g(i), where g(v)
has minimal period 2w/q (g integral, ¢ = 1) and m is an integer satisfying
0 = m < ¢. Analogously, in the matrix case we may say that P(#) is expressed
in its lowest terms if it is written in the form (4.13) where Q(4v) has minimal
period 27/¢ (¢ = 1) and 0 = m < ¢. Hence an alternative statement of Theo-
rem 4 is
TrEOREM 4'. If P(iv) is expressed in its lowest terms in the form (4.13), then
laj(w)] <1 (O0O<[p|Em;j=1,---,N)if and only if ¢ = 1.

6. The probability of tail values of the sums S, . We use the notation and
definitions of Section 2 and we suppose that each f;(¢) is an analytic moment
generating function of an integral random variable. We suppose also that P (i),
when expressed in its lowest terms, satisfies the conditions of Theorem 4/, i.e.,
if Q(4v) has minimal period 27/q (q integral, ¢ = 1) where

(5.1) P(t) = ¢™[diag {exp(m;1)}1Q(t)[diag {exp(m;t)}]™,

m, my, - -+, my integral, then ¢ = 1. If P(%) does not satisfy these conditions,
i.e., if ¢ > 1, then we write Q:(%v) = Q(iv/q). Now Q:(sv) has minimal period 2,
and it would be sufficient to study @, instead of Q. Hence it is clearly no loss of gen-
erality to suppose that ¢ = 1. Accordingly, we summarize our assumptions con-
cerning P(t) as follows:

(i) P(4v) has minimal period 2 in v,
(5.2) (ii) P(t) is not reducible to the form (5.1) with ¢ > 1,
(iii) P(t) is not degenerate.

a

If a is any real number, then ¢ “a;(t) is the maximal positive eigenvalue of
the matrix ¢ *P(t) and is therefore a strictly convex function for real t. We
choose a so that the matrix e *P(t) satisfies one of the conditions of Theorem 3
and also 50 that @ > a1(0), thus ensuring that e “a;(t) attains its unique mini-
mum at a real, positive, finite value of ¢. Let

m(a) = infs0 6 “ay(t)

and let t*(a) satisfy m(a) = exp{at*(a)}au(t*(a)). Since a1(0) < a we have
t*(a) > 0 and 0 < m(a) < 1. For brevity we write t* = t*(a). We now de-
fine the matrices

®,(a) = {pii’ Pr (8n = na|ke = j, kn = k)}

and )
I(a) = {p§e’ Pr (Sa = na|ko = J, ku = k)},

and our task will be to obtain asymptotic expressions for these as n — «. We
shall follow closely the methods used by Blackwell and Hodges [1].

The matrix e~ *'P(t*) is non-negative, irreducible and primitive, so that it
has positive right and left eigenvectors z* = (z7), y* = (y}) respectively such
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that y*z* = 1. Let
rie = ¢ {m(a)} "k (7)) " paf ().

Then it follows from Lemma 3.1 that R = (rj;) is the transition matrix of an
ergodic Markov chain with no cyclically moving sub-classes. Let K. denote
the state at time n in a realization of this chain (n = 0,1,2, ---). Let

R(t) = {rafu(t + *)/fn(t%)} ie.,
R(t) = {m(a)} e D7'P(t + t*)D,

‘where D = diag (z}). For each j, k for which p;s > 0, fa(t + t*)/f(t*) is
the moment generating function of an integral random variable. We define a
sequence of random variables Y;, Y., --- associated with the Markov chain
Ko, Ki, K, -+ in such a way that Y, has the moment generating function
Fau(t + %) /fa(t*) if Kooy = j and K, = k. Thus Y,, Yz, --- are associated
with R(t) in the same way as X;, X, -- - are associated with P(?).

Let R* = (r$¥) and T, = Y1 + --- + Y,.If we raise each side of (5.3) to
the power n and equate coefficients of " (assuming na to be an integer) we
obtain the relation

PSP Pr (8, = na | ko = j, kn = k)
= {m(a)} "z} (@f)r$e Pr(Tn = na | Ko = j, Kn = k)

which corresponds to THeorem 1 of Blackwell and Hodges. Further, for any
integer s, we have

S Pr (8a = na + | ko = j, ka = k)
= {m(a)} a7 (2%) "¢ Pr(Ta = na + s| Ko = j, Ku = k).

Let Bi(t) = au(t + t*)/au(t*), Ba(t), - -+ Bn(t) be the eigenvalues of R(?).
Since 81(0) = a, the asymptotic expectation of the increment T\, — T, is a,
whereas that of S, — S._1 is 01(0). Thus we have achieved a shift of expecta-
tion similar to that of Blackwell and Hodges and others mentioned in [1].

For each j, k the possible values of Y; are identical to those of X; and so
|8:(4v)] < 1 (0 < || £ =) by Theorem 4’. Since 8:(0) = 1 and [R(@)]* = R,
it follows from Section 3(c) that |8;(w)| <1 (j =2,3, -, N; —# S v = =)
and hence by continuity that there exists a number 7 (0 < 7 < 1) such that
Bi(@w)] £ n (=23, N; —r = v = m). Let z(¢) = {z;(1)} and y(¥) =
{y;(t)} be respectively right and left eigenvectors of R(t) corresponding to the
root Bi(t), chosen so that z;(0) = 1,7 =1, ---, N and

j;lx,-(t)yj(t) = 1.

(56.3)

(5.4)

(5.5)

1t follows from the Jordan canonical form for R(t) that

(5.6) {R(@)}" = a(iv)y(@w){Bu(@)}" + O(1").
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Let o = /(0) — a® (=af (t*)/ar(t*) — a?) and we have
THEOREM 5. Provided that na is a possible value of S, the following asymptotic
matrix relations hold as n —

(i) @u(a) = {m(a)}"{o(2mn)}) "w*y*(I + O(n™)};
(i)  Ma(a) = {m(a)}"o(2m) (1 — ) w*yMI + 0(n™)}.

Proor. It follows from (5.6) and the theory of Fourier series that
P Pr (T, = na| Ko = j, Ko = k)

(5.7) = (2m)~" Lr e (B (iv) "z () ye (i) dv + O(4")

= @07 [ Bu) do + ("), say.

Since 81(0) = a and 87 (0) — o = ¢°, we may choose v, (>0) so that
(5.8) le ™ B(iw)| = 1 — o**/3 (Jo] = ).

We break up the range of integration in (5.7) into the ranges |v] < n™! logn,
*logn < |v| < w0, and vo < |o| = 7. In the first of these ranges we have the

expansmns
log [{e™8,(0))"] = —ne*/2 + n 3 6"
and
2i(ious(in) = il + 3 0" (e = Gy )7 = 1,2 -+

since, in the latter expansion, y(0)x(0) = 1 and therefore, by Lemma 3.1,
y:(0) = zxyx . Thus on setting w = n*ov, the integrand in (5.7) may be written,
for |w| £ ologn,

e leiyr + wC(w')n”t 4+ Co(w)n T + o(nh)]
where C; and C; are polynomials in «*, depending on j and & but not on n. Using
the result that

clogn
[ e dt = 2X21(L(p + 1)} + o(n”)

alogn

when p is even and vanishes when p is odd, we have

n~}logn
o) [*_ " B) b = (2mna?) eyt (1 + 07,

n—4logn

In virtue of (5.8) we have

B,(v) dv =0 (f o exp(—4% na'v’) dv)

~/n"§logn<|v|§v0
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whichiso(n™) forall K. Intherangewv, < |o| < m, |8:(4)| < p,say, (0 < p < 1)
and so

[ By =06
vo<fviZT

Combining these we find finally
rit Pr (Tn = na|Ko= j, K. = k) = (2mn0®) 2fyf{l + 0(n™h)}

and the result (i) now follows from (5.4). The result (ii) follows from (5.5) by
summing with respect tos (s = 0,1,2, ---).
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