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1. Introduction. It is a commonplace observation that the sample mean and
sample variance from a normal population (based on a random sample) are
stochastically independent. Considerably less prosaic is the converse proposition,
first proved in 1936 by R. C. Geary [2] (under superfluous restrictions), to the
effect that the independence of these two statistics entails normality of the under-
lying population. This, plus the theorem that if two linear combinations (non-
zero coefficients) of a pair of independent random variables are themselves inde-
pendent, the variables are normally distributed, which was proved by Kac in
1939 [4], are harbingers of what are today referred to as characterization theorems.
An extensive bibliography of such theorems appears in [5]. Most of these results
have the format: if such-and-such statistics are independent (alternatively, if
the distribution of such-and-such a statistic is thus-and-so), the underlying
population is so-and-so.

The ensuing theorems belong to this genre but adopt a maximum likelihood
posture. The first deals with translation (location) parameter and the latter
with scale parameter families of distributions.

2. Preliminaries. Since the results expounded here concern maximum likeli-
hood estimators, it would seem appropriate to say a few words concerning these.
It is somewhat surprising that major treatises on mathematical statistics and
estimation do not define maximum likelihood estimators per se but merely a
maximum likelihood estimate. (Pitman’s terminological demarcation between
these notions will be made explicit shortly.) The definitions of [8], [9] are closest
in spirit tq that given here.

In order to pave the way for a discussion of these questions, let F(z;0), —» <
z < ©,0&Q C R denote a one parameter family of probability distributions on
the real line R' with spectra S; . Define S = Ug.eSpand 8" =S X S X --- X 8§,
the n-fold cartesian product of S with itself.! If, for each 6 £ @, F(z; 6) is ab-
solutely* continuous, designate its probability density function (p.d.f.)
by f(x; 6); if, for each 6, F(zx; ) is a step function, the same notation f(x; 6)
will be used to specify the so-called discrete p.d.f., that is, the mass function of
the corresponding distribution (positive at the countable set of points consti-
tuting S, and zero elsewhere).

The customary definition of a maximum likelihood esttmate of a parameter 6
of a population (family of distributions generally restricted to the aforementioned
types), based on a (random) sample of n observations z; , 22, - -+ , Z» , is a value
of 0, say 6, , which renders []7:f(w: ; ) a maximum. A maximum likelihood

Received August 23, 1960; revised January 20, 1961.
1 When Uy Ss = [a, ) or (— =, b, the points @, b will be deleted in defining S (so as to
avoid a special treatment of the origin in Theorem 2).
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estimator (M.L.E.) is presumably a function 8, = 8.(x1, 22, - , %,) from S”
into @ which, for every choice of z; , - - - , &, is & maximum likelihood estimate.
(It is by no means apparent that a M.L.E., so defined, is a bona fide random
variable and it would seem of interest to give minimal conditions under which it is
measurable, [7]. Measurability is, however, tangential to the problem treated
here.)

Unfortunately, from the theoretical standpoint, such a definition harbors am-
biguities of a petty but disconcerting nature. The fact that these annoyances
crop up on sets of measure zero does not seem sufficient reason to ignore their
existence.

First, (consider the absolutely continuous case) as a consequence of the fact
that for each 6 ¢ Q, f(z; 6) is defined only to within a set of measure zero, it is
possible to change a M.L.E. by altering f(z; 6) at one value of = for each 6 or
even prevent its existence by a perverse choice of f(z; 6). If scale and translation
parameter families are involved, f(z; 0) is a function of one variable only and the
scope for tampering is greatly diminished.

Suppose that a suitable version of f(x; 8) has been singled out. Then, a M.L.E.
6, will be interpreted as a function from S™ into Q@ satisfying

© I156:; ) 2 [L1Gi; 0

forall 0 eQ and all (x1, - -+ , ) € 8”. (Note that if R* — S is non-empty and
8, were assigned any value in @ for (2, -+ -, z.) e R — 8", (0) would hold in
the degenerate form 0 =0.)

Secondly, if all (x;, -« , Z») in S™ are pertinent to the definition of a M.L.E.,
how is one to interpret 0- o if it occurs in (0)? (A p.d.f. may be infinite on a set
of measure zero.) The conventional interpretation of this product as zero seems
mandatory when the value z, for which f(z, ; ) = 0 belongs to R — S (if this
set is non-empty) and will be adopted for z, € S as well.

3. Characterization theorems. Theorem 1 which deals with translation param-
eter families emerges as a generalization and modernization of a result of Gauss
[1] when the latter is suitably interpreted and rescued from its context of least
squares.?

TuroreM 1: Let {F(z — 0), 0 & R'} be a translation parameter family of abso-
lutely continuous distributions on the real line and let the version of the p.d.f. f(x)
be lower semi-continuous at x = 0. If, for all (random) samples of sizes two and
three, a maximum likelihood estimate of 0 is the sample arithmetic mean, then F(x)
18 a normal distribution with mean zero.

2 There is a vast literature consisting of discussions, proofs and reproofs of Gauss’ result.
In view of the fact that the latter was formulated in a least squares context and further
that many notions and distinctions which are today commonplace were then only dimly
(if at all) perceived, many of the disquisitions are heuristic and unrigorous by modern
standards. Among the multitude of commentaries, three ([10], [11], [12] p. 169) are singled
out for reference.

All prior proofs which have come to the writer’s attentlon assume implicitly or explicitly
that the density function f(z) is differentiable.
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Proor: If 2 = (n + 1) D M7 z;, it follows from (0) and the hypothesis
that forn = 1,2 and all real 23, 22, -+ + , Z,11 and 6,
n+l1 n41

Hf(«’vx - )z gf(% — 0);

hence,
n41 n+1
(0) I 7ya) 2 1Ly = )
forn =1,2andall real fand y; , - - - , Yops satisfying D 177 y: = 0.
Setn =1,y = y = —y. in (0)’ to obtain
(1) fWf(=y) =z f(y — 0)f(—y — 9), all real y, 6.

Note that f(0) = 0 implies f(y) vanishes identically. Suppose that f(a) = <
for some real number a. Then, according to (1), for each yeR' either
ff(—y) = « orf(2y + a) = 0. For a p.d.f., the former cannot hold on a set
of positive (Lebesgue) measure, while the latter cannot hold almost everywhere.
Thus, every p.d.f. satisfying (0)’ is positive at the origin and everywhere finite
(so the product 0- « will not arise in (0)’).

Let h(z) = log. f(x) where h(x) may, possibly assume the extended real
value — «. Then it follows from (0)’ that forn = 1,2 and all real y1, 2, - -,

Yn, 0,
@ S+ (- Su)z Ehwi— 0 +h (-5 u - o)

As will be seen, under the meager assumptions contained in the probabilistic
framework, the functional inequality (2) determines h(z) and therefore f(x).
In particular, (2) implies

nh(y) + h(—ny) 2 nh(y — 0) + h(—ny — 6),
which, for n = 1, becomes
(3) h(y) + h(—y) 2 Ky — 8) + h(—y — 0).

Note that if in (2), 6 is replaced by — 8 and y; by —y. , the resulting inequality
when added to (2) reveals that, if g(y) is a solution of (2), sois h(y) = g(y) +
g(—y) and we therefore confine attention at first to symmetric solutions of (2),
which then takes the form

@ X h) + h<§=: v) 2 X b= 0) + (2 v+ 0) .

Similarly, (3) becomes
(3) 21(y) = h(y — 6) + h(y + 0), all y, 6.
Suppose that h(y) = — « for some y > 0 and let ¢ be the infimum of the



MAXIMUM LIKELIHOOD CHARACTERIZATION 1217

set A of all such positive values y. Takingn = 2, y1 = y = %cm, 0 = —1c, in
(2)" yields 2h(3¢m) + h(cm) = 3h(3cn). Choose cm N\ ¢, cm e A, m = 1, 2,
*, implying h(4{cn) = —,m = 1.If ¢ > 0, a contradiction ensues, while

if ¢ = 0, f(#) is not lower semi-continuous at zero.

Thus, h(y) is everywhere finite and according to (3)" concave. Since any
p.d.f. f(x) is necessarily measurable, h(z) is likewise, whence [3, 6], % is a con-
tinuous concave function.

Let D denote the complement of the (at most countable) set of points at
which k(z) is not differentiable and denote by q(x) the derivative of h(z). Then
¢(z) is monotone and defined for all z ¢ D.

The fact, as expressed by (2)’, that 6 = 0 maximizes D .~y h(y; — 6) +
R( DM y: + 6) now requires that

(4)’ - 2:; q(y:) +q (Z:; yi> = 0‘

for all y; e D such that > 7 y;eD,n = 1,2. Forn = 2, (4)" becomes
(5)' q(y1) + q(y2) = ¢(y1 + v2) forys, 4o, 91 + y2 € D.

Let C = {f} be the class of non-negative measurable functions on R' which
are everywhere finite, lower semi-continuous at zero, and do not vanish almost
everywhere. Let C’ be the subclass of functions in C' which do not vanish any-
where. Since the only monotone solution of Cauchy’s functional equation (5)’ is
q(y) = cw, it follows that the only symmeiric functions of C satisfying (0)’
(which are necessarily in C”) are given by h(y) = log. f(y) = —ecy* + d for
y &€ D and therefore by continuity for all real y.

Suppose next that f(y) is any element of C satisfying (0)’. According to (1),
f(y)-f(—y) does not vanish almost everywhere (take § = —y); it is readily seen
that f(y) -f(—y) is a symmetric function in C and, as previously noted, a solution
of (0)". Thus f(y) -f(—y) & C" implying f(y) & C".

In fact, necessarily for some real constants ¢ and d,

9(y) = log. f(y) = —%(cy® — d) + b(y)

where b(y) is an odd function. For, by the preceding, g(y) + g(—y) = —cy* + d
for some ¢, d and this implies that b(y) = g(y) + (cy® — d) satisfies b(y) =

—=b(—y).
Substituting for g(y) in (3) yields
(4) ¢ = by —60) — by + 0), all y, 6.

Replacing y by —y and § by —6 in (4) and combining the result with (4), pro-
duces
(5) b(y — 6) — b(y + 0)| < of, all y, 6,

which, in turn, necessitates ¢ = 0 and impiies that b(y) is differentiable and
constant, hence identically zero.
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Consequently, the only solutions of (0)’ in C are given implicitly by h(x) =
—3cx’ + d, ¢ = 0 and thus the only p.d.f.’s satisfying the conditions of the
theorem are f(z) = (c¢/2r)% ***, that is, normal density functions with mean
Zero.

REMARK 1: The integers two and three of the theorem may clearly be replaced
by other pairs, e.g., 2k, 3k, k > 1. It seems most desirable, however, to state the
result with minimal .

ReMARKk 2: If [ 2f(x) dz exists and is zero, the translation parameter 6 is
the mean of the distribution F(z — 6). In such cases (excluding the normal),
the theorem implies that the sample mean is not (for samples of sizes both two
and three, a fortiori, for all n) a maximum likelihood estimator of the population
mean. This is readily seen, for example, if

f(z; 0) = Ca-exp {—|z — 6|, a # 2.

REMARK 3: It seems of interest to note in the case where F(x — 6) is a rec-
tangular distribution with mean 6, i.e., f(z) = 1 for |z — 6| < % and zero other-
wise, that, whereas % is a M.L.E. of 6 for n = 2, its numerical value is not a
maximum likelihood estimate of 6 for all random samples of size three.

4. Scale parameter families. Consider a scale parameter family?® of absolutely
continuous distributions § = {F(z/c¢), ¢ > 0}. The joint density function of n
independent random variables, each distributed as F(2/¢),is o "] [ i1 f(2i/ o)
where F(z) = [Z,f(u) du. To say that ¢ = ¢(x,, - - - , 2,) is a maximum likeli-
hood estimator of ¢ is to say forall ¢ > Oand 2, , - - , 2, in S” that

5 1 f(ai/#) 2 o~ LT f(aifo).

Let y; = x;/8, A = é/0. Then, if ¢ is a homogeneous function of degree one in
21, *** , s, the preceding implies

(6) gf(yz) = K"Hf(wi)
forall A > 0and y1, -, yn satisfying
(7) &(yl)y2:"')yn)=1°

If h(y) = log.f(y) is finite valued, (6) may be transcribed as

l n

(8) p Z:l (h(y:) — h(Ny:)] = loge N
Inspection shows that h(y) = —log.y -+ const. satisfies (8), with equality
holding for all choices of 1, - -+ , y» and a fortior: for y.’s satisfying (7). How-

3 The standard device of reducing a scale parameter family to a translation parameter
family (so as to utilize Theorem 1) appears fruitless here.
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ever, f(y) = ¢y~ is not integrable on (0, » ) and truncation to a finite interval
will be precluded by the conditions of Theorems 2 and 3.

In the following theorems the indispensable absolute continuity assumption
is augmented by a possibly dispensable continuity assumption of the density
function. The seemingly ad hoc condition (ii) on the other hand, appears to be
crucial.

TrEOREM 2: Let {F(z/7), ¢ > O} constitute a scale parameter famsily of absolutely
continuous distributions with the version of the p.d.f. f(x) satisfying

(1) f(z) is continuous on (0, =)
ii)* fOw)
(ii) ’lllw ) =1, allx > 0.

If, for all sample sizes, a maximum likelthood estimator of o is the sample arith-
metic mean, then F is the exponential distribution, i.e.,

flz) =¢® >0, f(z) =0, 2=0.

Proor: Since @ = {¢:¢ > 0} and Z is a posited M.L.E., necessarily S < §' =
{z:z > 0}, whence f(z) = 0in R' — §'. It suffices, therefore, to consider f(z),
x € 8, noting that f(x) $# 0 in S’. Infinite values of f are precluded by con-
tinuity and it will now be shown that f(z) > 0in §’,ie., S = §'.

From prior remarks, (6) obtains with (7) becoming

(7.1) iy, = N.

1=1

In (6), choose y; = k/m,1 £ i < mandy;, = [(n — k)/(n — m)],m + 1 =
1 £ n, where k, m, n are positive integers satisfying k& < m < n; this yields

o PR e ()rd).
Let k/m — &, m/n — c. Then for all positive A and all ¢, a in (0, 1)
(10) s (12%) 2w (M2,

Now, if there exists a sequence a, — 0 with f(a.) > 0,n = 1,2, - - - , it follows
from (10) and (ii) that
(11) fy) 2 Nf(ny) for y =1, A>0.

Thus, if f vanished for some y = 1, it would vanish identically. Further, from
(6), if f(y) were zero for some y in (0 1), f(y) would have zeros in (1, «).
Alternatively, suppose that for some & > 0, f(y) = 0in (0, §). Since f(y) 5% 0

4+ This condition is automatically fulfilled if 0 < lima\o f(z) < «. Also, it is reiterated
that only random samples are under consideration.
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in &, (6) insures (y; = 1) that f(1) > 0, whence § < 1 and there is no loss of
generality in supposing that (0, 8) is the maximal interval in which f vanishes
identically. Then, from (10) follows

for all A > 0 and c in (0, 1). By continuity, f(y) > 0in (1 — ¢, 1 + ¢) for all
sufficiently small ¢ > 0. Hence, taking A = (1 — €)/6in (12),

AL = e)(1 = 5e))/3(1 — )} = 0

for 0 < ¢ < 1 implying f[(1 — €)/8] = 0, all sufficiently small ¢ > 0.
Now, let k 4+ 1 be an integer greater than (1 — ¢)/8. From (6),

0 = fIN1 — )/ 8- f{Nk + 1 — (1 = )8 1/k}.

Hence, f{[3/k(1 — )]k + 1 — (1 — €)6']} = 0 for all sufficiently large k and
all sufficiently small ¢, implying f[6/(1 — €)] = O for all sufficiently small ¢ > 0,
which contradicts the maximality of 8.

Thus, any p.df. satisfying (6) is non-zero in S’. Consequently, (11) holds
unconditionally and may be rewritten as '

(13) v h(y) — ROW)] = log. A, y=1,2>0

where, as before, h(y) = log. f(y).
Replace A by A" in (13) and combine the result with (13) to obtain

(14) 0 = h(\y) — 2h(y) + h(y/N), y=1,\2>0.

This asserts that H(y) = h(e’) is concave for y = 0 and hence that A(y) is
differentiable in (1, « ) except perhaps for a countable subset D thereof. From

(13),forA < land y = 1,

h(\y) — h(y)  log. A  h(y/N) — h(y)
y—=1) T 1-x7 MA/N 1]

whence (A /' 1), K'(y) = —1 on (1, ») — D. Then by continuity,
(15) h(y) = —y + ¢, yz1.

Next, choosing s < 1,i=1,---,r <mandy; > 1,7 > r,in (6) and em-
ploying (15) and (7.1), we find for all A\ > 0,7 < n and y;in (0, 1) that

(16) ) — h0w) + (1= Nyl z nllogh +1 = AL

For0 < y < 1, (16) asserts (r = 1) that
(17) 1/n[h(y) — h(Ay)] = log. X + (1 — N)(1 — (y/n)).

But for 0 < z < 1, log. A + x(1 — A) > 0 for all A sufficiently close to and
larger than unity. Thus, from (17), & is monotone decreasing in (0, 1).
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Set h = hy + he where h; is absolutely continuous and h, is singular, i.e.,
Ri(y) = O a.e.in (0, 1) and ky(y) = 0 fory > 1.
Again taking r = 1 in (16), there follows for0 < y < land A < 1

(18) h(Ny) — h;y)_-ll- =1y, [loge n 1]
This implies y[hs(y) + 1] = 0 almost everywhere in (0, 1). Similarly, replacing
A by A" in (16), the inequality is reversed. Hence, hs(y) = —1, almost every-
where in (0, 1) implying hs(y) = —y + ¢ .

Utilizing this result in (18), there follows
(19) lim sup m(xy) = I (y) = lim su hl()\—y)—M =0

et =1 = SaPTa-1)

for all y in (0, 1); hence hi(y) = 0. Also, by continuity ¢; =
Thus, for y ¢ §', f(y) = ae ? and since f vanishes outside S’, a = 1.
TueoREM 3: Let {F(x/a), ¢ > 0} be a scale parameter family of absolutely con-
tinuous distributions with the version of the p.d.f. f(x) satisfying

(1) f(z) continuous on (— o, )
(ii)* limy.o [f(My)/f(y)] = 1, all x>0

If, for all sample sizes, a maximum likelihood estimator of o is (n™" D 1, acl)a
then F(x) is the normal distribution with mean zero and variance one.

Proor: Here (7) specializes to

@.
] Ma
L

(7.2) v=n
In (6), set yi = =(k/m)', 1 <& = m;y: = x[(n — k)/(n — m)],
m + 1 < ¢ £ n. Analogous to (10), there follows

’ ¢ 1—c (1 a26)> > c 1—¢ ( (1 - Ol20))
(10)"  f(a)f (:1: i=o )% M) £ =9
valid for A > 0, || £ 1,0 < ¢ < 1. An argument akin to that employed in
Theorem 2 shows that f is non-vanishing and it follows from (10)’ that

y ' Th(y) — h(My)] = log. ), lyl = 1, A > 0.

Again, h is differentiable, this time in the region 4:|y| = 1 except perhaps on a
countable subset D’ thereof. Proceeding as in the proof of Theorem 2, we find
that #’'(y) = —yforyin A — D’ and hence that h(y) = —%y’ + ¢ for |y| = 1.
The analogue of (16) is

i=r

(16)’ ;[h(yi) — b)) + (1 = M)3yil = nlloged + (1 — \')]

where |y;] < 1 and r < n. This implies that h is decreasing in (0, 1) and increas-
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ing in (—1, 0). An argument paralleling that of Theorem 2 yields h(y) =
—3 + ¢, for |y| < 1 implying f(y) = aexp { —%’/2}. Finally, a = (21r)"’.
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