SOME MODEL I PROBLEMS OF SELECTION

By E. L. LEamaNN!
University of California, Berkeley

1. Summary. There are given a populations II; , - - - , II, , of which we wish
to select a subset. The quality of the sth population is characterized by a real-
valued parameter 6, , and a population is said to be

(1) positive (or good) if 6; = 6 + A,
(2) negative (or bad) if 6; < 6,

where Ais a given positive constant and 6 is either a given number or a parameter
that may be estimated. A number of optimum properties of selection procedures
are defined (Section 3) and it is shown that for some of these, the optimum
procedure selects II; when

(3) T: z (i,

where T is a suitable statistic, the distribution of which depends only on 6;,
and where C is a suitable constant. (Sections 4 and 6.) Applications are given
to distributions with monotone likelihood ratio in the case that 6, is known
(Sections 5 and 6), and to normal distributions when instead observations on
6o are included in the experiment (Sections 10 and 11).

2. Introduction. An important class of classification problems is concerned
with selection, that is with the classification of items into a superior category
(the selected items) and an inferior one. We shall not be concerned here with more
general classification procedures which would divide the items into possibly
more than two categories. Selection problems have been treated in many differ-
ent formulations. A basic distinction is that corresponding to Models I and II
in the analysis of variance. In Model I, the items being classified are considered
fixed; only the observations made on each item are random. In Model II, on
the other hand, the items themselves are drawn at random from some popula-
tion and would therefore change under a replication of the experiment. Model
IT problems have been treated recently, among others by Z. W. Birnbaum [1],
Birnbaum and Chapman [2], T. W. Anderson [3], Cochran [4], Finney [5, 6],
Dayvies [7], Curnow [8] and Dunnett [9]. For the related problem of the rejection
of outliers, see for example [10]. We shall in the present paper be concerned only
with Model I.

We shall assume therefore that a number of varieties, treatments, production

Received February 18, 1960, revised July 13, 1961.

! This paper was prepared with the partial support of the Office of Naval Research (Nonr-
222-43 and Nonr-2842(00)). This paper in whole or in part may be reproduced for any purpose
of the United States Government.

990

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to [[&

The Annals of Mathematical Statistics. KGN ®

www.jstor.org



MODEL I SELECTION PROBLEMS 991

methods, etc. (in general we shall speak of populations) are at our disposal.
Their quality is characterized by a measure which we shall assume to be scalar.
From the available set we wish to make a selection, selecting as far as possible
the best ones.

It is useful to consider. two cases accordmg to the size of the group
to be selected.

ProBLEM 1. A first possibility is that we wish to select only a single population
(if possible the best one): the variety to be planted, the production method we
are going to adopt, ete. As a slight generalization we may wish to select a fixed
number, say two or three. We may have a fixed number of prizes or fellowships
‘to award, or we may not wish to put all eggs into one basket.

ProBLEM 2. In the second case the group size is variable and is determined
by the observations. This arises for example when we wish to select all worth-
while treatments or if we want to be reasonably sure that the selected group con-
tains the best treatment.

ProsLEM 3. There is finally the intermediate possibility that the group size
is variable but has a fixed upper limit. It may for example be desirable to in-
vestigate all treatments that appear promising but budget restrictions may
limit the research program to the investigation of at most three treatments.

The traditional formal treatment of the class of problems described here, which
has always been recognized as inadequate, is through tests of homogeneity (as
for example in the analysis of variance). The only question answered by such a
test is whether there is any difference at all among the available populations.

The first step toward a more realistic formulation is due to Mosteller [11]
who gave a procedure for testing the hypothesis of homogeneity against the
sléppage alternatives that exactly one of the populations has slipped to the right
and for deciding, in case of rejection of the hypothesis, just which of the popula-
tions slipped. Mosteller’s paper was at least a partial answer to such an urgent
need that, in spite of his warnings regarding certain inadequacies in the formula-
tion, it inspired a large literature on slippage tests. At the same time, it led to
further clarification of the issues. The first completely satisfactory proposal for
dealing with a problem of type 2 above was made by Paulson [12], while problem 1
was formulated and essentially solved? by Bahadur [13].

Most of the literature on selection problems so far has been concerned with
the definition of suitable procedures, an evaluation of their performance char-
acteristics and the determination of the sample size. An optimum theory was
developed for problem 1 by Bahadur in [13] and by Bahadur and Goodman in
[14]. An optimum property of a slippage test, with reference only to slippage
alternatives, was first proved by Paulson [15]. His proof was applied to other
problems, was generalized and simplified in papers by Doornbos and Prins
[16], Kudo [17], Pfanzagl [18], Ramachandran and Khatri [19], Truax [20], and
Karlin and Truax [21]. Finally, contributions toward optimum properties of

2 For the nonsequential case which is the only one considered here.
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procedures for problem 2 were made by Gupta [22], Robbins [23] and Seal [24],
[25], [26]. In the present paper, we shall be concerned with optimum procedures
for certain cases of problem 2.

It is useful to introduce here another distinction according to the definition
of the quality of a population.

A. In the simplest case, the quality is defined in absolute terms. If a number of
new treatments are being compared with a standard treatment, it may happen
that the latter has been observed so extensively that its effect can be taken as
known. A treatment is then “good” if it is better (or sufficiently much better)
than the standard. Another example is furnished by the selection of binomial
populations where success probabilities are compared with the ‘“pure chance”
value p = %, a proba,blllty p: being considered as good if it exceeds this value
or exceeds it by at least a given amount.

B. Usually, in the comparison of new treatments with a standard, it is of
course better not to treat the standard as known but to let it participate in the
experiment as a control. A new treatment is then “good” if it compares favorably
with the control, the effect of which is also determined by the experiment.

C. Comparisons are not always relative to a standard or control. If a new
product is being developed, it may be a question of selecting the most promising
of a number of variants or a number of production methods. In such a case, each
population must be compared with the totality of the remaining populations. A
population may then be considered as “‘good’’ if it is (sufficiently much) better
than the average of the remaining populations or if it does not fall too much
below the best one. In the present paper, only problem A and B will be con-
sidered.

We mention in conclusion that the applications of selection theory are even
wider than may appear at first: The emphasis instead of on selection may be on
elimination. Thus we may wish to eliminate those regression coefficients or
interactions, which can safely be neglected or those observations that represent
gross errors. In the latter context slippage procedures, that is, procedures de-
rived under the assumption of at most one “outlier’” were proposed and their
disadvantages discussed quite early by Pearson and Chandrasekhar [27].

3. ‘Formulation of the problem. As in the Neyman-Pearson theory of hy-
pothesis testing, there are two possible sources of error in any set of selections.
There is the possibility of false positives, that is, populations which are selected
although they are negative (=<6,), and of false negatives, that is, populations
which are not selected although they are positive (=6, + A). Instead of on
false negatives we shall focus attention on true positives, that is, on those positive
populations which are included in the selected group. This is analogous to the
replacement of the consideration of an error of the second kind by that of power
in the Neyman-Pearson theory.

Roughly speaking, it is the aim of a selection procedure to seek out the true
positives while holding false positives to a minimum.
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For measuring how well a procedure carries out its task of identifying the
positive populations, a number of criteria are available.

(a) The expected number of true positives.

(b) The expected proportion of true positives, that is, the quantity (a) divided
by the total number of positives.

These criteria are appropriate if it is desired to include in the selected group
as many of the positive populations as possible.

(¢) The probability of at least one true positive.

(d) The probability of including in the selected group the best population
(that is, the population with the largest 6-value), provided it is positive.

These two criteria may be appropriate if the selection is only a step in a scheme,
of which the eventual aim is the selection of a single population.

(e) The probability of including all good populations.

This criterion implies that one would prefer the selection with probability v
of all good populations and with probability 1 — v of none of them to the selec-
tion with probability v — e of all and with probability 1 — v =+ ¢ of all but one
of the good populations. The criterion would thus seem to be appropriate only
in rare cases.

As a measure of the performance of a proecedure with respect to false positives
we shall take either

(i) the expected number of false positives
or

(ii) the expected proportion of false positives, that is, the quantity (i) divided
by the total number of negatives.

As a generic notation for any one of the quantities (a)—(e), all of which depend
on the parameter point 6 and on the particular selection procedure & under in-
vestigation, we shall use S(6, §). Here it is to be understood that S is defined only
for the set @’ of those parameter-points for which at least one of the populations
is positive.

Similarly, we shall let R(6, ) denote the quantity (i) or (ii). With these
definitions of R and S, it is desirable to have S(#, 8) as large and R(#6, &) as small
as possible. Specifically, we shall consider the problem of determining a pro-
cedure for which, subject to

(4) infper S(6,8) = v
we have
(5) supg.e R(6, 6) = min,

(where @ denotes the whole parameter space), or the dual problem in which
inf S(8, 8) is maximized subject to an upper bound on sup R(9, 6).

Which of the various formulations is most appropriate, depends of course on
the particular circumstances of each problem. In the absence of such more specific

3 A complete sequential procedure for dealing with this problem was proposed by Stein
[28]. For more recent work on such sequential procedures, see [29].
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considerations, it seems perhaps most reasonable to control the minimum value

of either (b) or (d). Subject to this condition one might, since each false positive

provides a nuisance disturbance, wish to minimize the maximum value of (i).
It is of interest to note that condition (4) with S given by (b), that is,

(6) infg.o- [expected proportion of true positives] = 7,
implies
(7 infg.or P{at least one true positive} = v.

This follows from the fact that the left-hand side of (7) always exceeds that of
(6). To see this, denote by A; the event of including the 7th population in the
selected group, let I denote the set of indices 7 for which the ¢th population is
positive, and let k be the number of elements of I. Then
P(UA,) =2 max P(4;) = X P(4:)/k
sel el iel
as was to be proved.
The other proposed condition, (4) with S given by (d), that is,

(8) P{best population is in selected group} = v for all 6 & &,

can be given the following interpretation. Let = denote the set of selected indices.
Then 2 constitutes a confidence set for the index ¢ corresponding to the best
population, provided attention is restricted to the parameter set Q'.

We shall prove in the next sections, for certain families of distributions, that
the solution with any of the formulations (a)-(d) combined with either (i) or
(ii) is given by (3) of section 1 but that this is not true for formulation (e).

4. A minimax solution. If attention is restricted to nonrandomized proce-
dures, as can always be done by enlarging the sample space, a selection procedure
is a partition of the sample space into the sets D,;,,... ;, of those sample points for
which the selected group consists of the populations with subscripts 4;, -« - , %
and no others. To these must be added the set D, for which none of the popula-
tions is selected. If the number of available populations is a, the number of sets.
D is 22 since each subscript may or may not occur with all combinations of the
remaining subscripts.

Fortunately, selection procedures possess an equivalent, and for most pur-
poses much simpler, representation. Let E; be the set of sample points for which
the 7th population is included in the selected group. Then each of the two systems
of sets {D} and {E} is uniquely determined by the other. In fact, E; is the union
of all those sets D which have ¢ as one of their subscripts. Conversely,

Dil. e, iy — E,lﬂ e ﬂ E% ﬂ E_'jlﬂ ---ﬂ Eja—k

where 71, -+ -, jox are the subscripts different from ¢y, - - - , 4, and E denotes
the complement of E. Instead of working with the sets E; in the enlarged sample
space, it is now more convenient to return to the possibility of randomization.
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Each E; is then represented by a function ¢, defined over the sample space and
taking on values between 0 and 1, where ¢.(z) denotes the probability with which
the ¢th population is included in the selected group. A selection procedure is
characterized by the vector ¢y = (Y1, -+, ¥a)

According to the formulation of the preceding section we are concerned with
a minimax problem subject to side conditions. This type of problem was in-
vestigated by Blyth [31] but his conditions do not apply to the cases to be con-
sidered here. The following lemma is an immediate extension of the standard
method of characterizing minimax solutions as Bayes solutions corresponding to
a least favorable a prior: distribution. As in its more usual form, it is essentially
an application of the Lagrange method of undetermined multipliers.

LemMA 1. Let ® be a o-field of subsets of the parameter space Q and let X and u
be probability distributions over (2, ®). Let A, B be two ‘posttive constants and let
8o maximaze the integral

9) B [ 5(6,8) du(o) — 4 [ R(6,5) dro).
Then 8, minimizes sup R(0, 8) subject to

(10) inf 8(6,0) = v

provided

(1) [ B(6,50 a\@) = sup R(6, &)
and

(12) [ 560, 8) du(e) = inf 5(6,8) = .

If & is the unique procedure maximizing (9), it is also the unique solution of the
restricted mintmax problem.’
Proor. Let & be any procedure satisfying (10). Then

B f S(6,8) du(8) — A f R(6, 5) dN(6)
<B f S(6, 8) du(f) — A f R(0, &) d\(6) = By — A sup R(6, &).

4 This representation was first utilized in a slightly more special form by Robbins [23].
A generalization was given by the author in Theorem 1 of [30]. I am grateful to Professor
L. LeCam for pointing out an error in the generalization of Theorem 1 to randomized pro-
cedures. The displayed equivalence formulae at the top of p. 6 of [30] are not correct. How-
ever, the equivalence theorem itself remains correct even when randomization is permitted.
This can be seen as above, by representing a randomized procedure as a nonrandomized
procedure in an enlarged sample space and applying Theorem 1.



996 E. L. LEHMANN
Since & satisfies (10), it follows that
sup B(8,8) < [ R(6,) d\(6) = sup R(,9)

as was to be proved.

If condition (10) is to hold only when the sup is taken over a subset Q' of Q,
A must be a distribution over €’ but no other changes are necessary.

As is usually the case with minimax problems, the more difficult part of the
solution is not the maximization of (9) but the determination of an appropriate
A and w. In this connection, the following standard devices are helpful.

1. Condition (11) implies that X assigns probability one to the set w of param-
eter points 6 for which

(13) R(G, 30) = Supe’ R(O’, 50).
Similarly, » must assign probability one to the set for which
S(e, 30) = infor S(O’, 50).

‘2. The pair (A, p) is least favorable in the sense that it minimizes the maximum
(with respect to 6) value of (9).

3. If the -problem exhibits any symmetries, it pays to look for distributions
\, u possessing the corresponding symmetries.

We shall in the following consider procedures, which determine the selection
or nonselection of the sth population on the basis of real-valued statistics T';,
and in particular we shall prove certain minimax properties for procedures of
the type

(14) ¥ =1, )\i,O as'Ti>,=,<Ci.

For this purpose it is convenient first to state the following lemma, the proof
of which is immediate. )

LemMa 2. Suppose that the distribution of T'; depends only on 0; and 1s stochasti-
cally increasing in 0; . Let 6 = (Y1, - - - , ¥a) be any procedure satisfying (14) and
let I be the set of subscript ¢ for which

E90+A \P,‘ = min,~=1,...,., E90+A l//j .

Then, if S is given by one of the quantities (a), (c) or (d) of Section 3, infa:S(6, 9)
1s attained at all points 0 such that for some ¢ & I

6; = 0o+ A and 0; < 6+ A for all j # <.
If 8 is given by (b), infe: S(8, 8) 4s attained at all points 0 such that for some subset
{or, -, 0%} of I
0=+ = 01,6 =6+ A and 0; < 0o+ A  for the remaining 60’s.
If R is given by (i) or (ii), then supa R(0, 8) s attained at the point
0% = (65, -+, 60).
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We note also that if in addition to the assumptions made above, the joint
distribution of (T4, - -+, T,) is stochastically increasing in (6;, - - - , 6,), and if
S is given by (e) of Section 3, then infp S(6, 8) is attained at the
point (00+ Ay -, 600+ A).

The minimax solution can now be obtained under the following conditions.

TurEOREM. Let the probability density of X be denoted by po when 6, = --- =
0, = 0o, and by p; when 6; = 6y + A and the parameters 0; for j # 1 have a com-
mon value ' < 0 + A determined so that the conditions below are satisfied. Suppose
that p:(x)/po(x) is a nondecreasing function of a real-valued statistic T; , that the
distribution of T; depends only on 0, , is stochastically increasing in 8; , and is inde-
pendent of 1. Then the procedure & satisfying (4) and (5) with S equal to any one
of the quantities (a)—(d) and R defined by (i) or (ii) of the preceding section, s
given by

(15) \l/i= 1,)\0,0 as Ti >,=,<C,

where Ny and C are determined by

(16) Eoiapi = 7.

The solution of the dual problem in which (4) s replaced by
(17) sup B(6,0) =+

1s also given by (15), with N and C now determined by
(18) R(6', &) = '

where 6© = (6o, -+ , 60).

Proor.

1. Let u be the distribution which assigns probability one to the point
(60, -+, 60) and \ the distribution which assigns probability 1/a to the points
0 given by
(19) 0= 0+ A, 0,=0 <06+ A forj 1,

Then it follows from Lemma 2 that o satisfies conditions (11) and (12).
2. For the distributions A and u specified in 1, and with p; denoting the
probability density of X when 6 = 6*°, we have

(20) RA,5) = [t - +vdps 8%, = [vins
and hence (9) reduces to

B a a _ B _
(21) J;ftl/fpi —A ;fthpo = fzth ((; Ds APo)-
Since 0 < ¢, < 1, (21) is maximized by putting ¢; = 0 or 1 as

(B/a)p: < or > Apo,

and hence as T;is < or > C, as was to be proved.
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We note that it is actually not necessary for p;(x)/po(z) to be an increasing
function of T'; , but only that there exist a constant % such that the regions T; > C'
and T; < C (for the particular value C' determined by the side conditions) are
equivalent to the regions p;(x)/po(x) > k and < k respectively.

This theorem provides the basis for determining the sample size necessary to
control the risks R and S at any desired levels. For suppose that we wish the
selection procedure to satisfy

R(6,0) =+ for all 6 ¢ @
and

S(6,8) = v for all 0 ¢ Q.
Then for the smallest sample size (possibly randomized) which constitutes a
solution to this problem, the associated procedure 8§, minimizes sup R(6, 8) sub-

ject to (4). If the conditions of the theorem are satisfied, & is therefore given by
(15) and hence satisfies (if we assume for simplicity that it is nonrandomized)

aPe(T; = C) if Ris given by (i)

sup R(0, &) = R(6o, 6o) =
’ 0> %) Peo(T: 2 C)  if R is given by (ii).

It further satisfies the condition
inf 8(6, 80) = Poy+a(T: = C).
If we let
¥ /a when R is given by (i)
¥ when R is given by (ii),
the sample size is therefore determined by the conditions
Poo(T: =2 C) = v*,  Poa(T: 2 C) 2 7.

These are exactly the conditions appropriate for testing the hypothesis 6; = 6o
against the alternative 6; = 6, + A if we wish to have significance level v* and
power at least v. In all particular cases considered in the following section, the
sample size determination therefore reduces to a problem whose solution is known
from the corresponding problem of hypothesis testing.

5. Families with monotone likelihood ratio. The theorem of the preceding
section applies directly to the case of independent samples X, - -+, X, from
populations with probability density fs, depending only on the real-valued
parameter 6; with respect to which we wish to select, if there exists a sufficient
statistic T; for (Xi, + -+, Xin) with monotone likelihood ratio. Let the proba-
bility density of T be g, , and take 6, for the value 6’ of the theorem. Then

pi(zx) _ Jog+a(ti) 7o, (8) _ Jog+a(ti)
Po(x) goo (8:) 77 gay(2;) goo(t:)

which is nondecreasing in t; , and it follows that the minimax procedure is given
by (15).
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In particular, if n = 1 and the probability densities fs; (x;) have monotone
likelihood ratio in z;, the result holds with T; = X so that the procedure is
given by

(22) ¥vi=1,%,0 as X; >, =, <C.

Examples of this are the case in which the random variables X; are independently
distributed with binomial distributions b(p;, m), with Poisson distributions
P(7;), or more generally with distributions having densities of the form

C(0:)e" " h(x.),

that is, belonging to an exponential family.

As another example, consider samples (X1, -+, Xi,) from normal distribu-
tions N(¢&;, ¢7) and suppose we wish to select the populations with small vari-
ances. Attention may be restricted to the sufficient statistic X;, ---, X, and
83, -+, S: where

Xi= 2 Xu/n; 8 =2 (X — X))
= =1

Since the problem remains invariant® under addition of arbitrary constants c¢; to
X, it follows from a trivial extension of the Hunt-Stein theorem ([32], p. 336)
that there exists a minimax solution depending only on the variables Si , - -- , S5 .
To these variables the theorem is now applicable with » = 1, and
shows that the minimax procedure consists in selecting the populations for
which S} < C.

Suppose that instead it is desired to select the populations for which the
parameters 0; = £;/0; are sufficiently large. This time the problem remains in-
variant under multiplication of X; by any positive constant ¢; and of S? by ¢ .
There exists therefore a minimax solution depending only on the' variables
T: = X./8;. Since the T; have noncentral {-distributions which possess mono-
tone likelihood ratio, it follows that the minimax procedure consists in selecting
the populations for which X./S; = C.

If in this last problem the variances o; are assumed to be independent of 4,
with the common variance o2 still being unknown, the problem (of selecting for
&:;/o or £;) surprisingly is much less simple since the 7'; are then dependent. We
shall consider this case in Section 7.

We conclude the present section by showing that in all the problems con-
sidered above, if criterion (e) of Section 1 is used instead of one of the criteria
(a)-(d), the minimax solution is no longer given by (15). The argument is
sufficiently clearly indicated by considering the case a = 2. Suppose therefore
that X, , X, are independently distributed with densities f5, () and f,(x) which
have monotone likelihood ratio. We shall also assume that the associated cumula-
tive distribution functions are continuous; if the region of positive density is

§ In the same strong sense as in the theory of hypothesis testing that is without perform-
ing any transformations of the decision space.
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independent of 6, this can always be achieved by adjoining a uniformly dis-
tributed random variable.
Subject to

(23) sup [Expected number of false positives] < +’

we wish to maximize the minimum probability of including in the selected group
all good populations (if there are any). The procedure of the preceding section
includes the ¢th population when X; = C where Py {X; = C} = +//2. Then the
maximum expected number of false positives is exactly v’ and, if

ﬂ = P00+A(X‘i g C)’

the minimum probability of including all good populations is 8°.
Consider now the following alternative procedure:
Include 6, in the selected group
fX;=2Candif Xo < C —eorX, = C.
Include 6 in the selected group
isz g C’a,ndifX1 < C - 601'X1 é C.

In addition include both 6; and 6,if C — ¢ £ X;, X, < C.

For e sufficiently small, it is then easily checked that the probability of includ-
ing 6; in the selected group when 6; < 6, is still < 4’/2 so that the procedure con-
tinues to satisfy (23). The probability of including in the selected group all good
populations if only one of the #’s is = 6y + A is now less than its previous value
B8 but by continuity is > 8 for e sufficiently small. On the other hand, the pro-
bability of including all good populations when both 6; and 6, are = 6y + Ais
now clearly > #° since the set of sample points for which both populations are
included has been increased by the set C — ¢ < X;, X, < C. Hence for e suf-
ficiently small, the minimum probability of including all good populations is
now > B as was to be proved.

6. Unequal sample sizes. The case of unequal sample sizes requires a slight
generalization of the theorem of Section 4.

TaEOREM. Let T; (1 = 1, - -+ , a) be a real valued statistic whose distribution de-
pends only on 0; and is stochastically increasing in 0; . Let 8 = (Y1, +++ , ¥a) be
the selection procedure defined by
(24) . =1,X,0 as T; >, =, < C;

where \; , C; are determined by (16). Let p;(x) and po(z) be defined as in Section 4
and suppose that there exist constants k; such that

pi(x)/po() >, =, < ks as T, >, =,<C;.

Then, if S is equal to one of the quantsties (a)—(d) and R s defined by (i) or (ii),
8o mintmizes supe.q R (0, 8) subject to (4). If instead of by (16), the constants \; , C;
are determined by (18) and

(25) Eg, 1a¥; is independent of ¢,
8o maximizes infaq S(6, 8) subject to (17).
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Thus in both cases, the critical functions ¥, , which can be interpreted as tests
of the hypotheses H; : 6; < 6 against the alternatives K; : 6; = 6, + A, are not
determined to give a constant (independent of %) significance level but instead
so that the minimum power against K is constant.

The reason for this is clear: the probability of the ith population giving rise
to a false positive takes on its maximum value at the same point 6 for all ¢;
hence the contributions of the various populations to the expected number or
proportion of false positives are combined and do not have to be controlled
individually. On the other hand, the probability of the ¢th population resulting
in a true positive takes on its minimum value at a different point 6 for each 3.
For the minimum of these minima to be a maximum, they have to be equal.

The lack of symmetry shown by the solution is of course a consequence of the
asymmetric formulation of Section 3, where the consideration was shifted from
false negatives to true positives. However, this asymmetry is not artificial but
only reflects a corresponding asymmetry of the problem.

The proof of the result for unequal sample sizes parallels that of the special
case when the sample sizes are equal. Let 8 be the procedure determined by (24),
(25) and (16) or (18). Let the distribution u be defined as before but let A assign
to the point §*”, instead of 1/a, a probability =; to be determined later. The quan-
tity (21) then becomes

(26) jZ\bi(BWipi — Ap,)

which is maximized by putting ¢; = 0 or 1 as
p:i/po < or > A/Bm;.

Hence if B/A and ; are determined so that A/Bw; is equal for each ¢ to the
constant k; defining &, it follows that &, has the desired minimax property.

7. Normal populations with common unknown variance. Let X;; (=1, --- ,
ni ;4 =1, -+, a) be normally distributed as N (& , o°), and suppose we
wish to select the populations with large values of £;/¢. More specifically, we shall
consider a population as negative if £;/¢ < 0 and as positive if £;/0 = A. A set
of sufficient statistics is given by the means X; together with

8 =22 (Xy— X))

Since the problem remains invariant under multiplication of each X; by the same
positive constant ¢ and of S* by ¢’, there exists a minimax procedure depending
only on the variables ¥; = X./S. If 6; = £;/0, the joint density of the ¥’s, is
up to a constant,

P, v, ¥a) = (14 Dongyt) ™"

(27) o .
[ e expl—w/2 + b/ AT Sy do,
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where
f= Zl (n; — 1).

From a consideration of the individual hypotheses H, : 6; < 0, it appears
natural to include the ¢th population in the selected group if

(28) X./8 z C;.
For this procedure it follows as before that the expected number of proportion of
false positives takes on its maximum value at 6 = (0, --- , 0) while the quan-

tities (a)—(d) take on their minimum value at (among other points) the points
'0(‘)’:(07"'707A;07"'70)' .
If the joint density of the ¥’s at 6 and 6 is denoted by po and p; , it is seen
from (27) that p;/p, is an increasing function of
AY, B AX;
'\/1+2an2' \/82+En,)-(2

‘The selection of the 7th population when pz/ Do is sufficiently large thus leads to
selecting the populations for which

(29) m > C;.

This corresponds to the solution proposed by Paulson [15] and Pfanzagl [18] for
the associated slippage problem in which the standard is replaced by a control.®
It is however not a solution to the present problem. For as §; — — « for some
J # 1, the probability of the inequality (29) tends to zero, and so therefore does
the minimum value of each of the quantities (a)—(d).

Sometimes it is not unreasonable to assume a priors that

(30) 6; =20 for all 5.

If for example we wish to select among a number of possible enrichments of a
substandard diet, we may be willing to assume that the effect of each, if any, is
beneficial. While under this assumption, for most significance levels and sample
sizes, the performance of the procedure (29) is no longer as drastic as before, the
procedure is nevertheless still not a minimax solution. This is easily seen from
the fact that the probability of the inequality (29), subject to 6; = A and
0 < 6; < Aforall j takes on its minimum value not at 8 but instead at
the point 6 = --- = 6, . The proof is similar (but simpler) to the one given
below.

The question arises whether the intuitive procedure (28) is, as one might ex-
pect, a minimax solution. We shall prove in the next section that this is not the
case, under the a prior: assumption (30). It seems likely that the situation is the

8 A slippage procedure, corresponding to (28) was proposed by Paulson in [9]; the com-
plete procedure (28), with the standard replaced by a control, is discussed by Dunnett [33].
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same even without this assumption. However, as we shall now show, (28) is
then at least approximately minimax in the sense that subject to (4), the maxi-
mum expected number of false positives can at least be improved only slightly
over its value for (28). We shall show this with the constant C; determined by
(25).

Condition (4) implies that for all z,

(31) Ey;=~ when 6;= A and 0, <A forj # 4.

Since the procedure (28), which for the moment we shall denote by y* =
(¥F, -+, ¢a), attains the maximum expected number of false positives when
6, = --- = 0, = 0, the minimax value of this quantity can be no higher than

Eodi+ -+ ) =+ - + e
where
a; = Po{X:/8 > C4,

C; being determined by Exfi = 7.

On the other hand, this minimax value cannot be much lower than D
For consider any procedure ¢ = (¢1, - ; ¥a) satisfying (31). Its maximum ex-
pected number of false positives is greater than or equal to Ey,...o(r+ -+ + ).
Consider now the problem of minimizing E,...o(¢1 + -+ + ¥a) subject to
(31). If we restrict (31) to the parameter values 6; = A and 6; = 0 for j = ¢,
the solution becomes

¥; =1 when Xi//‘/82+§.n,~)-(§>0§.
7#A

bound for the sought for minimax value. However, for typical values of the sam-
ple sizes, o will be only slightly lower than a; , the only difference being the a — 1
added degrees of freedom in the denominator of the ¢-statistic, which now has
> n; — 1 degrees of freedom instead of the > (n; — 1) in the case of (28).

The same argument shows that (28) approximately minimizes the maximum
expected proportion of false positives.

8. A counterexample. We shall now construct, for the case of equal sample
sizes, a procedure satisfying (23) and with larger minimum value of (a)—(d) than
(28). To this end we shall first prove the existence of points (y1, - -, y.) and
(yi, -+, ye) with gy < C < yi and such that

Pass a0 o) o Pasne Uy - s 1)
!’
Po,o,---.o(yl, ety Ya) po,o.~--.o(y1 "y y.',)

forall0 < 65, ---, 6. < A. It is seen from (27), that the probability ratio
DAgs .o 8/ Do, 0 I8 an increasing function of

(32) o+ 500 / 4/ 1405
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Hence it is enough to construct the points y and ¥’ in such a way that the expres-
sion (32) (where without loss of generality we can put n = 1) exceeds the cor-
responding expression when y is replaced by 3. Putting ge = -+ ya, 42 = -+ =
Ya, letting p = (6, + -+ + 6,)/A and writing & for ¢ — 1, we must find pairs

(y1, y2), (1, ys) withy; < C < y1 and such that

Y1+ pYe > y{‘I‘Pyé
Vi+yi+(a— D" VI+y2+ (a — Dyp

Since all coordinates will be chosen to be nonnegative, the inequality can be
squared and on collection of powers of p becomes

f(p) = ap + 2a1p + @z > 0

forall0 =.p = k.

with
a0 = ya(1 + y1°) — v'(1 + i)
ar = yupll + y1° + (@ — 1)ye’] — yuell + 41 + (a — 1)yil
a = yill + (@ — Dy2’] — 92’1 + (a — Dyi].
A sufficient set of conditions for f(p) to be positive for all0 < p < kisap < 0,
f(0) > 0, f(k) > 0, and hence
<0, a>0, ak + 20k -+ a > 0.

For any fixed y; , y3 and y» , the first two of these conditions are satisfied if y is
sufficiently large. The coefficient of y;° in ak® + 2a:k + asis — k(1 + 33) +
2kyya(a — 1) + (@ — 1)y} . If y, is chosen large enough so that this coefficient
is positive, the third condition is also satisfied for y, sufficiently large, and this
completes the proof. The two points constructed in this way will be denoted by
P =@, -,y and ¥ = (yY, -+, yY). We note for later use that the
points can be chosen in such a way that C < y;, y; for all j > 1.

Let R and R’ denote two spheres with centers at 3 and 3", and radii deter-
mined so that

(33) , P(R) = P(R') when 6, = --- = 6, = 0.

In addition, the spheres are to be sufficiently small so that

w2 ey oyt 2 ey
j=2 > j=2

1/1+Zy§ 4/1+_Zy$~2
j=1 j=1

that y; < C < yyforall y ¢ R and ¥’ ¢ R’ and that further conditions are satis-
fied which will be specified later.

Consider now the following modification of (28):

the 1st population is selected if the sample point satisfies

(35) (yeR) or (1> C and yeR'),
and the rule for selecting the other pdépulations is defined by symmetry.

(34) forall0 < p; < 1,
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By (35), the expected number of false positives, when 6, = --- = 6, = 0, is
the same for the modified procedure as for (28). Since under assumption (30)
the ¢th population can give rise to a false positive only when 6; = 0, it follows
that the modified procedure satisfies (23) if B and R’ are sufficiently small.

Consider on the other hand one of the criteria (a)-(d), for example the proba-
bility of including the best population in the selected group when its 6-value is
= A. Under (28) this attains its minimum value at the points whose coordinates
for some ¢ satisfy 6; = Aand 0 = 6; < A for j = <. By (34), the probability
of including the best population is larger at all these points under the modified
procedure than under (28).

In order to prove that also the minimum probability of including the best pop-
ulation has been increased by the modification, it is sufficient to show that
with the modified procedure this minimum probability is still attained at points
satisfying 6, = A, 0 = 6; < A forj # 4. This follows easily if we can show that
for the modified procedure the probability of including the ith population is an
increasing function of 6; for fixed values of the other 6’s. This result finally is an
immediate consequence of the following two facts.

1. The partial derivative

) B
%Po;{Xi/S > C}

is positive for all 8; and is bounded away from 0 in any finite intervala < 6; < b.
2. As the radius of the sphere R (and hence also of R’) tends to zero, the de-

rivatives

1¢]
a.Pol,...,oa(R) and —-—Pol,...,oa(R’)

.89, 39;
tend to zero.

Proor.
1. Putting ¢ = 1 so that £ = 6, , the derivative is equal to

ifpmx>wwﬂw
a0; Jo

We can differentiate under the integral sign and the derivative of the integrand
is known to be positive. (See for example [32], p. 114. Problem 18.) Since this
derivative is a continuous function of 6, it is bounded away from zero in any
finite interval.

2. Writing P(R) = [z Pe,,....s,(y) dy, the differentiation can be carried out
under the integral sign. Since for (6;, - --, 6,) in any finite interval, the inte-
_ grand is uniformly bounded, the result follows.

Exactly the same argument applies if criterion (d) is replaced by (a) or (c).
However, with (b) the difficulty arises that the expected proportion of true posi-
tives takes on its minimum value at all points which for some 1 £ 7, < -+ <
= a,1 =k = a,satisfy '

0i,= “‘=0ik=A§ 0§0,<A forallj;é'il,-u,ik.



1006 E. L. LEEHMANN

To obtain an increase at all these points, we note that at the beginning of the
section we proved the existence of pointsy = (31, - ,¥.) andy’ = (y1, -+ , ¥a)
with

n<C<y and C <y;,y; forall j = 1

and such that (34) holds.

Let R; and Ry denote the spheres previously denoted by R and R’, let R; and
R be defined by symmetry. The modified procedure as before consists in includ-
ing 6; in the selected group if

(yeR:) orif (yi>C and yeR:).

For this procedure it was shown previously that if ; = A, 0 < 0; < Aforj # 4,
the expected proportion of true positives has been increased by the modification.
Suppose now that two of the #’s are equal to A, say 6, = 6. = A,0 = 6, < A
for 7 > 2. Then twice the expected proportion of true positives equals

P{selecting 6;} + Pf{selecting 65}.

Since for the points (A, A, 6;, -+ -, 6,) with 0 = 8; < Afor j > 2 we have both
P(R,) > P(Ry) and P(R;) > P(R3), it is seen that the expected proportion is
increased also in this case, and in the same way that it is increased at all points
at which it takes on its minimum under (28). The remainder of the argument
requires no change.

In conclusion we mention, without going into details, that even without the
restriction (30) the procedure (28) is not the solution of the problem of minimiz-
ing the maximum expected number of false negatives subject to

sup [Expected number of false positives] < v'.

This follows more simply but by the same method as before from the fact that
the expected number of false negatives under (28) takes on its maximum at the
single point 6; = -+ = 6, = A.

9. Decision theoretic approach. Although the formulations of Section 3 appear
to the author to be more useful for most applications, the problems can also be
treated from a purely decision theoretic point of view, with general loss functions
replacing the consideration of true and false positives. In the present section
such a treatment of the problems of Sections 5 and 6 will be sketched very briefly.

Suppose that Xu, -+, Xi; (£ = 1, -+, a) are independent samples, that
the distribution of the 7th sample depends only on the parameter 6; and that we
wish to select the populations with high 6-values. Let the loss resulting from the
selection or nonselection of the ¢th population depend only on 6; and be denoted
by L:(8:) and L;(8;) respectively. Finally, let the over-all loss be the sum of the
individual losses.

Consider now the 7th component problem, a two-decision problem for the
parameter 6; with losses L; and L; . Suppose that the minimax solution y; for
this problem is a Bayes solution with respect to a least favorable a prior: distri-
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bution A; of 6;. Then ¢, is also the Bayes solution for this same two-decision
problem on the basis of all > n; observations with respect to the a priori dis-
tribution A(6:1) X A2(62) X -+ X Ae(6,) for the combined parameter 6§ =
(61, + -+, 6a). This is an immediate consequence of the fact that the a posterior:
(marginal) distribution of 8; given all the ), n; 2’s depends only on z; , - - - ZLing ©
It then follows from result (ii) (on p. 15) of [30] that the selection procedure
(¥}, -+, ¥3) is a minimax solution of the over-all problem.

Conditions under which the minimax solutions for the component problems
are of the form (24) are given for example in [34] and [35]. The minimax property
of procedure (24) in these cases is a slight generalization of a result of Robbins
[23] and Hannan and Robbins [36], which was established there by quite different
methods. It is suggested by these papers (see also Johns [37]) that for the problem
under consideration there exist asymptotic subminimax procedures so that for
large a, certain improvements over the above minimax procedure may be possible.

10. Comparison of normal means with a control. In the remaining two sec-
tions we shall be concerned with problems in which the quality of the standard
is not assumed known but where instead a control group Xo; (j =1, -+, m) is
observed in addition to the observations X;; (j =1, -+ ,n;;2=1,-++,a) on
the a treatments.

We consider first the case that the X,; are independently distributed with
normal distributions N(%;, ¢1) for< = 1, -+, a and N(&, o5) for ¢ = 0, and
assume to begin with that o7 , of are known and that n; = nfori =1, ---  a.

The averages Xo, X1, -+, X, are then sufficient statistics, independently dis-
tributed with normal distributions N (%, 3) for Xoand N (¢;, r1) for X; (s = 1,
-, a) where

6 = og/m and 75 = oi/n.

As in Section 5, a slight generalization of the Hunt-Stein theorem permits a
reduction of the data. We may restrict attention to the variables ¥; = X; — X,
since by this theorem there exists a minimax solution which is invariant under a
common translation of all variables and since Y7, - - - , Y, constitute a maximal
set of invariants with respect to these transformations.

Putting 6; = £ — &, the conditional joint density of the ¥’s given Xy = z,

is (up to a constant factor)

1

eXpy — 53 Z [(y; — 6;) + (@ — 50)12 .

2T 1
The joint density of the Y’s is therefore

1 1

C f exp{— 51 2y — 6,) + wol’ — 572 y«"i} dyo

which after some simplification becomes

(36) p(y) =C exp{— 2% [Z (yi — 6,)" — c?%a%?% (5 — 9)2]}.
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We shall now apply the theorem of Section 4 with 6, = 0 and 6’ = pA. Then
p:(y)/po(y) is the ratio of the two densities (36) for 6; = A, 8; = pA(j = 4) and
6 = --- = 6, = 0. The quadratic terms in the exponent cancel and the linear
terms are, up to a factor A/},

2 2
L _@m 14+ (a—1)p_
ij#y]+y, ary + i a y
2
_ _ . - _ To _ Y
=1 -pu+ ay{p g 1+ (a l)pl}.
For
70
&7 .

the coefficient of a vanishes, so that

p(y)/poly) = C exp {A—(l;i) y}

is an increasing function of y; . For this value of p, the conditions of the theorem
of Section 4 are satisfied and the minimax procedure (15) thus reduces to

(38) vi=1 when y;,=X; - X, > C,
where C is defined by
PA(X; - X,>0C)=1—2 ——C————A = 7.
(39) 204 of
m ' n

This solution is easily extended to the case of unequal sample sizes and un-
equal variances. If the variance of X, is 77 we find for the joint distribution of
the Y’s,

1 — 6.) /7]
p(y) =CeXp —}-Zl_z(yj._gl)z_l_%[z fyl 0.7)1/ ]]
At 2o

2 J=1Tj
We now apply the theorem given in Section 6, this time with 8’ = 6; = p;A, so
that p.(y) is the density of the Y’s when

0,‘ = A, 0, = p,;A fOI'j =~ 7.

Then the quadratic terms in the exponent again cancel in the ratio p;(y)/po(y),
and the linear term is

St -5+ 2 h] T4TY
iYi/ 75 ” 9 5~ 7
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all sums extending from 1 to a. For j # 4, the coefficient of y; is (up to a factor

Al(1/m) + 22 (1/7)]7)
bl 17 17 <1
Alarzal-sleezal)
This will be zero if p; = 75/(r5 + 7:) and the coefficient of 7; then becomes
—_[ S+ (1—pz)]
T J#i .1

Since this is positive, p:(y)/po(y) is then an increasing function of ¥; = X; — X,
and the minimax procedure is therefore given by (24) where C; is given by (39)
with #n; in place of n, or by (25). . .
If the variables X;; (j = 1, -+, n;;¢ = 0, ---, a) all have common but
unknown variances, it follows as in Section 7 that the procedure given by

(% — Xo>/4/—+-

(40) ¢Yi =1 when
/‘/ZZ(Xk—X)2

J=0 k=1

is approximately minimax, where no replaces the earlier m.

11, Comparison of normal variances with a control. Let X,;; (j = 1, -+, n;;
i =0, -+ ,a) be independently distributed with normal distributions N'(¢;, %)
(%:, o; unknown), and consider the problem of selecting the populations for
which ¢}/ef < 8. Application of the generalized Hunt-Stein theorem proves the
existence of a minimax procedure depending only on the statistics

= ; (X — X3)"

We may therefore restrict attention to Sj, ---, S; where the distribution of
Si/a% is x7, with f; = n; — 1, and by another application of the same theorem
to the variables V; = Si/S; (7, =1, , @). The joint densities of the V’s, is
up to a constant factor

z . (Ffo+Sf1+- - +fa—1) /271 Ia] v',(f;—z)/z
1 - .
l:( + =1 U;/Go) ] = (205/00)* T (£:/2)

Let us now apply the theorem of Section 6 with 6; = o5/0; , with 8 = 1 (so that
the conditions 6, = - -+ = 6, = 6 are equivalent to ¢} = --- = o = op); With
1 4+ A = 1/8 (so that the conditions 6; = 6, + A = 1 4+ A is equivalent to
oi/oy < 8);and 0 = p,(1 + A), where p; < 1 is to be determined later. With
these values, the probability ratio p;/po is an increasing function of (1 + 2 v;)/

(14 2 00)).
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Let us therefore consider the region
14+ 200 2 k(1 + 2 6p))

which is equivalent to
k(1 — pa) (1 + A)i £ (1 — k) + [1 — pika(1 4+ A)] D 0,
J=1

If we put p; = 1/k;(1 + A), this reduces to
v < 1—k
ki(1 — ps)(1 + 4)

or equivalently to »; = C; with

1 — &
Ci_ki(l+A)—1'

As k; goes from 1/(1 + A) to 1, C; goes from « to 0, and for these values of
k; , it is seen that p; < 1. The theorem of Section 6 therefore shows that the pro-
cedure ¢; = 1if v; £ C; has the desired minimax property.

As a last problem, consider a set of Poisson populations with Poisson param-
eter Ao, A1, -+, Aa . The problem of selecting the populations for which \;/Ag =
1 + A is not meaningful in the formulation given here since the parameter pairs
(Mo Ae = No) and (Mo, N\i = (1 + A)No) become indistinguishable as Ao — .
The problem could be treated with the minimax principle replaced by a suitable
unbiasedness principle. Alternatively, if one is concerned with Poisson processes,
one may instead of observing the number of occurrences in fixed intervals, take
as observations the times required to get a specified number of occurrences.
These times then follow gamma distributions, and the solution of the present

section is directly applicable.
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