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1. Summary. In this paper we obtain a recurrence relation between the pdf’s
(probability density functions) of order statistics. This relation is then extended
to their cdf’s (cumulative distribution functions) and to the expected values of
a given function of each order statistic and a function of pairs of them. The
interrelation between these results and other known formulas is shown. The
application of the results to the preparation of tables of cdf’s, expected values,
variances, etc., of order statistics is indicated, and the numerical errors propa-
gated in such computations analysed. Finally, an illustration is given. It is hoped
that the unified approach presented here will provide greater insight and flexi-
bility to procedures of numerical evaluation of expected values, etc., of order
statistics.

2. Recurrence relation. Let ., denote the ith order statistic in a random
sample of n observations from a universe with cdf F(r) and pdf f(z) at z.
Then the pdf of z,,, at z is given by

(1) pua(2) = {nl/[(n — )1t = DIPIF@)] TN = F@)]"f(2), t=1(1)n
From the identity

FF(l—-F""'=F'1-F""-F'1-F)""
we deduce the recurrence

(2) Pera(z) = {n/8peaa(z) — {(n — ) /8pea(a), t=1(1n — 1.

This is equivalent to Cole’s result (2) (and also (3)) in [1], as either result is
deducible from the other. Integrating both sides of (2) over (— «, z), we ob-
tain the following relation connecting the cdf’s of Z;41,n , Z:n and ;1 :

(3) Finn(z) = {n/8F na(z) — {(n — ) /8F a(2), t=11n -1,

where F,.(z) denotes the cdf of z.,, at . On the other hand, multiplying both
sides of (2) by a given function of z, ¢(z), and integrating over all x, we arrive
at the following relation between the expected values of ¢(zi11..), ¢(7:.) and
(Lina1): ’

(4)  Ele(zen1n)] = {n/§Elo(zina)] — {(n — 1) /8 Ele(z.0)], ¢ =1(1)n — 1.

Relation (3) can also be obtained as a particular case of (4) by setting ¢(z) =
the characteristic function of z in (— «, z). Similarly we can deduce, from (5)
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through (15) infra, results connecting the cdf’s (or the corresponding proba-
bilities) of order statistics. When ¢(z) = z", (4) is equivalent to (4) of Cole
[1], as either result is deducible from the other. Godwin [4] also gives results
similar to (4) when ¢(zr) = z and 22 Result (4) has been obtained by Govin-
darajulu for moments of order statistics [5].

3. Interpretation of the result. Recurrence (4) expresses the expected value of
a given function of the (¢ + 1)st order statistic in a sample of size # in terms of
the expected values of the same function of the ¢th order statistics in samples of
sizes n and » — 1. By induction it follows that the expected value of a given
function of any order statistic in a sample of size n can be expressed in terms of
the expected values of the same function of the first order statistics in samples
up to size n. A similar result in terms of the largest order statistics was obtained
by Cole [1] for “normalized” moments of order statistics. We have the following
explicit solution for recurrence (4).

Blote] = (-0 { 33 (07 () (2 }) Betman},

(5)

1=t=v=n

This may be established by induction, using (4). For a symmetric population,
setting w; = E(z;,;) — E(21,;) = —2E(x1,;), where expectations are taken
about the population mean, we obtain

Blann) = o) = (3) (1) (-0"w'ans,

a result surmised by ‘“‘Student” and proved by E. 8. Pearson [9].

Relation (4) or (5) enables us to compute the expected values of all order
statistics, their squares, etc., from the expected values of the first order statistics,
their squares, etc. From (3) it is evident that similar remarks apply to the
tabulation of the cdf’s of order statistics. Govindarajulu has also indicated that
moments of order statistics can be obtained from those of the lowest order sta-
tistics [5].

4. Other formulas deducible from (4). We can express Elo(z:,,)], 1 St < v < n,
in terms of the expected values of the function ¢ of any n order statistics in
samples up to size n, provided that there is no identity relation between them
which is deducible from (4). For instance, we have the following solution for (4)
in terms of the greatest order statistics in samples up to size n:

® Blozl = (-0 2 -0/ () (02 ]) B, 1sts0sn

=t

which is derived from (5) by considering the stochastic variable y = —z and
the function ¢(—y) instead of z and ¢(x). For ¢(x) = z’, (6) is equivalent to
the result of Cole [1] that “normalized” moments of order statistics can be ob-
tained by successive differencing of those of the largest order statistics.
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Using as pivots the expected values of the function of the median statistics
in even samples, i.e., Elo(2x2)] and Elp(2it1.26)], & = 1(1)[[(n + 1)/2]], we get

Flo(a,.)] = t<f) [[(v—zg)l)/zn (-1)’{(0 — 2t ]— J+ 1)
Hema)) [ [ (31 7) @+ 5)]
[

+< i—1 >E’[<P(:m+:+12:+2;)]/ (t+j+1> (t—|-]+1):|},

(v :12t> —0, 1 =t=(v2]] and v = 1(1)n,

(7)

where [[A]] denotes the greatest integer not exceeding \. This result can be proved
by induction. We can deduce the corresponding expansion for [[(v + 1)/2]] +
1 <t=<wv=Znfrom (7) by considering the variable y = —z and ¢(—y) in-
stead of z and ¢(z). For a symmetric population, defining

(k) = {(E(zeprze) — E(en)} /<2kk),
and setting in (7),

E(zim ) = —E(zim) = <%) {E(zp11,20) — E(zpm)} = <%) <2kk> y(k),

where expectations are taken about the population mean, we obtain result (2)
of Godwin [3].

Yet another solution, with the expected values of the function ¢ of order
statistics in the largest sample as pivots, is given by

Elo(z,,)] = {(1/(v + 1)(v + 2) -+ - n}
- {(” S ”) W=t DW—=t+2) - (n = OBz

i <n I v> o —t+1D0w—t+2) - (n — t — 1)Ele(241,5)]
(8)
+ <n 2 v) e+ Do —t+ DO —t42) - (10—t — 2Elp(@i)]

4+ -+ (Z _ Z) 4+ Dt+2) - Ct+n—v— l)E[<p(wz+n_,,.n)]},

1=5t=20 <.
This can be proved by induction and is made use of in Section 6.

5. Propagation of errors in tabulation. In order to secure a desired degree of
accuracy in tabulation of expected values of any given function in each order
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TABLE 1

Upper limit to errors propagatedin Elo(z: )] through (5) (or modified form of (4)) for sample
sizes 10 and 20 when Ele(z1,;)] is correct to k decimal places

Upper Limit to Error Propagated

in Ele(x)] in Units of 1/(2.10%) Upper Limit to Error

Propagated in E[p(x)] in

Order Statistic Order Statistic )
Sample size Sample size Units of 1/(2.10)
n = 10 n = 20 Sample size n = 20
(6Y) (2) 3) @ 5
Ti,n 1 1 11,20 127,574,017
Zoom 19 39 Z12,20 216,408,063
Tan 161 721 Z13,20 299,565,057
Zan 799 8,399 T14,20 335,478,783
Zs,n 2,561 69,121 Z15,20 299,565,057
Te,n 5,503 427,007 Z16,20 208,470,015
ZTim 7,937 2,053,633 17,20 109,051,905
T8,n 7,423 7,868,927 T18,20 40,370,175
Zo,n 4,097 24,379,393 Z19,2 9,437,185
Ti0,n 1,023 61,616,127 T20,20 1,048,575

statistic through either (4) or one of (5) through (8), it is necessary to set
upper limits to the errors propagated in such tabulation. These errors may arise
from two sources: (i) approximations in the evaluation of pivotal expectations
and (ii) approximations in the coefficients used. We shall first discuss the errors
propagated by (5) or (4) using Ele(21,;)], j = 1(1)n, as pivots.

The coefficients of Elp(z;,;)] in (5) are necessarily integral, whereas the co-
efficients of Elp(2:,-1)] and Efp(z:,)] in (4) can take non-integral values also.
Hence it appears that the propagation of errors from the second source will be
eliminated completely if we use (5). However, the same result can be obtained
by using (4) provided that, in the numerical computations, we do not approxi-
mate {v/t} and {(v — ¢)/t} but use, instead, the form

{(vEle(zi0-1)] — (v — ) Ele(2e0) ]}/

to evaluate Elp(241,,)]. The expression within curly brackets will then be exactly
divisible by ¢ and no error will be introduced due to approximations in the co-
efficients.

We may next consider the errors propagated through (5) (or modified com-
putational form of (4)) due to evaluation of E[e(z,,;)] correct to, say, k decimal
places. The upper limit to the propagated error is the sum of the abselute values
of the integral coefficients in formula (5) multiplied by the maximum error in
the pivotal values and is, therefore,

,~=§+1 (;) (f, _ i) {1/(2.10%)}.



RECURRENCE RELATIONS FOR ORDER STATISTICS 173

To give some indication of this upper limit, Table 1 has been prepared for sample
sizes 10 and 20. It shows how much accuracy is needed in the evaluation of
Elo(z1,5)], 7 = 1(1)n, in order to secure at least a given degree of accuracy in
tables of Elp(x:,)], 1 £t < v < n. For instance, to ensure that tables of
Elp(x,,,)] are correct to four places of decimals in samples up to size 10, we have
to evaluate E[p(z1,;)] correct up to the eighth decimal place. This will, of course,
ensure that Ele(z.,;)] is correct up to six decimal places and Elp(xs,;)] and
Elo(x4,5)] up to five places in samples not exceeding ten. Harter [5] also com-
ments on the propagation of error when using forward recurrence, which ap-
parently was first suggested in this context by Federer [6].

6. Propagation of errors by (8) and its advantages. It will be evident from the
foregoing discussion that the magnitude of the propagated error depends on the
pivotal values chosen for using (4). In order to study the differential propagation
of errors by different sets of pivotal values, let us consider, as an alternative, the
expectations of a given function of the order statistics in the largest sample as
pivots and apply the modified backward recurrence

Elo(x:0)] = {(v + 1 — ) Ele(1,041)]
+ tEle(Zeao) /(v + 1), 1 St=v=n.

The formal solution to this recurrence with Elp(z:.)], ¢ = 1(1)n, as pivots is
given by (8). In using (9), the errors propagated by the approximation of the
coefficients {(v + 1 — ¢)/(v + 1)} and {{/(v 4+ 1)} can be eliminated if we
first work out tables of u., given by the recurrence (with integral coefficients)

(9)

(10) peo = (0 4+ 1 = Dpeorr + e, 1=t=v<n,
with boundary conditions, u:, = Ele(z:.)], ¢ = 1(1)n; and then obtain
(11) Elo(z:)] = peo/{(v 4+ 1) (0 +2) ---n}), 1=t=v<n.

From (11), it will be clear that if the errors in w41, t = 1(1)v 4 1, are less
than e in absolute magnitude, then the propagated error in u,, , ¢t = 1(1)v,
cannot exceed (v + 1)¢, as the absolute values of the integral coefficients in
this relation add up to v + 1. By induction it follows that if Elp(z:.)], ¢ =
1(1)n, is correct to k& decimal places, then the error propagated in p., cannot
exceed (v + 1)(v 4 2) --- n/(2.10"). Therefore, the error in Elp(x:,.)] as’
given by (11) cannot exceed 10" since the maximum error propagated by the
pivotal values is {1/(2.10")} and the rounding off error after division by (v + 1)
(v + 2) -+ n cannot exceed {1/(2.10°)}. Hence, tabulation of expectations
of any given function of each order statistic, using those of the order statistics
in the largest sample (evaluated correct to k& decimal places) as pivots, through
(10) and (11) will be correct to within one unit in the last decimal place. For
this reason, it is best to use this set of pivotal values unless there are other
strong grounds for a different choice such as ease in computation of the pivotal
expectations. However, attention may be drawn to the inherent difficulties in
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TABLE 2

Reconstruction of expected values of order statistics from standard normal distribution in
samples up to size 10 through recurrence (4) (series F) and through (10) and (11) (series B)

(Expected Yalue of Order Statistic).(—10%)

Sample Size
& Formula
1 2 3 4 5
2F 56418 95835*
27T 56418 95835
2B 56418 95835
3 F 84628 43753*
3T 84628 43753
3B 84628 43753
4 F 102937 53730* | 29701 13822
4T 102937 53730 29701 13823
4B 102937 53730 29701 13823
5F 116296 44736* | 49501 89706
5T 116296 44736 49501 89705
5B 116296 44736 49501 89705
6 F 126720 63606* | 64175 50386 | 20154 68346
6T 126720 63606 64175 50388 | 20154 68338
6 B 126720 63606 64175 50388 | 20154 68338
7F 135217 83756* | 75737 42706 | 35270 69586
7T 135217 83756 75737 42706 | 35270 69592
7B 135217 83756 | 75737 42707 | 35270 69592
8 F 142360 03060* | 85222 48628 | 47282 24940 | 15251 43996
8T 142360 03060 85222 48625 | 47282 24949 | 15251 43995
8 B 142360 03060 85222 48626 | 47282 24950 | 15251 43995
9F 148501 31622* | 93229 74564 | 57197 07852 | 27452 59116
9T 148501 31622 93229 74567 | 57197 07829 | 27452 59191
9B 148501 31622 93229 74568 | 57197 07829 | 27452 59191
10 F 153875 27308* | 100135 70448 | 65605 91028 | 37576 47108 | 12266 77128
10T 153875 27308 | 100135 70446 | 65605 910541 | 37576 46970 | 12266 77523
10 B 153875 27308* | 100135 70446* | 65605 91054* | 37576 46970* | 12266 77523*

F—Values obtained by using forward recurrence (4). T—Values as given by Teichroew.
B—Values obtained by using backward recurrence (10) and (11).
* Pivotal values: F—Values for first order statistics as given by Teichroew. B—Values

for order statistics in sample size 10 as given by Teichroew.

t The value given in [10] is 65605 91057 which has been corrected to 65605 91054

by Teichroew.

Expected values of order statistics higher than the median may be obtained from
E(xt,n) + E(xn—t+l ,n) = 0.
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numerical evaluation, with a high degree of precision, of the expected values,
etc., of order statistics in large samples due to the large binomial coefficients in-
volved in the pdf’s of such statistics. If an alternative set of pivotal values is
used, re-working the expected values through (10) and (11) will provied a sound
and useful check on the accuracy of the computations. E. S. Pearson [9], p.
152, has also noted the advantages of backward recurrence.

7. An illustration. As an illustration we have reconstructed, to ten decimal
places, in Table 2 the expected values of order statistics from the standard
normal population in samples up to size ten through (a) recurrence (4), using
the expectations of first order statistics as pivots and (b) relations (10) and (11),
using as pivots the expected values of order statistics in a sample of size ten
given by Teichroew [10].

In the table we have also shown the corresponding expected values given by
Teichroew to provide some indication of the errors propagated by using different
sets of pivotal values. It is seen that in using expectations of first order statistics
as pivots, there are differences of about three units (compared to Teichroew’s
values), in the tenth, ninth and eighth places of the expected values of the
second, third and fourth (as also fifth) order statistics respectively. On the other
hand, the errors introduced, by using as pivots the expectations of the order
statistics in a sample of size ten, do not exceed one unit in the tenth decimal
place of the expected value of any order statistic. This demonstrates the superi-
ority of the latter procedure for numerical evaluation of, and as a computational
check on, the expected values, etc., of order statistics.

8. Extension to pairs of order statistics. The joint pdf of a pair of order sta-
tistics (Zu.n , Z»,») in a sample of size n, at the point (z, y), is given by

Puson(®, y) = (nY/[(u — 1)I(v — u — 1) I(n — v) J{F(2)]*
(12) “[F(y) = F@@)I "7l — F()I"f(2)f(y) for = =y,
=0 otherwise, 1=u<v=mn

We may deduce, as in the case of (2), the following recurrence between the
pdf’s of pairs of order statistics:

Put1o41,0(Z, ¥) = {MPuva1(Z, Y) — (B — 0)Pu,oa(2, y)
(13)
— (U = )pupra(®, P}/u, 1=2u<v<mn

Multiplying both sides of (13) by the function ¢(z, y) and integrating over all

EY(@ut1n s Top1,n)] = {nE[\b(xu.n—l y Toa-1)] — (n — V)E(Zun, Ton)]
- (v - u)E[\b(xu,n ) xv+l,n)]}/u, 1 é u<v<n.
Teichroew’s result (6) [10] is similar to (14). An explicit solution of (14), in terms

(14)
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of the expected values of the function of the first order statistics paired with all
other order statistics in each sample size, is provided by

ElY(2u.q, T0.0)]

=t s—1 u—1—3s
-ElY (21,0t To—s,0-¢)], 1 Su<v=g=n

This relation has advantages similar to those of (5) mentioned in Section 3 and
enables us to compute the {n(n’ — 1)/6} expected values of functions of the
type ¥(Tu.q; To,0), 1 S u < v £ ¢ £ n, in terms of the {n(n — 1)/2} expected
values of ¥(21,4, Zv.0), 1 < v < ¢ < n. Using as pivots the expected values of
the function ¢ of pairs of consecutive order statistics, i.e., E[¥(%v,q, Tvt1.0)],
1 < v <gq=mn, and setting EY(zvq, Torr,a)] = {g/[(v — D)!(¢ —v — DI}
v(qg — v, v), we obtain Godwin’s result (4) [4] when ¥(z, y) = zy. Govindarajulu
has obtained result (14) for product moments of order statistics [5].

Errors propagated by recurrence (14) using any set of pivotal values can be
examined as in Sections 5 and 6. It appears that if we use the expectations of
the function ¢ of pairs of order statistics in the largest sample, i.e.,

E[\b(xu,n , xv,n)], 1 Sfu<v =S n,

as pivots and compute E[Y(Zu,q, %»0)], 1 £ u < v = ¢ < n, through relations
similar to (10) and (11), the propagated error cannot exceed one unit in the
last decimal place.
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