NOTES

TWO MORE CRITERIA EQUIVALENT TO D-OPTIMALITY OF DESIGNS!
By J. KierEr

Cornell University

0. Summary. Two minimax ‘regret” criteria for global optimality of designs
in terms of estimation of the entire regression function are shown to be equivalent
to minimizing the generalized variance. (The equivalence for the minimax cri-
terion without modification was proved by Kiefer and Wolfowitz [9].) A conse-
quent algorithm which (is helpful in computing optimum designs is given.

1. Introduction. Let f be a column k-vector of continuous functions f; on a
compact space X. The expected value of an observation Y, corresponding to
the value z of the independent variable is ¢'f(z) = D% 0.f:(x), where the vector
0 of regression coefficients is unknown. A design is a (discrete) probability
measure ¢ on X, where for each z the value £(x) denotes the proportion of ob-
servations taken at z. The observations are assumed uncorrelated and have
common variance ¢°. Let M (£) denote the & X k matrix

M = [ 5@ k).

If N observations are taken according to £, then No *M(£) is the information
matrix of this design; if nonsingular, this is the inverse of the covariance matrix
of best linear estimators of 6. In the approximate theory wherein Elfving [3],
Chernoff [1], Kiefer and Wolfowitz [8], and others have successfully characterized
designs which are optimum in various senses for such regression problems,
we do not restrict N¢ to be integral-valued, but instead allow £ to be an arbitrary
(discrete) probability measure. This permits useful results to be obtained, and
a single optimum £ can be used to yield, for each N, an actual design which is
optimum to within order 1/N. We shall be working in the approximate theory
in this note.

A design £* is said to be D-optémum (minimizes the generalized variance of
best linear estimators of ) if

(1) det M (£*) = max; det M (&).

If M(%) is nonsingular, write d(z, £) = f(z)’M'(£)f(z). Then N '¢d(zx, &)
is the variance of the (best linear) estimated regression at x. We also define
d(z, £) to conform with this if z is such that ¢f(x) is estimable but M (¥) is
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D-OPTIMALITY OF DESIGNS 793

singular, and put d(z, £) = o« for those x for which #’f(z) is not estimable
under £ A design £* is said to be G-optimum (globally optimum) if

(2) max, d(z, £) = min; max, d(z, £).

It is not hard to show that max, d(x, £) = k for every &. It was proved by
Kiefer and Wolfowitz [9] that £* is D-optimum if and only if it is G-optimum,
and if and only if

(3) max, d(z, £) = k.

This equivalence was extended by the author to the case where we are interested
in s out of the k parameters, and it has proved useful in the computation of
optimum designs in various settings [6], [7].

Let

(4) d(z) = min; d(z, £).

This quantity is proportional to the variance of the best linear estimator of
0'f(x) for the design which is best for that x. An optimality criterion which is
analogous to the minimax regret criterion of decision theory was suggested to
the author by Professor Herman Rubin: £* will be said to be MR-optimum
(optimum in the sense of multiplicative regret) if

(5) max, [d(z, £*)/d(z)] = min; max, [d(z, £)/d(z)].
A similar criterion in terms of additive regret is to call £* AR-optimum if
(6) max, [d(z, £*) — d(2)] = min; max, [d(z, §) — d(2)].

The purpose of this note is to give a very simple proof of the following.

THEOREM. £* is D- (and G-) optimum if and only if it is MR-optimum, and
if and only if it 1s AR-optimum.

This result incidentally yields a computational algorithm which is discussed
in Section 3.

We make three brief remarks before proceeding to the proof. Firstly, the
analogous results in the exact theory in the symmetric settings where symmetric
block designs (Latin squares, BIBD’s, etc.) are customarily used (the f; taking
on values 0 and 1) follow at once from the constancy of d(x) and the results
of [4]; this is not of much practical interest, since estimated regression is of less
concern than estimated contrasts of treatment or variety effects in such settings,
where block effects, row effects, etc., are of no interest. Secondly, the function-
space interpretation of the equivalence of (1), (2) and (3) which was men-
tioned in [9] has an addition in terms of (5) and (6) which the reader will find it
no difficulty to state. Thirdly, since the analogue of d(z, £) in the case s < k (see
[6]) has an interpretation which depends on £ (it is not merely proportional to
the variance of the best linear estimator of Y i 8:f:«(z)), there is no obvious
meaningful extension of the theorem of this note to that case.
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2. Proof of the theorem. We first prove that (3) implies (5). Let £, assign
measure one to the point x. The regression ’f(x) is clearly estimable at z if the
design £, is used, with N[variance of estimated regression at z under £&,]/o" = 1.
Hence,

(7) d(z) = 1.

Suppose £* is D-optimum. It follows from (7) and the sentence following (2)
that, for every design &,

(8) max, [d(z, £) /d(z)] = k.

We shall show that
(9 max, [d(z, £*) /d(z)] = k,

which will thus prove that £* is MR-optimum.
If (9) is not satisfied, then there is a design ¢ and a value z’ such that

(10) d(@, £ /d(', £) > k.

By replacing & by e + (1 — €)# with e small, we can assume (10) is satisfied
by a nonsingular ¢. We can assume M ( £*) to be the identity and M (¢’) to be
diagonal with diagonal elements d;, since otherwise these matrices can be so
diagonalized by a linear transformation without affecting the proof. According
to (10),

k- 3

an k> S48 [ LA} &
i= =

Hence, at least one d; ' is <k, say di > k. But then

9 log det M(at + (1 — a)£*)
da

«

(12) = EZIOg (1 — a+ adi)
da 3

=Z(di_1)>07

a=0

contradicting the fact (1) that det M (&) is a maximum for ¢ = £,

The converse is trivial: if £* is MR-optimum, it must satisfy (9), since any
D-optimum design satisfies (9) ; but then, by (7), we have max, d(z, £*) < Fk,
so that £* is D-optimum. '

To prove the equivalence of D-optimality to AR-optimality, it is only neces-
sary, in the previous two paragraphs, to replace every appearance of (8) by

(8") max; [d(z, §) —d(z)] 2k — 1,
of (9) by
(9,) max; [d(il/‘, E*) - d(x)] =k—1,
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of (10) by
(10" d(z', £ — d(«', &) > k — 1,
and of (11) by
-1 kE—1 . . )
! 21 - (2 (') di7,

the first half of (11’) being a consequence of (3) and the second half following
from (10"). The rest of the proof then reads as before.

3. A computatlonal algorithm. It follows from (7), (9), and the fact [9 [ ] that
any D- optlmum £* assigns measure one to a set of values z for which d (2, =k,
that any such £ assigns measure one to the set

B = {z:d(z) = 1}.

Thus, if B is much smaller than X, the characterization of B can be of aid in
computing a D-optimum £*. In the present section we describe a characteriza-
tion of B in terms of a family of related Chebyshev approximation problems,
bringing out a relationship between the problems of estimating one and & param-
eters.

Before obtaining this characterization we remark that, if £* is admissible in
the sense of Ehrenfeld [2] (see also [5]), then, since multiples of ¢’f(x) are the
only estimable linear parametric functions when £, is used, we must have d(z) = 1
and thus z ¢ B. This indicates that B need not be much of a reduction from X;
for example, in the case of polynomial regression in one variable, the admissible
£s were characterized in [5] and in¢lude all £,’s, so that B = X in that case.
However, it is easy to give other examples where B is smaller than X. Moreover,
one can sometimes find a proper subset B’ of B which must support an optimum
£*:if z in B — B’ implies that there is a & on B’ which is at least as good
as & (that is, such that M (¢") — M (¢.) is nonnegative-definite), then this is the
case.

We now describe an algorithm for computing d(x,). Suppose, without loss of
generality, that fi(2o) # 0. (Any z for which all f;(z) = 0 can be deleted from
X.) Let ¢ = 60’f(20) and ¢; = 6; for ¢ = 2, and let gi(z) = fi(z)/fi(z) and
gi(z) = fi(x) — fi(xo)gi(x) for s = 2. Then

2 bgi(z) = 2 0fi(x),

and the problem of estimating 6’f(z,) when the regression is 6’f(z) is the same
as that of estimating ¢; when the regression is ¢’g(z). The latter problem was
first attacked in [3], and the following algorithm was given in [8]: Let ¢* =
(¢5, -+, ck) yield a best linear Chebyshev approximation of g; by gz, - - - , gi ;
that is, the quantity

m(c) = MaXex |gi(z) — ;cigi(x)l
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is minimized by the choice ¢ = ¢*. A design which minizes d(z;) can then be
obtained easily from ¢* in a manner described in [8]; for our present considera-
tions, we need only mention that d(z,) = [m(c*)17%, which can be used to tell
us whether or not z, ¢ B.

Finally, we remark that the Chebyshev approximation problem just described
in terms of the g.’s can be rewritten as a “modified Chebyshev problem” in terms
of the original f;’s, namely, to minimize

k k

max; [1 + 3 eifi(an) fu(2) [faleo) — 2 eifi()].
For computational purposes, it is often convenient to solve this problem by
first solving the restricted Chebyshev problem of minimizing

max, [fi(z) /fi(z) — 1" ; cifi(z) |

subject to > % cifi(z)) = r — 1, then multiplying the resulting minimum by r
and minimizing with respect to .
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A CONTOUR-INTEGRAL DERIVATION OF THE NON-CENTRAL
.CHI-SQUARE DISTRIBUTION

By Frank McNorry
Lockheed Missiles and Space Division, Palo Alto

The brief discussion which follows presents a contour-integral derivation of
the non-central chi-square distribution. Although this distribution is well
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