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A GENERALIZATION OF THE GAMMA DISTRIBUTION

By E. W. Stacy
IBM Development Laboratory, Endicott, N. Y.

1. Summary and introduction. This paper concerns a generalization of the
gamma, distribution, the specific form being suggested by Liouville’s extension
to Dirichlet’s integral formula [3]. In this form it also may be regarded as a
special case of a function introduced by L. Amoroso [1] and R. d’Addario [2] in
analyzing the distribution of economic income. (Also listed in [4] and [5].)

In essence, the generalization (1) herein is accomplished by supplying a posi-
tive parameter, p, as an exponent in the exponential factor of the gamma, distribu-
tion. The moment generating function is shown, and cumulative probabilities
are related directly to the incomplete gamma function (tabulated in [6]).

Distributions are given for various functions of independent “generalized
gamma variates” thus defined, special attention being given to the sum of such
variates. Convolution results occur in alternating series form, with coefficients
whose evaluation may be tedious and lengthy. An upper bound is provided for
the modulus of each term, and simplified computation methods are developed
for some special cases. A corollary is derived showing that the researches of
Robbins in [7] apply to a larger class of problems than was treated in [7]. Exten-
sions of his methods lead to iterative formulae for the coefficients in series ob-
tained for an even larger class of problems.

2. A frequency function and some elementary properties. Let X be a random
variable whose frequency function is

(1) f(@;a,d,p) = (p/a’)a® e “"/T(d/p),

for non-negative values of x and positive values of the parameters a, d, and p.
The familiar gamma, Chi, Chi-squared, exponential, and Weibull variates are
special cases, as are certain functions of a standard normal variate—viz., its
positive even powers, its modulus, and all positive powers of its modulus.

The function (1) may be regarded as a generalization of the gamma distribu-
tion and elementary properties of the variable X may be verified directly. De-
noting its cumulative frequency by F(z; a, d, p) and its moment generating
function by M (8), we have

(2) F(z;a,d, p) = T.(d/p)/T(d/p)
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and
@ =5 () [ram ],

where z = (z/a)” and

(4) T.(d/p) = f V4P TIT .
0
Also, with m > 0, when X is distributed by (1),
(5) (8/9y") Prob (X™ = ¢/) = f(y';a", d/m, p/m).

3. Distributions for some functions of independent variables. Suppose now
that X and Y are independently distributed with respective frequency functions
f(z; a1, dy, p) and f(y; az, dz2, p). We consider the random variable

(6) T=X/Y.
Straightforward integration techniques indicate that if
(7 W = T?/[T" + (a1/a2)"],

W is a Beta variable with parameters (di/p) and (dy/p). Since W is a strictly
increasing function of T, we can deduce cumulative probabilities for T'; i.e.,

(8) Prob(T £ ¢) = Prob(W = {*/[* + (ai/az)"1}).

It is evident also that cumulative probabilities for positive powers of T’ are
available from similar considerations.

Next let X;, -, X, be an independent set of random variables, X; having
frequency
(9) f(xi;a’iydirpi)7 i=17"'sn
Further define
(10) Zn = Z (Xl/a%) pi)

1=1

with frequency f(z,). Then
an flen) = {051, 35 @m0, 1)

and the distribution of any positive power of Z, is evident from foregoing con-
siderations.

4. Distribution for the sum of independent variables. The remainder of the
discussion concerns the sum

(12) Y =2 X,
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where the X; are defined as in the previous paragraph. We denote the cumulative
distribution function of ¥ by G.(y) and the corresponding frequency function
by g.(y). After expanding the joint frequency of X, , - - - , X, , direct integration
gives

(13) () = Buy" 25 (=145,

where

(14) d= i‘, di,  Bn = : I:pi/a‘f‘l‘ <@—z>],
i=1 7=1 D

and

Ezﬁ=1piki n r dq. 1k1’
A= Y (di + psk:)

cee —7 3 i L P’iki
ket +knlr<d+zpiki+l> 1 ki!al
i=1

Differentiation of (13) with respect to y leads to

(15)

(16) : gn(y) = Bnyd_lzo (—I)JA] s
j=
where
i Bi1pik; o I'(d; ik
(17) 4 = k1+';i-k = . : 1I=I1 (k.1-;1.’2:k,~ )‘
"r@+2m@ i
=1

No general methods have been found for easy evaluation of the quantities A .
Computation of these coefficients, however, can be simplified in certain special
cases.

5. Simplified computations—a special case. In what follows, we assume that
all the p; have unit value and denote the result of substituting these values in
(16) by h.(y). Then

g (=) e T(di + ki)
18 h(y) = 41 3 (U LA L
(18) W =y ];o T(d + 7) kat"Fhami 751 Iy | T(d) afs ™™
When the a; have a common value a, say, we have the alternative expression
= o %" V/T(d)

= &y 2 [(=y/a)/ GIT ()]
Replacing the quantities a; in (18) by their common value, and comparing
coefficients of (18) and (19), it is seen that

] D £ k) _ T + )
bt i i ki IT(d)  JIT(d)

(19)

(20)
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The magnitude of the (j + 1)st term of (18) consequently does not exceed

(21) (y/)*7/(GIT (),
where @ = min (a; , -+ , Gs).
A corollary stemming from (20) is
(22> : P(mk + tk) — & I‘(dz + kt)
i SHt,mi ool B 1 T(ma) Byt k=g 3ol ks 1T(ds)
so long as the my, are positive and D oy mp = D1y di = d.
Now let
(23) di = vi/vi = ¥/,

where »; and v; are positive integers; v is the least common multiple of v;, - - -,
v ; the 7; are determined according to the last part of (23);and 7 =1, ---, n.
Combining (18) and (22), we have ’

(24) (@) = v 5 ((—0) /i@ + )},
where
(25) 4 =framr~, % g 5%3—,—}@
in which
(26) § = ;nl Vi,
(@, 6=1,---,%
O P ST PP,

m=1 m=1

The methods of Robbins [7] facilitate the evaluation of (24) when v equals 2.
It is evident, therefore, that his methods apply to (18) when the values of the
d; are positive integer multiples of 3. We shall develop methods which apply to
(24) for arbitrary, positive, integer values of v. Those methods will apply to (18)
when the values of the d; are positive and rational.

We continue then by letting

Xl,”'an; Yly"'yyn; Ct Zl,"’yzn

be 8 independently and identically distributed sets of n random variables each,
the individual sets being distributed by

(28) I:Ilf(si;a'iydiyl)-
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Here, the variable s; is interpreted as z; when referring to the X, as y; when
referring to the Y, etc. We specify also that the d; are rational as defined by
(23) and make use of the fact that there is no loss of generality if we set the d;
equal to 1/y.

Defining
(29) Xﬂ,n':i;ani‘i‘iZ::lYi‘i"'"i‘;Zi,
Pgn(z) = Prob [X,,, < x),
and
(30) pan(z) = (8/02) Pp,u(w),

we write from (24)

_ x(nlv)—l © ( _x)i ‘
.(31)11' h Pial@) = (@ras -~ @ ST/ + ) 7
m wiic
(32) o=ram™ ¥ LW +k)

Fuke k=i 51 Jg lak

Convolution techniques using (31) lead to

(33) ()= 2 i{ > (II ¢ )} =2y
Dy 102 *** G 5=0 byt dky=g \i=I ke T'(n + 3)°
Alternatively, setting

(34) g = II (a;—a)™

T

and assuming as a temporary expedient that the a; are distinct, we write

Pra(z) = (=1)"7 Z; giai e T,

= (- i‘, {Z": Qi aZ’_H} (—z)/5.

7=0 (i=1

(35)

Comparison of coefficients in (33) and (35) establishes

Y n .
II ck,.> = (a1 an) Zl s a7
&

(36) (
ket thy=j \i=1

forj =0,1,2, ---.
Now ¢y can be determined by definition (32) and we have ¢o=

o = (@~ ay) ; (g/ad),

v = o) 3 et -3 (1) % (e)

t=2 81448 =j5 \r=1
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in which the s; are positive with s, = spq, r = 1, -+, ¢t — 1, and ¢ =
min (7, ).

Cases in which the a; are not distinct can be treated as above except that (36)
must be replaced by the corresponding limit formulae.
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IMPROVED BOUNDS ON A MEASURE OF SKEWNESS

By KurLENDRA N. MAJINDAR
Delhi University, India

In 1932, Hotelling and Solomons [2] proved that the absolute value of a
certain measure of skewness for a population can not exceed 1. This result has
been used by Madow [3] in his study of systematic sampling. The proof given
by Hotelling and Solomons covers the case of a discrete random variable. In
this note we extend and strengthen the inequality for any random variable with
a positive standard deviation. Let X be a random variable with a positive stand-
ard deviation, M its median and F(z) its cumulative distribution function. If
the median is not uniquely defined, we will define it by M = isup{z: F(z) < 3} +
2inf{x: F(x) > %}. The measure of skewness, S, considered here is the ratio of the
difference between the mean and median to the standard deviation of X. With
this definition we establish the followingtheorem.

THEOREM. T'he measure of skewness S of a random variable X with a finite posi-
tie standard deviation satisfies the inequality

18 < 2(p)"/(p + )’
where p = Pr{X > E(X)} and ¢ = Pr{X < E(X)}.
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