APPLICATION OF THE GEOMETRY OF QUADRICS FOR
CONSTRUCTING PBIB DESIGNS
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0. Summary. The properties of linear flats in finite projective geometry are
greatly used by many authors to construct incomplete block designs. In this
paper the incidence properties of linear flats contained in quadrics in a finite
projective geometry are exploited to construct two associate class partially
balanced incomplete block designs.

1. Introduction. Partially balanced incomplete block (PBIB) designs with
two associate classes were introduced by Bose and Nair [3]. Bose and Shimamato
[4] have rephrased the definition so as to stress the distinction between the asso-
ciation scheme and the design. The Bose and Shimamato definition for the PBIB
design with m associate classes is substantially as follows:

A PBIB design with m associate classes is an arrangement of v treatments in
b blocks such that

(1) Each of the v treatments is replicated » times in b blocks each of size k
and no treatment occurs more than once in any block.

(2) There exists a relationship of association between every pair of the v
treatments satisfying the following conditions:

(2a) Any two treatments are either first associates, second associates, - - -,
or mth associates.

(2b) Each treatment has n, first associates, n. second associates, ---, and
n.. mth associates.

(2¢) Given any two treatments which are sth associates, the number pj of
treatments which are jth associates of the first and kth associates of the second
is independent of the pair of treatments with which we start. Furthermore
p;k = plij)foriyjak = 1)27 e, M.

(3) Any pair of treatments which are 7th associates occurs together in exactly
X\: blocks for 7 =1,2, ---, m.

Bose and Clatworthy [2] have shown that for a PBIB design with two associate
classes the condition (2¢) is equivalent to (2¢’) given below:

(2¢’) For any pair of the v treatments which are sth associate the number
pil of treatments common to the first associates of the first and first associates
of the seeond is independent of the pair of treatments with which we start,
1=1,2.

Since it is easier to check the condition 2¢’, we shall use this instead of using
2¢ for PBIB designs with 2 associate classes. The following relations hold between
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1176 D. K. RAY-CHAUDHURI
thevpa,ra,meters of a PBIB design and are useful for computing some parameters
when others are known.
vr = bk, v=m+n+---+n,+1
T(k - 1) = )\lnl "I“ }\27’&2 + e + )\mnm,

LI n;— 1, for ¢ =37

(L1) 20 ph = T Gji=1,2 -, m,
k=1 n;, for 757

nph = niph, k=12 - m

The theory of linear spaces in finite projective geometry has been used very
profitably by several authors in constructing BIB and PBIB designs. Bose [1]
first used the properties of quadric surfaces in finite projective geometry of two
and three dimensions for constructing experimental designs. In [8] we have
derived several properties of quadrics in finite projective spaces.

In the present paper we use the geometry of quadrics to construct several
series of PBIB designs with two associate classes.

Let B denote the class consisting of the sets By, By, ---, By, where B;,
Jj=1,2 --.,b,is a set of points in PG(n, s). Let V denote another class con-
sisting of the sets V1, Vo, -+, V,,where V;,¢ =1, 2, --- v, is a set of points
in PG(n, s). These two classes generate a design D(B, V) with the following
incidence matrix:

N = ((ni)),
xb

»Xb v

where n;; = 1(0) as V:NB; = ¢(= ¢). Then we have the following relationships:

b
r; = D mg = number of sets of the class B which intersect V;,
j=1

> mi; = number of sets of the class V which intersect B, ,

=1

k;

I

b
Nir = 2 mime; = number of sets of the class B which intersect both V; and
i=1

Veit#d =1,2, -+, 0.
Let Cy, Cy, ---, C, be m disjoint classes of sets in PG(n, s) such that
VilVyeC;, for some j, 7 = 1,2, -+, m. The sets V; and V; are said to be

jth associates if V.NVyeC;, 7 = 1,2, ---, m. Let pii(V:, Vi) denote the
number of sets of the class V' which are kth associates of V; and Ith associates
of Vi'7i¢ 7:,’ 7:7 7= 1) 27 ,?);k, l = 1’ 2’ ,m;t,u,v= 1727 T, M.
The following result, stated as a lemma for the sake of reference, follows easily
if we interpret the sets B; as blocks and the sets V; as treatments, 2 = 1,2, - - - , b,
i=12 -0

LemMma 1. The design D(B, V) is a PBIB design with m associate classes if
the following are true:
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(1) Any two sets are either first associates, second associates, ---, or mth
assoctates.
(2) Each set V(¢ = 1,2, -+, v) has m first associates, ny second associates,

.-+, and n.,, mth associates.

(3) pr(Vi, Vi) is independent of the ith associate pair of sets (Vi, Vi) and
pltcl = pgk”t’ k7l= 1)27 o, M.

“4) ri=r,t=12,---,vand k; =k,j=1,2,---,b.

(5) For any pair of tth associate sets (Vi, Vi), Nivw = N, 8 = 1,2, -+ | m.

Using the condition 2¢’ for PBIB designs with two associate classes we get the
following result.

Lemma 2. The design D(B, V) is a PBIB design with two associate classes
if the conditions (1), (2), (4) and (5) are satisfied for m = 2, and the following
condition (3)’ is satisfied instead of (3).

(3)’". The number pi(Vs, Vi) is equal for every pair of tth associate sets
(V'i) Vi')yt = 1)2)7/ = il;i7il =12 --,0

2. Preliminaries on quadrics in finite geometry. Let oo, a1, * + -, as—1 be the
s elements of a Galois field GF(s) where s is a prime power. PG(n, s), the finite
projective geometry of n dimensions, consists of points and m flats,
m= 1,2, ---, n — 1. Points are also called 0 flats. The points can be taken to
be (n 4+ 1)-tuples £ = (xo, 21, - -+, T.), where each z; is an element of GF(s),
1=0,1, ---, n. The null (n 4 1)-tuple 0 = (0,0, ---,0) is excluded from
consideration. The (n + 1) tuple z = (pxo, p%1, - - -, pZ,) is assumed to repre-
sent the same point as x for every non-null element p of GF(s). An m-flat =,
consists of the points z satisfying the matrix equation z A" = 0, where 4 is an
(n — m) X (n + 1) matrix of rank n — m with elements from GF(s).

A quadric @ in PG(n, s) is the set of all points ¢ = (2o, 21, : -+, 2,) which
satisfies an equation of the form

(2.1) zAz =0,

where 4 is an (n 4+ 1) X (n 4 1) triangular matrix with elements from the
field GF(s) and 2’ is the transpose of the row vector x. The expression « A4 z’ is
called the form of the quadric Q. A quadric @ in PG(n, s) is said to be degenerate
if there exists a nonsingular transformation x = By which transforms the form
of @ to Z;;o, ciydyi,r < n + 1. A quadric which is not degenerate will be said

to be nondegenerate. Two points « = (g, a1, *++ , @) and 8= (Bo,B1, -+, Bn)
are said to be mutually conjugate with respect to (w.r.t.) @ if a(4 4+ A’)8’ = 0.
The polar space 7(a) of a point « is the set of all points 8 which are conjugate to
a w.r.t. Q. The polar of « is the linear space determined by the equation

(2.2) (A + ANz’ =0

where A’ is the transpose of 4.
If «is a point of @, 7(«) is called the tangent space of @ at the point a. If «
and B are two points of @ which are mutually conjugate, then the line o8 de-
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termined by the two points « and 8 is contained in Q. A line contained in Q is:
called a generator of @. Every nondegenerate quadric in PG(2k, s) contains
linear spaces of dimensionality ¥ — 1 and does not contain any linear space of
higher dimensionality.

Every nondegenerate quadric in PG(2k — 1, s) contains (k — 2)-flats (linear
spaces of dimensionality k — 2). If it contains also (k¥ — 1)-flats, it is called
hyperbolic. Otherwise it is elliptic. ¢(p, k), ¢:1(p, k) and ¢(p, k) respectively
denote the number of p-flats contained in a nondegenerate quadric in PG (2%, s),
an elliptic quadric in PG(2k — 1, s) and a hyperbolic quadric in PG(2k — 1, s).
Formulas for these functions are obtained in Theorem 3.2 of [8]. It is proved in
Theorem 4.1 of [8] that for every nondegenerate quadric in PG(2k, s) there is a
point S such that every line through S intersects the quadric in a single point.
This point S is called the nucleus of polarity of the quadric.

Now we prove a few lemmas which will be useful later. Lemma 3 gives simple
equations for hyperbolic and elliptic quadrics in PG(2k — 1, s). These simple
equations are useful for writing down the blocks of the designs which are obtained
from the incidence properties of these quadrics.

Lemma 3. Let GF(s) be a Galois field with characteristic not equal to 2. Let o
be a non-zero element of GF(s) such that —a is a square and (8 be a non-zero element
such that — B is not a square. Let \ be an element of GF(2™) such that \(z + z3) +
2122 18 trreducible in GF(2™). Then

(1) The quadric Qo1 tn PG(2k — 1,s), s 5= 2™, with the equation

2 2 2 2 2 2
21+ are + x5 + ars + o+ Topy + o =0

s a hyperbolic nondegenerate quadric.
(2) The quadric Qu— in PG(2k — 1,s), s ¥ 2™, with the equation

23 + Bry + 25 + oxh + -0+ 2oy + axh = 0

is an elliptic nondegenerate quadric.
(3) The quadric Qe in PG(2k — 1, 2™) with the equation

1% + TaTa + o+ A+ TopaZer = 0

18 @ hyperbolic nondegenerate quadric.
(4) The quadric Qu— tn PG(2k — 1, 2™) with the equation

ANzt + 23) + 2@ + xswa + -+ Ty = 0

is an elliptic nondegenerate quadric.

Proor.

(1) It is obvious that @y is nondegenerate. We shall show that Qu—; is hy-
perbolic by finite induction on k. First we prove the result for £ = 1. Since —a«
is a square element of GF(s), there exists an element A of GF(s) such that
—a = \. The equation of @ is #; + axj = 0. It can be easily seen that Q; con-
tains the two points (X, 1) and (—2X, 1). Since @, contains linear space of dimen-
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:sionality O(=k — 1), i.e., points, @; is hyperbolic. Assume that Qs_; is hyper-
bolic. Consider the nonsingular transformation

Yi =, ’1:=1,2,"',2k—2’
Yok = Tok—1 + Aok ,
Yok = Tok—1 — ATok .

It is easy to see that under this transformation Q_; transforms to Qz_; with the
-equation

Vi ays +ys+ayi + o+ Yo + oYies + YuorYa = 0.

.Since the incidence properties in a projective geometry remain invariant over
nonsingular transformations, it is sufficient to show that Qz_; is hyperbolic.
‘Consider the point P = (00 - - - 010) of @, . Theequation of ~(P) is obviously
yor = 0. Let 7 be the (n — 1)-flat withthe equation ys—1 = 0. Then QuaN 7N =
has the equation

yf+ay§+y§+ayi+~--+y3k_3+ozy§k_2=0.

By assumption Q% N = N = is hyperbolic and hence contains a (k — 2)-flat
Zi—s . The point P and the (k — 2)-flat Z;_, are both contained in the quadric
Q51 and are mutually conjugate. Hence by Lemma 2.3 of [8] the (¢ — 1)-flat
determined by P and Z;_ is contained in Qa—s . Hence Qu_; is hyperbolic.

(2) We shall prove the result by induction of k. First we prove the result for
k = 1. The quadric @, in PG(1, s) with the equation 27 + Bz3 = 0 will be el-
liptic if @ does not contain any point. If possible, suppose @, contains a point
(21, z). Then z; # 0. We can easily get z;°/ x5 = — B, which contradicts the
assumption that —g@ is a non-square element. Hence @, is elliptic.

Assume that the result is true for £ — 1 so that Q.3 is 2 nondegenerate elliptic
quadric. Applying the nonsingular transformation used in part 1, we can trans-
form Q1 to Qo—y With the equation

Vi Bys+uys + oy + -+ yhes + Wk + Y1y = 0.

As before it will be sufficient to show that Q. is elliptic. If possible, suppose
Qo1 is hyperbolic. Then Qu_; contains (k — 1)-flats. Consider the point
P=(00---010). The equation of 7(P) is ysx = 0. Let = be the (n — 1)-flat
with the equation yax_; = 0. Then the equation of Qu_y N 7N = is

VBt +ayit oyt oy =0,

which is elliptic by induction assumption. By Theorem 3.2 of [8] the number of
p-flats passing through a point P of a nondegenerate quadric and contained in
the quadric is equal for every point P of the quadric. Since Qo1 contains (k — 1)-
flats, it follows that there exists a (kK — 1)-flat Z;_; contained in Q141 and passing
through P. By Theorem 2.2 of [8] Z;_; is contained in Qg3 N 7(P). Hence Zp_;
intersects Qps N 7(P) N wina (k — 2)-flat Zy_s . S0 Qoe—s N 7(P) N 7 contains



1180 D. K. RAY-CHAUDHURI

a (k — 2)-flat Z;_, . This contradicts the assumption that Qua N 7(P) N xis
elliptic. This completes the proof of part (2). Parts (3) and (4) of the theorem
can be proved by arguments exactly similar to arguments used in parts (1) and
(2) respectively.

3. PBIB designs from the configuration of generators for blocks and points
for treatments of the quadric.

DEFINITION. Generator. A line which is contained in the quadric is called a
generator of the quadric.

LeMMa 4. Let Py and P, be two points of a nondegenerate quadric Q. in PG(n, s)
such that the line PP, is not a generator. The number of points P such that both
the lines PP; and PP, are generators of the quadric is N (0, n — 2) where N(p, n)
denotes the number of p-flats contained in a non-degenerate quadric of the type of
Q. (elliptic or hyperbolic) in PG(n, s).

Proor. Since the line PP, is not a generator, by Lemma 2.3 of [8] the points
P, and P, are not mutually conjugate. Let 7 and 7, denote the tangent spaces
at P; and P, respectively. Let P be a point of €, such that both PP, and PP, are
generators of @, . Since PP; is a generator, by Lemma 2.3 of [8] P must be con-
jugate to P; . Hence P must be a point of 7; . Similarly, P must be a point of 7, .
Hence P is a point of @, N 7, N 7. Conversely if P is a point of @, N 7. N 72, P
is a conjugate to both P; and P, and hence both PP, and PP, are generators of
Q. . It follows from the above argument that the required number is equal to the
number of pointsin @, N 71N 7.

Since P; and P, are mutually not conjugate 7, does not pass through ;. So
1 is a tangent space at P; and 2 is an (n — 1)-flat not passing through P, . By
Theorem 2.1 of [8] @, N 7N 7 is a nondegenerate quadric @,—, in PG(n — 2, s)
which is elliptic or hyperbolic according @, is elliptic or hyperbolic. Hence the
lemma follows.

LemMa 5. Let Py and P, be two points of Q. in PG(n, s) such that P.P; is a
generator of Q. . Then the number of points P other than Py and P, such that both
PP, and PP; are generators of Q, is (s — 1) + §’N(0, n — 4).

Proor. Let 7, and 7, be the tangent spaces at P; and P, respectively. Let
Z._2 be an (n — 2)-flat not intersecting the line ; determined by P, and P, .
Let P be a point of Q, other than P; and P, . As in the proof of Lemma 4, we can
show that both PP, and PP, are generators of @, if and only if P is a point of
Q. N 7 N 7. Hence the required number of points is equal to the number of
points of @, N 7; N 7, other than P; and P, . By Lemma 2.2 of [8], » N 72 =
7(Z,), the polar of 2; . By Theorem 2.1 of [8], @, N 7(Z1) N Z,_2is @»—s, & noN-
degenerate quadric in PG(n — 4, s) and @, N 7(Z1) is a cone with Z; as the
vertex and Q, N 7(Z;) N Z._, as the base.

To count the required number of points, we notice that for every point P of
Q.N 7(21) N Z,_s the plane determined by P and Z; is contained in @, N 7(Z).
The number of points of such a plane which do not lie on 2 is s*. Hence it follows
easily that the required number of points is (s — 1) + SN0, n — 4).
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TaEOREM 1. Let B be the class of generators of Q. , a nondegenerate quadric in
PG (n, s) and V be the class of points of Q. , each point being regarded as a pointset.
The D(B, V) vs a PBIB design with two associate classes with the following param-
eters:v = N(O,n),b = N(1,n),k=s+1,r=N(0,n —2),;=1,A=0,
m = sN@O,n—2),ph1 = (s—1) + &N, n — 4) and pi1 =N(0,n — 2).

Proor. It will be sufficient to check the conditions of Lemma 2. It follows
easily that b = number of generators of @, = N (1, n), k¥ = number of points on
a generator = s + 1, » = number of points of @, = N(0, n) and r = number
of generators passing through a point = N(0, n — 2) (Theorem 3.3 of [8]). The
association scheme is defined as follows. Two points P; and P; of @, are first
associates of each other if the line PP, is a generator and are second associates
of each other if the line P,P, is not a generator. Since there can be at most one
generator passing through two points of @, , we have \; = 1 and A, = 0. Let P;
be a particular point of @, . The number of points P which are first associates
to P is equal to the number of points P such that PP; is a generator and hence
equal to the number of points lying on the generators passing through Py . From
the above argument, we have n; = sN(0, n — 2). Let P; and P, be two first
associate points. Then P,P; is a generator of @, . The number of points P which
are first associates of both P; and P, is equal to the number of points P other than
P; and P, such that both PP; and PP, are generators. By Lemma 5 this number
isequal to (s — 1) + $’N(0, n — 4). From the above argument it follows that
pii = (s — 1) + $N(0, n — 4). Let P; and P, be two second associate points.
Then the line P;P; is not a generator. The number of points P which are first
associates to both P; and P, is equal to the number of points P which are such
that both PP, and PP, are generators. By Lemma, 4 this number does not depend
on the particular pair of second associate points and is equal to N(0, n — 2).
From the above argument it follows that p}; = N(0, n — 2). This completes the
proof of the theorem.

Specializing the quadric @, of Theorem 1, we shall get a number of series of
PBIB designs. Taking n = 2t, we get the following series:

2t 2t—2
p =1 ! r=§——1, E=s+1,
s —1 s—1

_ (SZt _ 1)(82t—2 _ 1)

b= Ty > NMTbL k=0
B s(szt—2 —1) - 82(82t~4 -1 . £
nl__Wy pll—(s 1)+—(3—'T’ and pu—ﬁ

Putting ¢ = 2, we get the symmetric series with
v=b=8+S+s+1, r=k=s4+1, MN=1 A=0

m=s+s, pn=s—1 and ph=s+1.
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This series was obtained by Clatworthy [6] by a different method. Taking n =
2t — 1,¢ = 3, and Q, elliptic, we get the series with

2t—1 i t—1 2¢—3 t—1 t—2
p =S —s +s -1 S +s -1
’ s—1

s—1
(s2t—l _ St + sl—l _ 1)(s2t—3 _ st—l ‘I— st—2 _ 1)
(s — 1)*s+1)

s(s2t—3 _ St_l + St—? _ 1)

k=s++1, b =

>\1=1’ )\2=0, nm =

s—1 ’
27 2t—5 t—2 t—3
ph=(s—1)+s(s g+ D and
s—1
- e B T |
pu s—1 ’
Taking n = 2t — 1, { = 2 and @, hyperbolic, we get the series with
) = SZt—l + st _ st—l _ 1 .- s2t—3 _I_ St—-l _ st—2 . 1
s—1 ’ s—1 ’
k _ s + 1 b _ (S2t—1 _I_ st _ st—l _ 1)(s2t—3 + St—l _ st—2 _ 1)
’ (s = 1)¥s+ 1) ’
2t—3 t—1 t—2
s(s s —s =1
)\1=1, )\220, ﬂ1=( +S—1 ),
2/, 2t—b t—2 t—3
ph=(s—1)—|—s(S +'§_18 1), and
s s2t—3 _I_ st—l _ st—2 . 1
Pu s — 1

Putting ¢ = 2, in the above series, we get the family of simple lattice designs.

4. PBIB designs from the configuration of points of a quadric for blocks and
generators of a quadric for treatments. In this section we consider a nondegen-
erate quadric @, in PG(n, s) which contains lines but does not contain planes.
Therefore Q, can be a nondegenerate quadric in PG(4, s) or an elliptic quadric
in PG(5, s) or a hyperbolic nondegenerate quadric in PG(3, s).

LeMMA 6. Let I; and Iy be two intersecting generators of Q. . Then the number of
generators other than l and l, which intersect both l; and lp ts N(0, n — 2) — 2.

Proor. Suppose the two generators in [; and [, intersect at the point P. Then
there cannot be any generator which intersects both I; and I, at points other than
P. If possible, suppose there exists a generator which intersects I; at P; and I
at P, . Then the three points P, P; and P; are mutually conjugate and are points
of Q, . By Lemma 2.3 of [8], the plane determined by them is contained in @, .
This contradicts the assumption that @, does not contain any planes. So it fol-
lows that the required generators are those which intersect both /; and l; at the
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point P. By Theorem 3.3 of [8] the number of generators passing through P is
N(0, n — 2) of which [; and [, are two generators. Hence the lemma, follows.

LemmMA 7. Let I and I, be two nonintersecting generators of Q. . Then the number
of generators which intersect both Iy and Iy is (s + 1).

Proor. Let P be a point of the generator I, . Consider the generators which
intersect l» at P and also intersect ; . Any such generator will lie in the plane 2,
determined by [; and the point P. The plane Z, is not contained in @, and con-
tains a generator [; of @, and a point P of @, not lying on [; . From these facts it
follows easily that %, intersects @, in a pair of lines. Hence there exists one and
only one line passing through P and intersecting ; . This is true for every point
of I, and the number of points of I, is (s + 1). Hence the lemma follows.

THEOREM 2. Let B be the class of points of a nondegenerate quadric Q, which does
not contain planes and V be the class of generators of Q, . Then D(B, V) is o PBIB
destgn with two assoctate classes with the following parameters:

v=N(1,n), r=(s+ 1), k=NO,n—2), b= N(0,n),

)\1 = 1, )\2 = O,
m=(N@O,n—2)—1) (s+1), pun=N0On—2)—2 and

pgl = (s+1).

Proor. It is sufficient to check the conditions of Lemma 2. It follows easily
that v = number of generators of @, = N(1, n), r = number of points of @,
intersecting a generator = s 4+ 1, & = number of generators of @, intersecting a
point = N (0, n — 2) and b = number of points of @, = N (0, n). The association
scheme is defined as follows. Two generators [; and I, of @, are first associates if
they intersect and are second associates if they do not intersect. Since two
generators can intersect in at most one point, we have \; = 1 and A\, = 0. Let [;
be a given generator. The number of generators which are first associates of [; is
equal to the number of generators which intersect l; . Through every point of
there passes N(0, n — 2) generators of which /; is one. Hence it follows that
n = (N, n — 2)—1) (s + 1). Consider two generators [; and I, which are
first associates. By definition [; and I, intersect each other. The number of gen-
erators which are first associates of both /; and l is equal to the number of gen-
erators which intersect both [; and I, . By Lemma 6, this number is independent
of the particular pair of intersecting generators [; and I, and is equal to N (0,
n — 2)—2. Hence pi; = N(0, n — 2) — 2. Similarly using Lemma 7, we can
show that pi; = s + 1. The completes the proof of the theorem.

Specializing @, in Theorem 2, we shall get a number of series of PBIB designs
with two associate classes. Taking n = 5 and @5 an elliptic quadric, we get the
series with

v=(+1) (41, r=s+1, k=s5+1, b= ("+1)(s+1),
M=1,  A=0,

mo=s(s+1), pn=¢—1, and ph=s+ 1.
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Taking » = 3 and @; a hyperbolic nondegenerate quadric in PG(3, s), we get the
series with

v=2(s+1), r=(6+1), k=2 b= (s+1)>% n=1,
)\2=0, n1=s-|—l,
pu=0 and pi=s+1.

This series is also given by Clatworthy [7]. Taking n = 4 and Q. a nondegenerate
quadric we get the series with

v=b=[s"=1)/(s—=1))], r=k=s+1, MN=1 A=0,
m = s(s+1),
ph=s—1, and ph = s+ 1.

6. PBIB designs from the configuration of generators on generators.

THEOREM 3. Let B be the class of generators of a nondegenerate quadric Q, which
contains lines but does mot contain planes. If a generator is considered as mon-
intersecting with itself, D(B, V) is a PBIB design with two associate classes with
the following parameters:

v=>b= N(1,n), r=k= (NO,n—2) —1) (s + 1), M=
NO,n—2) —2, N=s+1
m=(NOn—2)—1) (s+1), pu=N0On—2) —2 and
2
pu=s+ L

Proor. Two generators are defined to be first associates if they intersect each
other. If two generators do not intersect, they are defined to be second associates.
With the association scheme so defined, the proof of the theorem follows easily
from Lemma 6 and 7. Taking @, , a nondegenerate quadric in PG(4, s), we get
the following:

v=b=s+S+s+1, r=k=s(s+1), M=s—1, N=s+4+1,
m = s(s+1), pn=s—1, and pl=s+ 1.

Taking n = 5 and @ an elliptic nondegenerate quadric in PG(5, s), we get the
series with

v=b=(f4+ 1)+ r=k=56+1), MN=s—1, A=s+1

n = s(s+ 1), pi=s —1, and ’p§1=s—|—1.

Taking n = 3 and @; a hyperbolic nongenerate quadric, we get the series with
v=b=2(s+1)r=k=s+1, M =0, =s+1, m=s+1

ph =0, and pfl =s-+1.

Now we shall give an example to illustrate the actual method of constructing
the blocks of the design. Consider a design of the series given in Theorem 1. We
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take n = 4 and Qs a non-degenerate quadric and s = 2. The parameters are
v=>b=15r=k=3,N=1,A=0,n =6, p; = 1 and p}; = 3. The design
is obtained by taking generators of Q4 as blocks and points of Q, as treatments.
The equation of @, can be taken as

2
2o + X129 + X3y = 0.

The 15 points of Q4 are

Py = (00001), Py = (11101),
P, = (00010), Py = (00110),
Py = (10011), Py = (01010),
Py = (00100), Py = (11110),
Ps = (01000), Py = (10111),
Ps = (11100), Py = (11011),
P; = (00101), Py = (01111).
P; = (01001),

To write down the blocks systematically we can proceed as follows. Consider
treatment 1. The blocks which contain treatment 1 correspond to the generators
containing the point P; . To find out the generators passing through P; , we find
out Qs N 7(P;) where 7(P;) is the tangent space at P;. For any point P of
Q:N 7(P;), PP, is a generator. In this way we can exhaust all the blocks contain-
ing treatment 1. Next we proceed to treatment 2 and by a similar procedure can
find out the blocks containing treatment 2 which are not already included. We
continue in this manner until all the blocks are obtained.

In our example the 15 generators are P1Ps, PiPs, P1Ps, P;Ps, PoPy, PoPs,
P3P4,P3P5,P3P5,P7P11,P7P12,Pst,PsPlg,PgPlo,andPQPu.SOthe blOCkS
of the designs are

1,4,7), (1, 5, 8), (1,6,9),
(2, 4, 10), (2, 5, 11), (2, 6, 12),
(3, 4, 13), (3, 5, 14), (3, 6, 15),
(7,11,15), (7,12, 14), (8, 10, 15),
(8,12,13),  (9,10,14), (9, 11,13).

Acknowledgment. I wish to express my thanks to Professor R C. Bose for
suggesting the problem and for many stimulating discussions.
REFERENCES

[1] Bosg, R. C. (1947). Mathematical theory of the symmetrical factorial designs. Sankhya,
8 107-166.



1186 D. K. RAY-CHAUDHURI

[2] Bosg, R. C. anp CraTworTHY, W. H. (1955). Some classes of partially balanced designs.
Ann. Math. Statist. 26 212-232.

[3] Bose, R. C. anp Nair, K. R. (1939). Partially balanced incomplete block designs.
Sankhya, 4 337-372.

[4] Bosg, R. C. anD SHiMamaTo, T. (1952). Classification and analysis of partially balanced
incomplete block designs with two associate classes. J. Amer. Statist. Assn. 47
151-184.

[5] CraTworTHY, W. H. (1956). Contributions on partially balanced incomplete block
designs with two associate classes, National Bureau of Standards, Applied Math.
Ser. 47.

[6] CraTworTHY, W. H. (1954). A geometrical configuration which is a partially balanced
incomplete block design. Proc. Amer. Math. Soc. 5 47-55.

[7] CrarwortaY, W. H. (1955). Partially balanced incomplete block designs with two
assciate classes and two treatments per block. J. Res. Nat. Bur. Standards 54.

[8] Ray-CuaupHURI, D. K. (1962). Some results on quadrics in finite projective geometry.
Canad. Math. J. 14 129-138.



