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System Development Corporation

1. Summary. For continuous symmetrical distributions and specified tolerance
interval characteristics, distribution-free tolerance intervals are presented that
require substantially smaller sample sizes than those required for arbitrary con-
tinuous populations. In the case of one-sided tolerance intervals, about twice as
many sample values are required for the general situation as for the symmetrical
situation. For two-sided intervals, the additional sample values required for the
general situation vary from about 35 percent to about 85 percent in the cases
considered, depending on the specified tolerance interval characteristics. These
intervals furnish at least rough protection against all possible violations of the
symmetry assumption. In addition, some specialized one-sided and two-sided
tolerance intervals are developed for life-test situations involving continuous
symmetrical populations. Results for continuous symmetrical populations with
known central median values are also presented; the life-testing versions of these
intervals are especially useful.

2. Introduction. Although tolerance intervals that are distribution-free for any
continuous population have validity advantages, they require large sample
sizes. These large sample sizes can often be reduced if additional knowledge is
available about the continuous population sampled. This paper discusses some
of the things that can be done when the population is known to be symmetrical.

Let z(1) = .-+ = z(n) be the order statistics of a random sample of size
n. The cumulative distribution function (cdf) of the population sampled is
denoted by F; it is assumed to be continuous and, for some number ¢, to satisfy
F(z) = 1 — F(2¢p — z) for all z. That is, the population sampled is continuous
and symmetrical. Clearly ¢ is the population mean when the mean exists; ¢ is
always the central median of the population (center of the interval of medians
when the median is not unique).

Consider two functions, L; and L. , of the sample values, one of which might
be specified as infinite, such that the interval [L;, L.] has a probability 8 or
more of containing at least 100y percent of the population. That is, for 8 and
v constants,

(1) P{F(Le) - F(Ll) = ’Y} = 6,

for all F in some specified class of cdfs. An interval [L, , L] with these charac-
teristics is called a tolerance interval, and the functions L, , L, are called tolerance
limits. The expressions for [L;, L] developed in this paper are such that (1)
holds for every continuous symmetrical c¢df F. If Ly= — o, or if Ly = o, the
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tolerance interval is said to be one-sided. If neither L; nor L. is required to be a
constant, the tolerance interval is said to be two-sided. Ordinarily, the values
used for @ and v are near unity.

Two cases are considered. In one case, all the values of the sample are avail-
able. Here substitutes are presented for the Wilks one-sided and two-sided
tolerance intervals (see, e.g., [3]). Since the Wilks tolerance intervals are valid
for arbitrary continuous populations (including the class of symmetrical popula-
tions), they are unable to exploit the additional information that the population
is symmetrical. The other case is of a life-testing nature where only 2(1), ---,
z(r), r < m, are used. This is the situation, for example, when only the r smallest
order statistics of a sample of size n are observed.

The Wilks one-sided and two-sided tolerance intervals considered are those
based on one or both of (1) and z(n). The substitutes of this paper could
involve up to four different order statistics but, for specified 8 and v, require
the smallest sample sizes when only z(1) and z(n) are used. If the symmetry
assumption could be violated in every possible manner, the required sample
sizes for the substitute intervals are at most equal to those for the corresponding
Wilks intervals (see Section 5). If, however, the population sampled is known
to be symmetrical, substantially fewer sample values are required for the sub-
stitute intervals. Specifically, for one-sided intervals and B, ¥ values in the
ranges of principal interest, only about half as many sample values are required
when a substitute interval based on x(1) and z(n) is used. For two-sided in-
tervals, substantial reductions in required sample sizes can also be obtained by
using substitute intervals (see Table 1).

The substitute intervals developed furnish some protection against an er-
roneous assumption of symmetry. This protection occurs because a substitute
interval [L;, L,] always contains the corresponding Wilks interval. Thus the
B, v properties for a substitute interval having a given sample size are always
at least as desirable as those for the corresponding Wilks interval based on this
sample size. Of course, for given v, the value of 8 is reduced compared to that

TABLE 1

Minimum Sample Size Comparison of Wilks and Substitute Two-Sided Tolerance Intervals
Using Only (1) and z(n)

B
v .9 ‘.95 .99
Wilks Sub. Wilks Sub. Wilks Sub.

8 18 11 22 14 31 21
.9 38 22 46 29 64 44
.95 77 45 93 59 130 90
.99 388 230 473 300 662 460
.999 3889 2300 4742 3000 6636 4600
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for the symmetry case; likewise, for given B8, the value of v is reduced. Lower
limits for the protection furnished against any possible violation of symmetry,
including some evaluations of how 8 is reduced for fixed v, and how v is reduced
for fixed B, are given in Section 5.

One-sided intervals for life-testing situations are given for the symmetrical
case. These tolerance intervals are based on z(1) and z(r); they have the ad-
vantage that the experiment can be discontinued as soon as the » smallest order
statistics are determined (the first r items fail). Here » cannot be too small and
is expressed as a function of n, 8, and another quantity whose value can be
selected by the experimenter for cases where r is at his disposal. Although the
actual data may not be from a symmetrical population, transformations (based
on past experience, technical considerations, etc.) are sometimes available for
changing the data so that the symmetry assumption is acceptable. In some
cases, such as for the “wear out” failures considered in [2], it may be permissible
to assume that the actual data are from a symmetrical population.

In some cases the value of ¢ is known (by hypothesis, from past experience,
ete.). The required sample sizes for the substitute intervals and the corresponding
tolerance intervals based on ¢ (known) are about the same. However, use of
¢ does yield intervals which have more precisely determined properties, in the
sense that the inequality =8 in (1) is an approximate equality. Also, satis-
factory one-sided and two-sided intervals can be obtained for life-testing situa-
tions when r = 1 (i.e., only one item is failed). One possible use of results with
¢ known is for tests with null hypothesis F = F,, where F, is completely speci-
fied, continuous, and symmetrical. When F is not symmetrical, the observations
can be transformed so that they are from a symmetrical cdf under the null
hypothesis. The intervals corresponding to the substitute intervals furnish the
same general level of protection against violation of the symmetry assumption
as do the substitute intervals.

The basic idea underlying this paper is the following: For a continuous sym-
metrical population, the |z(7) — ¢|, considered as an unordered set, form a
minimal sufficient statistic. The |x(¢) — ¢| can be considered as observations
on the cdf obtained by “folding over” F(z) at ¢. The |x(¢) — ¢| then provide
tolerance intervals in the usual way. If ¢ is not known, it can be bounded, on
one side or the other (in the confidence sense) with high probability. The re-
sulting bounds, used in conjunction with the results for ¢ known, yield tolerance
intervals for the situation where ¢ is unknown.

Section 3 is titled Results; it contains a statement of the tolerance intervals
presented and their properties. Section 4, Derivations, gives detailed verifica-
tions. The final section, Bounds for Symmetry Violations, is concerned with the
protection furnished against violations of the symmetry assumption by the
substitute intervals and by the corresponding intervals with ¢ known.

3. Results. Two kinds of one-sided tolerance intervals are presented for the
case where only z(1), z(n) are used and ¢ is unknown. Let

X. = max[z(n), 2z(u) — z(1)], Y, = minfz(1), 22(v) — x(n)].
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The one-sided intervals considered, which are applicable for vy > %, are [— «, X,]
and [Y;, ). In both cases, an upper bound for the minimum » such that (1)
holds is the smallest integer n, such that

I1—2y—-1D" =@ z8
The value for n; satisfies
log(1 — 8)/log(2y — 1) < m < 14 log[l — g — (3) =4 P1E®D] /log(2y— 1)

and approximately equals log(1 — g)/log(2y — 1) when g and v are not too
small (say, 8 = .85 and vy = .9).

The two-sided interval considered when only x(1), xz(n) are used and ¢ is
unknown is [Y:, X,]. An upper bound for the minimum # such that (1) holds is
the smallest integer 7, such that

L=y = (H"" 26
The value for n, satisfies
log(1— B)/logy < m = 1 + logll — g— 2(3)"**P"*")/log y

and approximately equals log(1 — B)/logy when 8 and vy are not too small
(say, 8 = 8andy = .85).

Other types of one-sided and two-sided substitute intervals can be obtained
from the theorems of Section 4. These other intervals, however, require larger
minimum sample sizes and also use z(1) and z(n).

For life-testing situations, the experiment can be terminated when z(1),

-, z(r) are determined. Here r depends on n, 8, and p, where p satisfies

(2) /1 -8 =p<L
When p is given, r is the smallest integer R(1 < B =< n) such that

ez = (O £() 21— - o

When r is given, 8 must be such that (2) holds for p. For n sufficiently large,
(3) r=n/2 + in'Kapy,

where K g, is the deviate that is exceeded with probability (1 — B)p for
~ the standardized normal distribution.

The one-sided interval considered for ¢ unknown is [— «, 22(r) — 2(1)] in
the life-testing case. An upper bound for the minimum # such that (1) holds
is the smallest integer at least equal to log[(1 — p)(1 — B)]/log~y. The two-
sided interval considered is [z(1), 2z(r) — z(1)]. An upper bound for the min-
imum 7 such that (1) holds is the smallest integer at least equal to log[(1 —
p)(1— B)]/log(}% + v/2). For both types of intervals, choice of a suitable
value for p depends on many considerations; when the time and cost situation
is known, however, selection of an optimum value for p should often be possible.



CONTINUOUS SYMMETRICAL POPULATIONS 1171

For one-sided Wilks intervals, the minimum sample size for (1) to hold is
the smallest integer, denoted by N, at least equal to log(1 — B)/log~y. Thus,
for 8 and vy not too small,

Ni/m = log(2y — 1)/logy =2,  Ni/ny = logy/logy = 1.

For two-sided Wilks intervals, the minimum sample size required for (1) to
hold is the smallest integer N; such that

N, = log(l — B)/logy + logll + (1/vy — 1)N:l/log(1/7).
Thus, for 8 and ¥ not too small,
N2 = ny + log[l + (1/v — 1)N:l/log(1/7).

The values listed in Table 1 were furnished by Professor Z. W. Birnbaum and
were determined by use of the graph in [1]. ’

For ¢ known and z(1), z(n) available, the one-sided intervals considered
(applicable for vy > 1) are [— «, X] and [Y, =], where

X = maxz(n), 20 — z(1)], Y = min[z(1), 20 — z(n)].

In both cases, an upper bound for the minimum 7 such that (1) holds is the
smallest integer at least equal to log(1 — B)/log(2y — 1). Thus, for 8 and
v not too small, the minimum required sample size approximately equals 7 .
The two-sided interval considered is [Y, X] and the minimum 7 such that (1)
holds is the smallest integer at least equal to log(1 — B)/log . Thus, for 8 and
v not too small, the minimum required » approximately equals 7, .

For life-testing situations where ¢ is known and the population is symmetrical,
only (1) is needed for obtaining one-sided and two-sided intervals. That is,
the experiment can be terminated when the first item fails (» = 1). For given
n, as indicated by (3), this can result in substantial saving of time or cost, or
both, compared to the situation for ¢ unknown; moreover, the minimum 7
required for (1) to hold is less (sometimes much less). The one-sided intervals
available through the use of (1) are [—«, 20 — z(1)] and [z(1), «], with
minimum required sample size N; (the second is a Wilks interval). The min-
imum required sample size for the corresponding results with ¢ unknown exceeds
N1 by approximately log(1 — p)/log~ for 8 and v not too small. The two-sided
interval is [z(1), 2¢ — x(1)] and the minimum 7 such that (1) holds is the
smallest integer at least equal to log(1 — B)/log(3 + v/2). The excess number
of sample values required for the corresponding interval with ¢ unknown is
approximately log(1 — p)/log(3 + v/2) for 8 and ¥ not too small. Thus, in all
cases, the excess number of sample values required can be appreciable for v
near unity and p not near zero.

4. Derivations. Throughout, the data are a random sample of size n from an
arbitrary continuous population that is symmetrical about ¢. The following
lemma, is useful in performing the verifications.
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LemMa. If § s any relation on the sample space of the (1), - -+, x(n), then
P{s[x(1), -+, z(n)]} equals P{s[2¢ — x(n), -+, 2¢ — «(1)]}. This lemma
follows immediately from the continuity and symmetry about ¢.

The first theorem furnishes the basis for the tolerance intervals with ¢ known
and z(1), z(n) available.

TeEOREM 1. P[F(X) Z 9] = P{Flz(n)] 2 2y — 1} =1 — (2y — 1)", for
v >3

PROOF.’ PlF(z) = v] = P{Flx(n)] = v, Flz(1)] £ v} by the lemma. How-
ever, by the theorem for statistically equivalent blocks, the result follows.
That is, the probability that n independent uniform observations are observed
outside the interval (1 — v, v) is the same as that they are observed outside
0,2y — 1).

The replacements of 1 — F(X) by F(X) and of F(X) — F(Y) by 2F(X) —
1, combined with the lemma and Theorem 1, furnish the lower one-sided and
the two-sided intervals. Here it is to be noted that ¥ equals 20 — X.

For unknown ¢, an order statistic z(u), which exceeds ¢ with high probability
(to be on the safe side), replaces ¢ in X, yielding X, . Likewise x(v), which is
below ¢ with high probability, replaces ¢ in Y, yielding ¥, .

THEOREM 2.

PF(X,) 2 v] 2 P[F(X) zv] — Plz(w) = ¢),
P[l — F(Y,) 2] 2 PIF(Y) =1 —+]— Pla(v) 2 ¢
PIF(X,) — F(Y,) zv] 2 PIF(X) — F(Y) 2v] — Pla(u) =¢] — [x(v) ol
Proor. The proof is immediate in all cases since if 4, B, C, D are events such
that A D BCD, then
P(4) = P(B) — P(C) — P(D)

whether or not D is empty; here the overbar stands for complementation.
The lower bounds furnished by Theorem 2 are easily calculated from

n 1—1
Ple(n +1 — i) < ¢l = Plo(i) = ¢l = (%) )> (")
=0 \J
and the above results for ¢ known.

In life-testing, only (1), - -+ , z(r) are available for some r < n. When ¢ is
known, r = 1 can be used. When ¢ is unkhown, however, » must be large enough
for p to be less then unity. The following theorem, which is proved by the same
methods as are used for Theorems 1 and 2, verifies the results for life-testing
situations.

THEOREM 3.

P{l1 = Flz(1)] 2z = P{Fl2e —a(D)] 2+ =1 -7,
P{F[2z(r) — 2(1)] 2 v} 2 P{1 — Fle(1) 2 v} — Ple(r) = ¢),
P{F2z(r)— z(1)] — Fle(1)] 2 7} 2 P{2Flz(1)] = 1 —~} — Ple(r) = ¢l
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5. Bounds for symmetry violations. The algebraic relations
X, = z(n), X =z z(n), Y, = z(1), Y = z(1)

imply that a Wilks interval [L; , L] is contained in both its substitute interval
[L1, L3] and the corresponding interval for ¢ known (LY, L7]. Let B(n), v(n)
be any pair of values such that

P{F(Ly) — F(L) z y(n)} = B(n)
for given n. The relations between intervals imply that
P{F(L;) — F(Li) z v(n)} = B(n), P{F(LY) — F(Li) z 7} z B(n).

Let 8/, v’ be a pair of values such that (1) holds for [L1, Ls] when the minimum
required sample size equals n and F is symmetrical; likewise for 8”, v” and
[Li , Ly] with ¢ known. Then the allowable values of 8(n), v(n) such that
B(n) = B and v(n) = ¥ furnish limits for the various possible reductions in
the true values of B, v for [L1 , Ls] due to violation of the symmetry assumption;
likewise for [LY , L3].

The method of determining the possible reductions in the true values 8, ¥
consists in expressing n as a function of §’, v’ for [L1, Ls] and as a function of
g”,y” for [LY , L3]. That is, the value used for n in B(n), v(n) is determined in
this manner. Given n, the possible values of the pairs 8(n), y(n) are approx-
imately determined by equating log[l — B(n)]/log v(n) to n when the intervals
are one-sided. The equation

(4) logll — B(n)l/logvy(n) + log{l + [1/v(n) — 1ln}/logll/v(n)]

approximately determines the possible values for 8(n), v(n) when the intervals
are two-sided. Section 3 contains methods for evaluating the minimum required
sample sizes for the substitute intervals and the corresponding intervals for
¢ known.

Among the various possible pairs of values for 8(n), v(n), the pair for which
B(n) = B’ and the pair for which y(n) = vy’ are sometimes of interest for (L1, Lsl;
likewise for 8”7, 4” and [Li , L3]. Although not considered further here, another
pair of potential interest is that for which B(n)/8" = v(n)/¥" (or B(n)/8" =
v(n)/v").

Let us consider evaluation of y(n) for the situation where S(n) = B and
8,4, v(n) are not too small. For one-sided intervals, y(n) = 2y" — 1. Thus,
for 8/ = .85 (say) and ¥’ = .99, the value of y(n) = .98. For two-sided in-
tervals, expression (4) depends on 8’ and is not explicitly solvable. For g’ =
.9, .95, .99 and v = .9, .95, .99, .999, Table 1 furnishes approximate values for
v(n) by use of one-dimensional interpolation of the results for Wilks intervals.
For example, let 8 = .99 and v/ = .95; then y(n) = .915. These results indicate
that, for [L1, Ls), violation of the symmetry condition does not have a huge
effect on v for 8 = @, especially when ', v’ = .95; also that the effect is much
larger for the two-sided than for the one-sided intervals.
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Next consider evaluation of 8(n) for y(n) = 4’ and 8, 8(n), v’ not too small.
For one-sided intervals f(n) = 1 — (1 — )% Thus, for v/ = .9 (say) and
B' = .99, the value of B(n) = .9. For two-sided intervals, (4) depends on ¥’
and is not explicitly solvable. For 8 = .95, .99 and v/ = .9, .95, .99, .999, Table
1 furnishes approximate values for 8(n) by one-dimensional interpolation of
the results for Wilks intervals. For example, let [3’ 99 and v’ = .95; then
B(n) = .943. These results indicate that, for [L1 , Ls], violation of the symmetry
assumption does not have a huge effect on 8 for v = ', especially for 5’ Y =
.95; also that the effect is much larger for the one-sided than for the two-sided
intervals.

The minimum required sample sme for [Ly , Ly] is approximately the same as
that for [L; , Ls] when ﬁ’ =p", vy = 7 ” and these quantities are not too small.
Thus, for both [L;, L] and [Lf , L3], violation of the symmetry assumption
does not result in a huge reduction in the possible values for 8(n) and y(n),
especially if 8, v = .95 (or 8”,4” = .95). That is, other possible pairs 8(n),
v(n) would have values intermediate (one value reduced and the other in-
creased) to those for the two extreme pairs that are explicitly considered.
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