A TEST OF LINEARITY VERSUS CONVEXITY OF A MEDIAN
REGRESSION CURVE?

By BrucE MarviNn Hrinn?

Stanford Unaversity

1. Introduction and summary. In this paper we shall propose a test of linearity
of a median regression curve against an alternative of convexity. To be specific,
we shall test

Hy:Yi=a+BX:+ e, i=0,1,---,n,
against
H.:Y;,=¢(X;) + e, i=0,1,--+,m,

where «, 8 and ¢ are unspecified, and ¢(x) is a nonlinear convex function. The
basic assumption underlying the test is that the e; are independent identically
distributed random variables with median zero and with a continuous density
function f(e) such that f(0) > 0. The X; are fixed and known.

The test consists in estimating a line by the Mood-Brown procedure (using
medians) from a central subset of the observations, making a weighted count of
the number of remaining observations lying above the line, and rejecting H, if
this number, R, , is large. The test can easily be adapted to a one-sided alterna-
tive of concavity or to a two-sided alternative of either convexity or concavity.

Section 2 is devoted to a discussion of the line estimation procedure, and in
particular, the asymptotic distribution of the estimator is obtained under the null
and alternative hypotheses. In Section 3 the R test of convexity is introduced, the
asymptotic null and alternative hypothesis distributions of the test statistic R,
are obtained, and a formula for the asymptotic power is given. The test is shown
to be consistent against twice differentiable convex alternatives.

In Section 4 we obtain the relative asymptotic efficiency of the R test as com-
pared to the least squares test for parabolic alternatives with errors normally
distributed, and make recommendations for the use of the test. Finally, in the
Appendix, results of some Monte Carlo experiments used to investigate the small
sample behavior of R, under H, are presented.

The author is not aware of the existence of other tests of linearity against
general convex alternatives. In the case where the alternatives in mind can be
expressed in a linear regression scheme, both the least squares test and the median
test suggested by Mood in [5] are possible competitors of the convexity test pre-
sented in this paper. The least squares test is to be preferred when errors are
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LINEARITY VS. CONVEXITY IN.REGRESSION 1097

known to be normally distributed with common variance, but for more general
types of errors there is at present no obvious way of determining a ‘‘best” test,
and consequently the choice of test to be used in a given situation must be based
largely upon subjective considerations.

2. The Mood-Brown estimation procedure. The proposed test of linearity is
defined in terms of a line estimated from a set of points (X, Y;) by means of
the Mood-Brown procedure, [1] and [5]. Because of the crucial role this procedure
is to play we shall defer the introduction of the test of linearity until Section 3,
and in the present section we shall be concerned with the distribution of the line
estimator.

2.1. Definition of the estimator. For completeness we first define the median of
n+ 1lnumbers Xo £ X; £ Xp £ --- < X, tobe ‘ ‘

M, =
%(Xk + ch+1) lf n = 2k + 1

The Mood-Brown line corresponding to a set of points (X;, ¥3),¢ = 0,1, --- , 7,
is then defined to be the line &, + 8, (denoted (8, , &.)) satisfying the equations

median(i;x,.éMﬂ,[Yi —_ &n e 3an] = median(i:x;>M,.)[Yi — G — BnXi] =0.

To justify this definition we prove

TuroreM 1. Corresponding to any set of points (X, Y;) with at least two of the
X distinct there exists a unique Mood-Brown estimate (Ba, Gn).

Proor. Without loss of generality we can assume that the line x = 0 strictly
separates the points with X; < M, and those with X; > "M, . We first show that
for each point (0, &) on the vertical line z = 0 there exist unique lines having the
parameters (B;(@), @) and (B:(a), ) such that

medianx; <a,[Yi — @ — fi(e) Xi] = median x> u,y[¥Yi — @ — Ba(a) X ] = 0.

For we can choose a line passing through (0, ) and lying below all the (X, ;)
with X; < M, . By rotating this line about (0, &) as center we can pass through
each of these points until finally all lie below the rotated line. Since the function
my(B, &) = median x; <u,[Y: — @ — BX] is a continuous and strictly monotonic
function of 8 for fixed a, which takes on both positive and negative values by the
above rotation argument, it follows that there exists a unique slope Bi(a) for
which m;(8i(a), @) = 0. Similarly we obtain a unique slope 8:(a) such that
ma(Be(a), @) = 0, where my(B8, @) = medianx,>u,[Y: — « — X . Noting that
Bi(<) is a continuous and strictly increasing function of « such that lim aes o1 ()
= — o, liMesiuBi(@) = + , and that B(a) is a continuous and strictly de-
creasing function of a such that lims,—wfe(a) = + «, lima,4ofe(@) = — «,
it follows that there exists a unique line (8, , @) such that mi(B8o, ) = 0, and
S0 (Bn ) &n) = (BO ) ao)‘

COROLLARY. Let the X ; be fixed with at least two distinct, and let (Yo, -+, Y4) be



1098 BRUCE MARVIN HILL

an observation from an absolutely continuous (n + 1)-dimensional distribution.
Then with probability one the number of points (X, , Y;) with X; £ M, which lie
upon the line (B, , &) is one or zero according as the total number of points with
X: = M, is odd or even. The same statement holds for the number of points lying upon
(B, &) with X; > M, . .

Proor. The proof follows from the assumptlon of absolute continuity, which
implies that the probability of any linear relationship holding between three or
more of the (X, Y;) is zero.

2.2. Asymptotic distribution under Hy . We assume that the set of points (X,
Y.,) is such that X; = h(i/n), % = 0, 1, -+, n, where h(¢) is a continuous and
strictly monotonically increasing function defined on the interval 0 = ¢ = 1,
with 2(0) = ¢, h(1) = d. The function h(t) is a spacing function, allowing the
points X; to be spaced in any designated manner such that — » < X, < X3 <

. € X, < 4 «. Under the null hypothesis of the test of linearity we assume
Y; = a + BX: + e, where the ¢; are independent identically distributed random
variables having common density function f(e) and cumulative distribution
function F(z) = [Z.f(e)de such that f(0) = 0, F(0) = %, and f is continuous.
We shall now prove

TaroreM 2. Under the above assumptzons, the random vector (% , £) = m* (B, —
B, & — a) is asymptotically normally distributed with mean (0, 0) and covariance
matric

- (f(O) I:]:h(t) dt — fh(t) dt:l>_2

1 1t
. _E/o h(t) dt

-1 fo‘ h(o) di i[(f:h(t) dt>2 + <[; h(t) dt)z]

where m = (n + 1)/2 tends to «.

Proor. Without loss of generality we can take @ = 8 = 0. For let (Br , )
be the Mood-Brown estimate that would be obtained from the (unobservable)
sample (X;,Y:),where Vi = YV; — a — BX; = &, and let Z; = Yi — a,, -
BnX: . Hence medianx, < x,)Z; = median(x;>u,Z; = 0. But Z; = ¥, — (a,,
a) — (Bn + B) X, and so by definition of (8., &) we have (8., &) = (Bn +
B8, &% + ). Since the distribution of (8n, &) = (8. — B, @& — «) does not
depend upon (B, @) it thus suffices to take & = 8 = 0.

Now let (b, a) be a fixed line and define

V1:(b, @) = number of (X, Y) lying above (b, a), Xi < M, and k # 1,
V.;(b, @) = number of (X, Yi) lying above (b, a), X > M, and k 5 j,
V1(b, @) = number of (X}, ¥;) lying above (b, a), Xi < M, and

Va(b, @) = number of (X, Yi) lying above (b, a), Xx > M, .
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In order to avoid trivial complications we shall first assume that m tends to «
through a sequence of odd integers, and later show that this assumption can be
dropped. Since m is odd it follows from the Corollary to Theorem 1 that with
probability one the line (8,, &,) passes through exactly one point (X;, Y,)
with X; £ M, and exactly one point (X;, Y;) with X; > M, . Let g.(b, a) be
the density function of (8, , &.) evaluated at (b, a), and k,(b, a) be the density
function of (4., £,) = m*(B. , &,) evaluated at (b, a). Hence

ka(b, @) dbda = (1/m)g.(b/m}, a/m*) db da.
In Lemma 1 of the Appendix we prove that
ga(b, @) dbda = D> Pr{Viib,a) = 3(m — 1), Vas(b, a) = $(m — 1)}

(4,7)eq
-fla + bX:) f(a + bX;) d(a + bX;) d(_a + bX,),
where @ = {(4,7):X; £ M,, X; > M,}. This equation is a consequence of the

above remark concerning the Corollary to Theorem 1.
Let & = {1:X; = M,}, @ = {7:X; > M,}. We then have

ga(bya) db da = D Pr{Vi(b,a) = 2(m — 1)} f(a + bX:) d(a + bX.)

1e@1

- 2 Pr{Vs;(b,a) = $(m — 1)} f(a + bX;) d(a + bX;)

je@s
because of the mutual independence of the random variables Vi;(b, a) and
V2i(b, a). It follows that

k.(b, a) db da

DY PI‘{VM (ﬂ ;n“—) = % (m — 1)}f<m£%+7—f:—%Xi)d(a+ bX.)

19
m ieq m?

b «a

The next step in the proof of asymptotic normality will be to show that k. (b, a)
converges to a normal density function k(b, a) at each (b, a).

By a generalization of the Liapounoff version of the Central Limit Theorem
to sequences of sums of independent randpom variables we obtain that

Vi ﬂuﬂl — EV, i’ﬂ
V*(b a)_ mt’ m} mt’ mi
Y\mi'mi) 1
e (Var Vi <_b_’_a_>>

m?

m}

Il

m— 1)}f<7% + %X) d(a + bX)).

is asymptotically normally distributed with mean zero and unit variance for
each (b, a). This result is an immediate consequence of Lemma 4 of the Ap-



1100 BRUCE MARVIN HILL

pendix, where we note that V;(b/m!, a/m?) is a sum of indicator variables

1 if Yi>a/m'+b/mX;

Zi(b/m, a/mb) = {
0 if not

and

Pr{Z¢<—l—)1,i> . 1}: 1 —F(il+—b—Xi> -1 —F<%+ih<i)).
mi’ mi m2 mE m? mi n

We then have

b a a b
v (h2) -z -7 (5+5x)

1

anO, [1 — F(m%+7—nb—%h(t)>]dt

"’“fo’ B — (a/m")f(0) — <b/m*>h(t>f<o>] dt

3
~g — [(n/2)%f(0)]a — l:(2n)%f(0) ‘l h(t) dt] b as ntendsto o,

and similarly,

Var [Vl (33)] - ZF(—a—%+gX;> [1 = F(i‘%+l’;X¢>}
mi’ mh fa \mt | omi mt ' omb
~nf0’F<7%+7%h(t)> [1 —F<m—%+;zb—%h(t)>]dt~g.

It then follows that

Pr{Vl (%ﬂ%) =%(m - 1)}

i) - (1n ~[ @@ Jo ~ [ @0'so) [ w0 a] b)}

(n/8)}
~ Pr {V;" (f’—n%> — 2/(0)a + 4(0) f: h(t) dt b}

mi
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~ (2r(n/8))* exp (—% yf>,
where y; = 2f(0) a + 4f(0) [ih(¢) dt b.
In a similar manner we obtain
Pr{Va(b/m’, a/m*) = 3(m — 1)} ~ (2 (n/8)) F exp(—3y3),

where y, = 2f(0) a + 4f(0) f3h(¢) dt b.
It can then easily be shown that the factors

1 b a 1 a b
i 2 P Ve (o) =3 m = 0 (4 )

1 b a _1 _ a b )
%J%Pr{vzj(ﬂ?’ﬁ>_§(m 1)}f<%+WXJ>

of k.(b, a) converge to 2f(0) (2r)* exp(—3yi) and 2f(0)(27)* exp(—1y3),
respectively, as n tends to «. Hence

lim, .ok, (b, @) db da = (2r) " exp{—21(yi + v3)} dw dy, = k(b, a) db da.

It is straightforward to show that k(b, a) is a bivariate normal density with
mean and covariance matrix as claimed in Theorem 2, so to complete the proof
in the case where m is odd it remains only to show

and

1immf kb, @) db da = f k(b, @) db da
B B

for all Borel sets B in the plane. Now Scheffé in [6] proves that sufficient condi-
tions to yield the above result are that k. (b, a) and k(b, a) be densities, and that
lim,, k. (b, a) = k(b, a) for almost all (b, @) in the plane. Since these conditions
are satisfied the proof of Theorem 2 is complete for the case where m is odd.

Next let us consider the case where the number of points on one side of the
median M, is even, say 2K. Let d; = Y; — a — bX; for some fixed (b, a), and
let d{3 be the jth order statistic from these 2K numbers. Then the condition
that median (d;) = 0 is equivalent to the condition 1[d{x’ + dimy] = 0, and
so each of these conditions is the defining condition that (8, , &) = (b, a) for
the 2K points under consideration. (An analogous condition is, of course, re-
quired for the points on the other side of M, in order that (8, , &) = (b, a).)
On the other hand, in the case where the given set of points is odd, say 2K + 1,
the defining condition for the set of points is that

. (2K+1
median(d;) = dimeiy = 0,

where d{my1) is the K + 1 order statistic from the 2K + 1 numbers. But it is

evident that the asymptotic distributions of the three order statistics dizy’, dizs)

and d{x55) are the same, and, moreover, thatd{s;’ and d{ryy takenfrom the same

sample are asymptotically perfectly correlated as K tends to «. It follows that
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the asymptotic distribution of 1[d{%’ + d&}i)l)] isthe sameas thatof d{xsi). Since
the asymptotic distribution of these two medians determines the asymptotic
distribution of (8., &.) it follows that the latter must be independent of the
manner in which the number of points tends to «, and so the proof of Theorem
2 is complete.

A special case of interest occurs when A(t) is linear with positive slope. This
case corresponds to equally spaced X; in an interval.

Taking h(t) = ¢ + (d — ¢)t with ¢ < d we obtain (4, , £) is distributed
asymptotically like (4, £), where

2
V& = Aoy — oy
_10¢" + 12¢d + 104
Vard = i@ —or
Cov (§9) = oot @)

f20)(d — ¢

2.3. Asymptotic distribution under the alternative. In 2.2 we found under the
null hypothesis Y; = a + BX; 4 ¢ and the assumptions of Theorem 2 that the
Mood-Brown estimate (8,, &) is such that [3(n 4+ 1)} (8. — B, & — @) is
asymptotically normally distributed with mean (0, 0) and covariance matrix
=. It follows that (8, , &) is a consistent estimator of (8, ).

In order to investigate the asymptotic power of the test of linearity proposed
in Section 3 it is necessary also to know the asymptotic distribution of (8, , &)
when the alternative hypothesis holds, i.e., when ¥; = ¢(X;) + ¢, =0,1, - - -,
n, and ¢(x) is a strictly convex function.

Under mild assumptions we shall show in this subsection that corresponding
to the convex function ¢(z) there exists a unique line (Bo(¢), ao(¢)) such that
BEn + DI B, — B , & — ap) is asymptotically normally distributed with
mean (0, 0), and hence that (8., &.) is a consistent estimate of (8o, o) =
(Bo(9), ao()). The line (Bo, ap) will depend upon the spacing function A(t), the
distribution function F of the ¢;, and the convex function ¢ specified as alterna-
tive. Defining V1(b, a) and V,(b, a) as in 2.2, we shall find that (8, o) is the
unique line such that EV1(8y, an) ~ in and EV2(By, o) ~ in, or equivalently
such that the equations

fo [ = Flao + Boh(t) — $IR(8)])] dt

(2.3.1) 1
= [ 1t = Flaa + goh(®) — slr(D)] &t = 3
are satisfied.

We now state Lemma 6, the proof of which is given in the Appendix.

Lemma 6. Let F be a cumulative distribution function with F(x) = [Z.f(e) de
for all z, F(0) = %, f(0) = F'(0) > 0, and f continuous. Let h(t) be continuous
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and strictly monotonically increasing for 0 = t < 1. Then corresponding to each
strictly convex twice differentiable function ¢(x) there exists a unique solution
(Bo(), ao()) satisfying equations (2.3.1).

The main result of this subsection is stated in

TuEOREM 3. Let ¥V; = ¢(X,) + &,¢ = 0,1, ---, n, where ¢(x) s strictly
convex and twice differentiable, and let X; = h(i/n), where h(0) = ¢, h(1) = d,
and h (f) is strictly monotonically increasing and continuous for 0 < t < 1. Let
the e; be independent identically distributed random variables with common density
f(e) and cumulative distribution function F(z) = [Z.f(e) de such that F(0) = %,
f(0) > 0, and f is continuous. We assume that

F[Sup0§t§l(a0 + Bok(t) — oR(H)D] < 1
and
F[infogtgl(ao + ﬁoh(t) - ¢[h(t)])] > 0;

where (B, o) s the unique solution of (2.3.1). Let m = (n + 1)/2 tend to .
Then the random vector (7 , £.) = m*(Bn — Bo , &n — av) 18 asymptotically normally
distributed with mean (0, 0) and covariances given by (2.3.2) below.

Proor. The proof is very similar to that of Theorem 2, and consequently we
shall only indicate the necessary modifications of that proof.

We define Vi:(b, a), V2;(b, a), Vi(b, a), Va(b, a), @ and G, as in 2.2. Let
k.(b, a) and g.(b, a) be the density functions of (4, , £,) and (8., &), respec-
tively, evaluated at (b, a).

From Lemma 5 of the Appendix it follows that

VB + b/m}, a0 + a/m?)

_ Va(Bo + b/md, a0 + a/m) — EVi(Bo 4 b/m!, a0 + a/m’)
[Var Vi(8o + b/m?, ap + a/mh)]?

is asymptotically normally distributed with mean zero and variance one for
each (b, a). Here we note that

Vi(Bo + b/m}, oo + a/m?)

Z Zi(Bo + b/m%, ay + a/m%),

1€Q1

where
| 1 if Yi> (a0 + a/m) + (8o + b/mh) X
Zz(BO"" b/m‘%, 0£0+ a/m‘}) — J ' (Oto / ) 0
0 if ngt,

and so
Pr{Z:(Bo + b/m, ay + a/m’) = 1}
=1— F(a + a/m’ + (B + b/m) X: — ¢[X.])
=1 — F(ao+ a/m* + (B + b/m®) h(i/n) — h(i/n)]).

Using the Riemann integral approximation to a sum, and expanding F(ay +
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a/m* 4+ (B + b/m%) h(t) — ¢[h(¢)]) in a Taylor Series about ay + Boh(f) —
o[h(t)], we obtain

3
EVi(Bo + b/m!, a0 + a/m') ~ n fo (1 — F(ao + Boh(t) — ¢[h(¢)])
— [(a/m") 4 (b/m)HR(D)]f(a0 + Bo h(2) — ¢[A(D)])] dt,

and

Var V1(8o + b/m}, a0 + a/m?)
3
~n f [1 — F(ao + Boh(t) — olh()DIF (a0 + Bo h(t) — #lR(£)]) dL.

Hence

Pr{V.(8o + b/m}, a0 + a/m}) = 4(m — 1)} = Pr {V;"(ﬁo + b/m}, a0 + a/mt)

_ i(m — 1) — EVy(Bo + b/m}, a0 + a/m*)}
[Var Vi(8o 4 b/m?, ag + a/m#)]}

~ Pr{Vi(Bo + b/mt, a0 + a/m*) = c.(b,a)},

where
H
1m—1) —n j {1 — Flao + Boh(t) — $lR(D)])

— [(a/m") + (b/m"R(1)]f (a0 4 Boh(2) — $lR(8)])} dt

ca(b,a) = n
ot ( [0 = Fao+ 805(0) — A(IF (en + B (1)

]

ol dt)

The reason for the eqlllations (2.3.1) defining (Bo, ao) is now apparent. In order
that 3(m — 1) — n f§[l — F(ao + Boh () — ¢[h(t)])1dt = O(1), and hence that
limyeca (b, @) exist and be finite, we must have [3[1 — F(ao + Boh(£) — o[h(£)])]
dt = %.

Deriving the corresponding result for V3 (8 + b/ m!, ap + a/mt) , and utilizing
an expression for k,(b, a) similar to that used in the proof of Theorem 2, we then
obtain

limywkn (b, @) dbda = (27) " exp[—3(yi + v3)] di1 dyz = k(b, a) db da,

where
H

"= 3 ( [ 10— Fan -+ 80h0) = IRODIF (o + Buh(1) — (O dt)'

)
[ (@ Bh(e)Can + o h(0) — 9RO d,
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1 -4
= VE( [ 1= Flaot o0 = AODIF (e + 1 h(0) = (D) 1)

1
[ (a4 Bh())fCan + Boh(e) — SIA(HY) .
It is straightforward to show that the limiting distribution of (4, , &) is that of
a bivariate normal distribution having the density function %(b, a), and after
some calculation we obtain that (4., £) is distributed asymptotically like
(#, §), where

Var i = (2/D%) ([D [ #ao -+ gun®) = sta0) dt]2
[0 [ dtea goi) — o ar] ),
Var { = (2/D) ([D [ fao + Bo1te) = stmODAG) dt]2

+ [Dz /:f(em + Bo k() — SlR()DA(2) dt]z),

(2.3.2) 3
Cov (£,4) = — (2/D) (Df [ sten -+ 1) — oln(e))
[ faw + Bahe) = IR dt + D
[ $ao+ 8ohte) — om0 a
[ Hao+ 00 = sthioDhO @1 ),
and where

-1

D, = (f: (1 — F(ao+ Boh(t) — ¢[A()DIF (a0 + Bo h(t) — ¢[A(£)]) dt) )

D= ([ 11 = Flaw + B0h(0) — SIBODIF(ao + B0h(2) — B @),
and
D' = [2D:D: [ e+ 8oh(6) = 9lHODAE)
- ' fan + Boh(1) — oIH(D]) d

3
—9D, Ds fo Flao + Boh(t) — SIR(ODA(E) dt
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1 2
[ Stea + o0 = stro)) .
This completes the sketch of the proof of Theorem 3.

In the special case h(t) = ¢ + (d — ¢)t and ¢(z) = 2’ it is easy to show
Bo = Bo(¢) = ¢'3(c + d) = v(c + d). Hence the difference between the line
(Bo, ao) = (Bo(), as(¢)) and the function ¢(z) is given by d(z) = a + Bx —
6(z) = a0+ v(c + d)x — va’ = a + vi(c + d)* — v(x — 3(c + d))’, which
is symmetric about the line x = 3(¢ + d).

If F is uniform on [— K, K] for sufficiently large K, we further obtain ay =
a(¢) = —(v/6)[(c + d)* + 2cd], and d(z) = (v/12)(d — ¢)* — y(z — }(c +
d))”. In this case (8, ao) is the least squares line to the curve ¢(z) in the interval
e, d].

2.4. Summary and remarks. In the present section we have proved the existence
and uniqueness of the Mood-Brown line estimate (8, , &,), and have obtained its
limiting distribution. Under mild assumptions we have shown that (8, , &,) is an
asymptotically normal and consistent estimator of the true line (8, «) under
the null hypothesis, and of a unique line (8, @) determined by the convex
function ¢ (which is the true regression curve) and the distribution F under
the alternative hypothesis.

We close this section with the remark that although we have assumed hereto-
fore that the function () is strictly monotonie, thus restricting the number of
Y observations at a fixed X to be at most one, this assumption is not essential,
and the results go through for non-strictly monotonic h(f) with only minor
modifications.

3. A test of linearity versus convexity. The R test is a statistical test of the
null hypothesis

HO:Y'i:a'l_ﬂXj"l'Gi, ’L‘=O’1,...,n’
against the alternative
HI:YZ‘=¢(XZ')+€¢, 7:::0’1’...,”’

where ¢(z) is strictly convex. The parameters « and 3, and the function ¢, are
unspecified. We assume that the ¢; are independent identically distributed ran-
dom variables with common density f(e) and cumulative distribution function
F(z) = [Zof(e) de such that f(0) = 0, £(0) = 1, and f is continuous. The X;
are fixed and defined by the relation X; = h(i/n), where h(¢) is continuous and
strictly monotonically increasing for 0 < ¢ < 1, h(0) = ¢, and h(1) = d.

The form of the R test is as follows: To the points in some subinterval [c; , di]
of [c, d] a straight line is fitted by the Mood-Brown procedure discussed in the
previous section. Corresponding to each of the remaining points indicator vari-
ables are defined, taking on the value +1 if the point is above the estimated line,
and 0 otherwise. A weighted sum of the indicators, R, is used as the test statistic.
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Against the alternative H; the rejection criterion is B > 75, where 74 is chosen to
make the test of level 6.

The logic underlying the test depends upon the fact that the line joining two
points of a strictly convex function lies above the function in the interval be-
tween the abscissae of the points, and lies below elsewhere. Now we have seen in
the previous section that when the convex function ¢(z) is the true regression
curve, the Mood-Brown estimate (8., &) converges to a line (B8o(¢), ao(e))
satisfying equations (2.3.1). But it is evident from these equations that if
[e1, di] is the interval used for line estimation, then (By(¢), ao(¢)) must intersect
¢(x) in two points with abscissae in this interval. Hence for large n the line
(8., &, will tend to lie below the curve ¢(z) in the intervals ¢ < = < ¢; and
di < v £ d; and so if X; lies in either of these intervals then Y, will tend to.
have probability greater than % of lying above (8, , d,). Consequently R = R,
will tend to be large. :

In this section we shall obtain the asymptotic distribution of R, under the
null and alternative hypotheses, and give an asymptotic expression for the power
of the test.

3.1. Definition of the R test. The line (8, , &,) is obtained by the Mood-Brown
procedure from the points (X;, Y;) with A(8;) = ¢1 £ X; £ di = h(82), where
0 £ & < 8 = 1. Corresponding to each of the remaining points we define the
indicators

[+ 1 Y>> a4 BX:
0 if not, where X, <c¢orX;> d .

The test statistic is defined to be
Rn = Rn(Bn ) C’&n) = Z afZi(Bﬂ ) C’Q7L)7

1EQ
where @ = {1:X; < ¢ or X; > di}, a(?) is a given weighting function defined
for 0 < ¢t £ 1, and a; = a(i/n). The test of Hy against H; at the level 8 is to
reject Ho if R, > r§™, where Pr{R, > r§™ | Ho} = 6.

3.2. Asymptotic distribution of R, under Hy. We make the same assumptions
as in Theorem 2 concerning the function 4 (¢) and the distribution of the e, . Be-
fore considering the asymptotic distribution of R, we shall state a modified
version of the conclusion of Theorem 2, where the modification is necessary to
allow for the fact that only the points (X;, Y;) with h(8) = X: = h(5,) are
now being used to obtain the line (8, , &,). Here we define M» = median [X,]
over the set of X; with h(8;) = X £ k().

Assuming Y, = o + BX; + ¢ we define (4., £) = m (B — B, & — a),
where m = (n 4+ 1)3(8; — 8;). We note that asymptotically the number of
points now used for line estimation is 2m. Then (%, , £,) is asymptotically nor-
mally distributed with mean (0, 0) and covariance matrix
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=* = (f(O) U;z h(t) dt — f: h(t) dt]>_2

(3.2.1) { % (62 — 81)° —% (82 — 61) fa h h(t) dt ]
N ' |

R O (D R

Where3 = %(51 + 52)

We shall now derive the asymptotic distribution of R, . Under H, we have
Yi=a+8X;+ &,i=0,1, .-+, n. Without loss of generality we may take
a=p=0.ForletYi = ¥i — a — 8X:, and (8, &), Z:, and R}, be the sta-
tistics corresponding to the (unobservable) sample (X, Y;). We readily obtain
Z: = 1if and onlyif Z; = 1,and so R, = R, .Hence it suffices to take & = 8 = 0.

We shall now obtain the asymptotic mean and variance of R, , given that
(fin én) = (b, a). We have

E[Rn l (ﬁn, éﬂ) = (br a)] =FE [Z aiZi(ﬁn; &n) l (ﬁn, én) = (b7 a)]

1@

b a a b
=Ezaizi<ﬁ’;n—i> =Zai|:1 _F<%+%Xg)]

1eQ 1@

Nn[fosl [1 — F(mi* -l-r%h(t))]a(t) dt
+ 6: [1 - F(?Z_% + ;%h(t))] a(t) dt]

~n an (% — (a/m")f(0) — <b/m*)f<0>h(t>) a(t) dt
+ f: @ — (a/mhf(0) — <b/m*)f<0)h<t)> a(?) dt]

= V.(b,a) = %n [fo l a(t) dt + fa a(t) dt] + ua(d, a).
Similarly,
Var [R, | (fin, ) = (b, a)] ~ % n [fo ! a(t) dt + /; a*(t) dt] = o>,

Now let a(t) be continuous and not identically zero on at least one of the sets
0=<t=<&andé =t = 1.Itfollows immediately from Lemma 4 of the Appendix
that the conditional distribution of R, , given that (4, , £&,) = (b, a), is asymp-
totically normal with mean V,(b, @) and variance o5 defined above.

We now proceed to find the unconditional distribution of R, . Let 7, =
Va(b, @) — pa(b, @) = 3n[[3* a(t) dt + [3,a(t) dt], B be a bounded rectangle set in the
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plane, k.(b, a) be the density function of (#,, £) evaluated at (b, a), and

k(b, a) = lim,..k.(b, @) be the limiting bivariate normal density of (4, , £.).

It can be shown that k. (b, ) < K, constant, for sufficiently large n and (b, a) ¢ B.

It follows from the Dominated Convergence Theorem that for each r we have

lim f Pr {Ii"———l <r
B On

n->00

(ﬁn; én) = (b, a)} kn(b, a) db da

T Rn - Vn(b, (I,) _ I-"n(b, a)
(322) = tim [ Pr {—a I

(ﬁn ) én) = (b7 a)}
-k, (b,a) db da
= [ a(r — u(b, a))k(b, a) db da,

where

u(b, @) = lim [M]

n->00 On

I:a <f061 a(t) dt + /.s: a(t) dt)
—1(0) +b <f061 a(t)h(t) dt + f; a(t)h(t) dt)]
<62 5 51>% %( fo ") a + fa 1 a*(t) dt>% ’

and & is the cumulative distribution function of a standardized normal random
variable.
We shall now show

lim,.e Pr{[(R. — 7.) /0] < 1} = f@(r — u(b, a))k(b, a) db da.

Let {Bi} be a monotone sequence of bounded rectangle sets converging to the
entire plane. Then

lim Pr{z—e’-”———Tﬁ <r} = lim limPr{R" T <y
On

n-> n>0 i>0 On

(ﬁn; én)eBz}

n->0 >0 i On

— lim 1imf Pr {R" T <l (8, B) = (b, a)} ko (b, @) db da
N

=1imlimf Pr{R"—T”<r
B;

1>00 N> n

(fin, &) = (b, a)} ka(b, a) db da

— Im f ®(r — (b, @) kb, @) b da = f ®(r — u(b, a))(b, a) db da.

1->00

The only step in these equations which is not immediate is the interchanging
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of the limits with respect to n and 4, and this step can be verified in a straight-
forward fashion.

Now consider abstract random variables R, B, and A, having a trivariate
normal distribution for which the marginal density of (B, A) is k(b, a), and
for which the conditional distribution of R, given that (B, 4) = (b, a), is
normal with mean u(b, a), variance one, and is otherwise independent of (B, 4).
Then

Pr{R <r} = f@(r — u(b, a))k(b, a) db da.

But clearly R has the same distribution as the random variable R’ =
w(B, A) + w, where » is normally distributed with mean 0, variance 1, and
is independent of (B, A). Hence ER = ER’' = Eu(B, A) and Var R = Var R’ =
Var u(B, A) + 1.

From this discussion it follows that (R, — 7.) /0 is asymptotically normally
distributed with mean Eu(4,, £) = 0 and variance = Var [u(f,, £)] + 1.
Evaluating Var [u(#., £)] we thus obtain

TuEOREM 4. Let a(t) be conttnuous and not identically zero on at least one of
the sets0 < t < 6, and 8 = t < 1. Assume the hypothesis of Theorem 2 concerning
h(t) and the distribution of the ;. Then under Ho, R, has an asymptotically
normal distribution with mean t, and variance s5 , where

. =%n[/01a(t)dt+f:a(t)dt],
and 2

) 27Lf2(0)< 5, 1 )2 .
§h = 5 o, fo a(t) dt + faza(t) dt) Var &,

)

i?fi(gl) (foal h(t)a(t) dt + f; h(t)a(t) dt>2 Var 4,

+ ‘;:"fi((;l) (foa a(t) dt + /: alt) dt> ([oa h(Da(t) de

+

+f6 h(t)a(t) dt) Cov (£n, fin) +%nUo 1a2(t) dt-{-fa a(t) dt].

Here (%n, ) = [2(n + 1) (6, — 61)]%(@ — B, &, — a), and the covariance matriz
of (%, £a) is given by (3.2.1). '

A special case of interest occurs when h(f) = ¢ 4 (d —¢)t, 60 = 1 — 8, = §,
and a(t) = a(l — t), where 0 < § < 1,0 < ¢ £ 1. In this case equal weights
a; = a(i/n) = a(l — (i/n)) = a.—; are given to the indicators Z; and Z,_;
whose abscissae are equidistant from the median

M, = median [X;] ~ M} = median [X;] ~ %(c + d).

{i=0,1,..., n} {1:h(81) <Xy <h(d2)}

From Theorem 4 we then obtain that the distribution of R, is asymptotically
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normal with mean and variance

)
ER, ~ nf a(t) dt,
0

Var R, ~ [n/(1 — 2§)] <f06 a(t) dt>2 + %n f: a(t) dt.

3.3. Asymptotic distribution of R, under the alternative. We shall here state a
result concerning the asymptotic distribution of R, when the true regression
curve is the convex function ¢(x). The proof is very similar to the proof of
Theorem 4, and will not be presented.

THEOREM 5. Assume the hypothesis of Theorem 3 concerning the functions
¢ (x) and h(t). Let the e be independent identically distributed random variables
with common density f(€) and cumulative distribution function F(x) = [Z,f(e) de
such that F(0) = %, f(0) # 0, f is continuous, and

Flsups, <t<s, (a0 + Boh(t) — olh(£)])] < 1
Flinfs, <¢<s, (0 + Bok(t) — ¢lh()]] > O,

where (8o, ao) = (Bo(), ao(d)) is the unique solution of the equations

(81+69)/2
fa [ — Flao + Boh(t) — $lR(6)])] dt
(3.3.1) 1 5
= [0 = Flao+ Boh(t) = (O] dt = 3 (8 = 8.

3 (01+82)

Then R, is asymptotically normally distributed with mean
131
n(8) = o [ 11 = Flas + goh(0) = sh(OD] a(0) a
1
[ 1= P+ (o) — glhODla) a

and variance s5(¢) = O(n). Here s5(¢) can be expressed by an equation analogous
to that of Theorem 4.

3.4. The asymptotic power of the test. In this subsection we shall obtain an
expression for the asymptotic power of the R test when the true regression curve
is the convex function ¢(x).

In Theorem 4 we have shown that under H, ) R, is asymptotically normally
distributed with mean 7, = n[f3* a(t) dt + [}, a(t) df] and variance s3. We
see that under H, the a,symptotic distribution of R, depends only upon A(%),
a(t), 6., & , and n. Letting s be the upper (1 — 6) percentile of the standardized
normal distribution, we have Pr {R, > 7, + sar9 | Ho} ~ 6, and so for “large”
n the level 0 test of H, against H; is to reject Hywhen R, > Y = 7o+ Sate .

The asymptotic power of the R test when the convex function ¢ is the true
regression curve is then given by
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- gn) - Ta
Pr (R, > ri” | ¢} = Pr {Rn sn(¢;(¢) ST sn(¢)(¢) ’¢}

~1 - (o))

where & is the cumulative distribution function of the standardized normal
distribution, and r,(¢) and s%(¢) are defined in Theorem 5. Here

P — ()] ~§< | ) i+ | at) dt)
+ress — 1 [ [ 1= Peo+ guht) = b 0Dlatr) at

+ [ 1= Flao + pono) = b0 ]

Now it was remarked at the beginning of Section 3 that the line (8y, a) nec-
essarily lies strictly below the function ¢(z) forc < z < gand dy < z = d,

or equivalently, ao + Boh(t) — ¢[h(#)] < O0for0 <t < 6,and & = ¢ < 1. Con-
sequently 1 — F(ao + Boh(t) — ¢[h(£)]) > % in this range of ¢, and since
sa(¢) = 0(n'), we have [(ri™ — 7(8)) /$n(¢)] ~ n*@, where G < 0. Hence
Pr{R, > " | ¢} ~ 1 — &(n'®), tending to 1 as n tends to o, and it follows
that the R test is consistent against all alternatives satisfying the hypothesis

of Theorem 5. Here
G = G(617 627 ¢y (l(t), h(t)y F)

- [ [ ¥ [mao + Boh(t) — olA()]) — %] alt) dt

+ f: I:F(ao + Boh(t) — #lh()]) — %] a(t) dt] (su(®)/n) 7

In the following section we shall be particularly interested in the case where
h(t) =c+ (d—co)t,a(t) = a(l —1),8 =586 =1—5and0=<t=<1,
0 = 6 =< 1. We note that in this case

o — nfoa alt) dt + {[n/(l — 25)] Uos“(” dt:r + %nfs (0) dt}% Yo,

which reduces further to r§” = né + (n6/2(1 — 26))% when a(t) = 1.

4. Efficiency and use of the E test. In this section we obtain the relative asymp-
totic efficiency of the R test as compared to the least squares test for a sequence
of parabolic alternatives converging to a line. Errors are here assumed normally
distributed with common variance. In the final subsection we make recommenda-
tions for the use of the R test.

4.1. Relative asymptotic efficiency. In this subsection we shall obtain the rela-
tive asymptotic efficiency of the proposed test of convexity as compared with
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the least squares test when errors are independently normally distributed with
common variance. Under such assumptions it is known that the least squares
method yields normally distributed minimum variance linear unbiased estimates
of the parameters of a linear regression scheme, and the least squares test (here
identical with the likelihood ratio test) for values of the parameters has certain
optimal properties. For discussions of the least squares test and of the notion of
relative asymptotic efficiency we refer to [7] and [3], respectively.

Since the general convex alternative ¢(z) of the R test cannot be expressed
as a linear function of a finite set of parameters, in order to make comparisons
we shall restrict ourselves to quadratic alternatives ¢(z) = va’ in the present
discussion. Specifically, we shall then be comparing the R test of the null hy-
pothesis of linearity against the alternative of convexity with the least squares
test of the null hypothesis y = 0 against the alternative ¥ > 0.

We shall take X; = h(i/n) as in the previous sections, and (without loss of
generality) take the common variance of the e to be one. The asymptotic
efficiency will then be obtained for the sequence ¢,(x) = ynt? of alternatives
converging to the line y = 0.

The least squares level 8 test of the null hypothesis v = 0 against the alterna-
tive v > 0 (assuming it is known that ¢* = 1) is to reject if

9 > E(fa | Ho) + ro[Var (4. | Ho) T,

where 4, is the least squares estimate of v, and 7, is the upper (1 — ) percentile
of the standardized normal distribution ®(z) = (27)~* [“,exp (—3t) di. We
readily obtain E(¥,) = v, and

Var (4, | Ho)
i (n_|.1)go(X,-—X')2
Cern[EE- 0T w0 - (S |
_ <z"; (X — X’)2>3

=0

’

where X = (n 4+ 1) D10 X,

From [3] it is easy to verify that the relative asymptotic efficiency of the R
test as compared to the least squares test for the sequence {¢,(z) = n ya’}
is given by the equation

(d/dv)E,{R.}|v = 0]2 Var [9, |y = 0]
(d/dv)Ey{4n} |v = 04 Var[R.|y = 0]

From Theorem 5 R, is asymptotically normally distributed with mean
LY
() = n[ [ 11 = @lan + 501 = GlAODIa®) d
1
+ fa [1 — ®(a0 + Boh(t) — ¢[h(t)])]a(t) dt],

E =lim|:

n->0
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where By = Bo(7v) and ap= ao(y) are defined by equations (3.3.1), and ¢(z) = yz’.
Hence

(/)R] ~ —n(zm) | [ exp [ =L o) + golrhtt) = w°0))?]
“(ao(y) + Bo(v)A(t) — K*(¢))a(t) dt
+ [ e [ —F Caoln) + i) — 207

(ab(v) + BV R(E) — K (1))a(t) dtJ,
and so

(d/dy)E4{Ra} |y = 0~ —n(27)~? u " (@h(0) + BH(OA(E) — K(®))alt) dt

+ f6 (a0(0) + Bo(0)R(2) — KP(¢))al(t) dt] ,
because ap(0) = Bo(0) = 0. Since [(d/dvy)E{4.} | v = 0] = 1, we thus have
E = limp.., [n(27r)—1/2 ( [ 16(0) + SR — KDlae) d

2V3'r[’9n|7=0]
Var [R. |y =0]"

In deriving explicit values of £ we shall make the further assumptions:
h(t) =c+ (d—¢c)t,00=26,00=1—6,and a(t) = a(1 — t), where0 = ¢ = 1,
0 < 6 < %. In this case we have

Var (B, | v = 0] ~ [n/(1 — 25)] (f: a(t) dt>2 +in <[: 20) dt>,

+ f [3(0) + B3(0)A(2) — K (D)]a(t) dt)]

and
Var [§. | v = 0] ~ [180/n(d — ¢)*].

Next we shall obtain ao(O) and ;80(0) We have pointed out earlier that y(y) =
(¢ + d)y when ¢(z) = ~a*. Hence [30(0) = ¢ + d. To obtain ay(v) it is necessary
then only to solve the equation

1/2
[ 1= #aoln) + (e + dvh(e) — w'(e)) at = (1 — 26).
Differentiating with respect to vy yields

[ " exp [ = Bao(y) + (¢ + d)rh(t) — vE D)
(ao(y) + (c + d)h(t) — K*(t)) dt = 0,
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from which we obtain ag(0) = 3[(d — ¢)*(3 — 8)*] — i(c + d)*. After some
algebraic manipulation we finally obtain

E = (180/x) ([%(% -8 —1 f: a(t) dt + 2 f: ta(t) dt — 2

.f: a(t)e? dt>2 [(1 — 25)™ <f: alt) dt>2 +1 /06 (1) dt]‘l,

We note that E does not depend upon the interval [¢, d] in which the X fall.

It is easy to show that for the particular weighting function a(¢f) = 1, the
efficiency E takes on its maximum with respect to & for s = (7 — 171 /16 ~ =
and this maximal efficiency is £ & 1.5/w. Under the restrictions a(t) = a(1 — )
and 6 = 1 — 8 = & it is not difficult to show that the optimal weighting func-
tion using the criterion of relative asymptotic efficiency is quadratic of the form
a(t) = K; + 3t — 1)?, where K; < 0;and using the optimal & for this function
a(t) we have obtained by numerical computations an efficiency of .636 which
appears to be an approximation to 2/.

4.2. Use of the R test. Here we shall discuss briefly some of the considerations
involved in performing the R test.

From 3.4 we have Pr{R, > r§” | Hy} ~ 6, and it follows that for “large”
n the level 6 test of Ho against convex alternatives is to reject Ho when R, > r§™.
For “small” values of n the use of this criterion will alter the significance level
of the test, but can nevertheless be instructive. In the future, tables of the
exact null distribution of R, will be given for small values of n and certain dis-
tributions of the e . During the remainder of this discussion we shall assume,
however, that n is large enough for use of the asymptotic criterion R, > r§™.
(In Appendix 5.2 the small sample behavior of B, will be discussed.)

Now the R test is defined in terms of a Spacing function A(¢), a weighting
function a(t), and parameters §; and 8, which determine the location and propor-
tion of observations to be used for estimating the line (B, , d,).

The function i(t) giving the location of the X; may or may not be at the choice
of the statistician. When it is, the criterion of simplicity would suggest that h(¢)
be chosen linear, corresponding to equally spaced X; in an interval. Assuming
a(t) =a(l —¢t)and & =1 — 6, = 6, where0 = ¢ = 1and 0 < 6 < 3, we then
have the simple rejection criterion

R, > r" = nf: a(t) dt + re[(n/(l — 28)) <]:a(t) (Jlt>2 + %n_/: a’(t) dt]w.

(4.1.1)

When h(t) cannot be chosen by the statistician, but is nevertheless a known

function (in other words the X; fall in a known pattern), the theory of the
previous sections applies, and 5™ can be determined from Theorem 4 of Section 3.
Finally, suppose that no spacing function h(¢) is known to the statistician

and that the values X, < X; < .-+ < X, appear quite arbitrary. Since the
asymptotic variance of R, under Ho, and hence also the rejection value r;"),
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depends upon the unknown function A(¢), it follows that the test cannot yet be
defined. Moreover, since there exist infinitely many continuous monotonic
functions h*(¢) such that 2*(¢/n) = X;,4 =0, 1, --- , n, any choice of a par-
ticular such function to use in obtaining the rejection value 7™ must be arbitrary.
However, for large n such functions h*(¢) will yield approximately the same
rejection value 7™, and for simplicity of computation we recommend the use
of the piecewise linear function A*(t) which satisfies h*(i/n) = X,
1 =20,1, ---, n, and which is linear over the subintervals [(¢ — 1) /n, (i/n)],
i =1, ---, n. Using this function h*(¢) we can then obtain r§™ as before.

The choice of the weighting function a(¢) and the parameters § and 8, must
be made on a subjective basis. In general we recommend taking a(t) = 1 so
that R, is simply the number of points above the line (8., &) among those
points not used in line estimation. The values 6; = .20 and 8, = .80 are also
recommended, in part because they yield approximately maximal efficiency for
the function a(#) = 1 in the situation considered in 4.1. None of these choices
are expected to be optimal in any general sense, however, and are recommended
because they seem reasonable and simplify computations. In the future it is
hoped that the use of Monte Carlo techniques will shed light on the optimal
a(t), &, and 8, , for particular kinds of alternatives in the small sample case.

When there are more than one Y observations, say Ya, ---, Yu,, at each
X, then slight modifications in the statement and proof of the theorems con-
cerning the asymptotic distributions of R, and (8., &.) are necessary. This
situation corresponds to a spacing function A(¢) which is constant within certain
subintervals of [0, 1].

We shall close this section with a brief mention of the computations involved
in using the R test. For small samples, say n < 20, the line (8., &.) can easily
be determined with the use of a guler from a plotting of the sample points on
graph paper. R, is then obtained by simply counting the number of points above
(8., @) in the appropriate subintervals. For larger samples the only difficulty
in computation will be in obtaining the line (8, , &), and this can be done using
an iterative procedure suggested by Mood in [5].

5. Appendix.
5.1. A series of lemmas. We shall here state and prove a series of lemmas
referred to in the previous sections.
LemMA 1. Under the hypothesis of Theorem 2, and with m odd,
gn(b, a) db da = E Pr {Vll(by a) = %(m - 1)7 V2.1'(b, a) = %(m - 1)}
(i.Nea

-fla + bX,)f(a + bX;) d(a + bX;) d(a + bX;).

Proor. Let (b, a) be a fixed line, let Bs = {(b, a) :|b — bo| < 8, |a — ao| < 8},
and let
Bii(b, a) = {Vll(b, a) = %(m - 1)7 V‘U(b, a)
= l(/I’I’l,— 1),Yi= a+bX,~,Yj= a-i—bX,}
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Then
Pr{(B.,én) eBs} =Pr U U B(b,a).

(i)ea (ba)eBs

This equation follows from the Corollary to Theorem 1, since with probability
one we must have exactly one point (X, ¥;) with X; £ M, lying on (8., &),
and exactly one point (X;, Y;) with X; > M, lying on (8, , &n).
Clearly we have
Pr {( U Bii(br a)) n ( U Bi'i’(b, a’)>} =0
(b,a)eBy

(ba)eBy
unless ¢ = 4’ and j = j', because of the same Corollary. Hence

PriB.,a,) eBs} = >, Pr U Bib, a).

(4,5)eaq (ba)eB;
We next obtain
Pr U Biba)=| Pr{ U B;Ba)|Yi=a+bX:,Y;=a+ bX;}
(b,a)eB; Bj (B,a)eBy

f(a + bX)f(a + bX;) d(a + bX,) d(a + bX;)
= |, PriBu(b,a) | Vi = a+ bX:,¥; = a+ bX;)

fla + bX)f(a + bX;) d(a + bX;) d(a + bX;)
= [ Privath @) = 3m = 1), Vab,0) = 3m — 1))

fla + bX)f(a + bX;) d(a + bX;) d(a + bX;),

where the last step follows from the mutual independence of Y, Y, V1:(b, a)
and V.;(b, a). Hence

Pr (B, a)eBi) = 5 [ Pr(Vitba) = im = 1), Vb, 0)
%, J)ER Bﬁ
= I(m — 1)}f(a 4+ bX.:)f(a + bX;) d(a + bX;) d(a + bX;),
and letting & go to zero, we obtain
gn(bo , ao) dby day

= >, Pr{Vibo, a) = ¥(m — 1), Va;(bo, @) = $(m — 1)}

(1,5)ea
flao + boX:)f(ao + beX;) d(ao + beXi) d(ao 4 boX;)
as claimed.

We shall next prove four Lemmas which yield the asymptotic normality of
certain statistics discussed earlier. These statistics are all of the form
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> i aZi(b/mt, a/m}), where
+1 if Y>> (a/mh) + (b/mhX;,

Z,-(b/m%, a/m%) =
0 if not,

the a; are constants, and (b, a) is fixed. We note that, strictly speaking, two
subscripts should be used in these expressions, since X; = h(¢/n) depends upon
both 7 and n. The four Lemmas will be stated for variables with double sub-
scripts.

Lemma 2. Let Zny ,k = 1, - -+, m, be a sequence of independent random variables
such that EZ%, = O for all n and k. Let Z% = Y 2. 7% and s, = [Var A4
Then 1im, .o 57° 2 ey E|Z5° = 0 implies that Z%/s, is asymptotically normally
distributed with mean zero and variance one.

Proor. Lemma 2 is a generalization of Liapounoff’s Theorem to sequences of
sums of independent random variables, and its proof.is essentially the same as
the proof of Liapounoff’s Theorem given in [2].

Lemma 3. Let Z.x be a sequence of independent random variables such that

1 with probability Pk
nk =

0 with probability g = 1 — Pu,
and Zhe = au(Zur — EZ,), where {a.) is a given set of constants such that
laas| < A < oo for all n and k, and such that there exists & > O for which the num-
ber of Qi AMONG Gn1y * * *  Gun With |Gnk] > Stendsto « asntendsto «. Thenthe con-
dition 0 < & < P < 1 — & < 1 for some N, alln > N,andk =1, --- ,n,
implies that Z%/s, = Zk_l VA ,,k/ sn 18 asymptotically normal with mean zero and
variance one. Here s, = [Var Z*].

Proor. We have

Z E|Z%5) = Z i oGP & ) (52) ™ < Z PO

n —3/2 n —1/2
A4 Z Ank Dnk Gk (Z Aok Drk an) =4 <kZ; alx Drk an> .

Hence by Lemma 2 it suffices to show D py a2iPnrgnr tends to o as n tends to
o, which follows immediately from the assumptions on a.; and pay .

LEMMA 4. Let Zni, Znk, Zn ) sn and an; be defined as in Lemma 3. Let h(t)
be bounded for 0 = t < 1, let F be a cumulative distribution function continuous
at zero with 0 < F(0) < 1, and let (b, a) be fixed. If

pur = 1 — Fl(a/n}) + (b/n*)h(k/n)],

then Zu/s. is asymptotically normally distributed with mean zero and variance
one.

Proor. The proof follows immediately from Lemma 3.

REMARK. From Lemma 4 it is easy to obtain, under H,, the asymptotic
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normality of the random variables
Vil(b/m?), (a/m")] and  Viy(b/m}, a/mi)

discussed in Section 2, and of the conditional distribution of R, , given that
(n, &) = (b, a), discussed in Sectign 3. Asl remarked earlier each of these
variables has the form D ; ay:Z,:(b/m?) , (a/m?)], where

+1 if Yu> (a/m?) + (b/mb) X

Z,{(b/m) (a/mb)] = o

Hence
Pr {Z,s((b/m’), (a/m})) = 1}
=1 — F((a/m’) + (b/m") X)) = 1 — F((a/m*) 4+ (b/m})h(i/n))

under Hy . If a.x = a(k/n), where a(t) is a continuous functionfor 0 < ¢ < 1
then we have |a.| = supo<i<i|a(f)] < o« for all n and k. Moreover, if a(t)
is not identically zero, then in some interval about a point # for which a(¢) # 0
we must have |a(t)| > & > 0 for some §, and consequently the number of a,;
for which |an| > & tends to « as n tends to «. Hence we may apply Lemma 4
to yield the desired result.

The asymptotic normality of these statistics under the alternative hypothesis
follows readily from

LEMMA 5. Let Zui, , Zni , Zw y So and @ be as in Lemma 3. Let h(t) be bounded
for 0 =t = 1, let F be a continuous cumulative distribution function, and let ¢ be
a convex function such that

0<e<1l—F(ay+ Boh(t) —dh(t)]) <1 —e< 1 for0 =t =1,

where (Bo , ag) 1s fized. For constant (b, a) let

P = 1 — Flag + (a/n') + [8o + (b/n})h(k/n) — ¢lh(k/n)]].

Then Z»/s, is asymptotically normal with mean zero and variance one.

Proor. The proof follows immediately from Lemma 3.

Finally we shall prove

Lemma 6. Let F be a cumulative distribution function with F(x) = [Z,f(e) de
forall xz, F(0) = 3, f(0) = F'(0) > 0, and f continuous. Let h(t) be continuous
and strictly monotonically increasing for 0 < t < 1. Then corresponding to each
strictly convexr twice differentiable function ¢(x) there exists a unique solution

(Bo(d), ao(d)) = (Bo, av) to the equations

1/2
*) [ [1 — Fao+ Bo h(t) — olh(£)])] dt

1

= [ [1—F(ao+ Boh(t) — ¢la(t)D]dt = L.

1/2
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Proor. Let

Vi(B, a) = [ Fla + Bh(t) — ola(D)]) dt,

wi(B, @) = [ Fla+ Bh(t) — olh(0))) b,

and 0 £ ¢, = § < t, £ 1. Corresponding to any two such points ¢ and ¢, we
associate the secant crossing ¢(h) at the abscissae i(t;) and h(t;). Such a secant
intersects ¢[h(t)] in the points U, = (h(#), ¢[h(t)]) and U, = (h(t), ¢lh(t:)]),
and has the equation

if (h,t) # (; ;)
1@ [+ ()] (0 1)
L i (4, h) = <%%)
Using this line we define

di(t, ) = ¥1(B(t1, t2), a(t, t:)) and Palty, ta) = $a(B(tr, t2), alty, ta)).
Since a(t, &) + B8k, HA(H) < o[h(t)], for 3 <t = 1, it follows that

. (tl’%> = f;F(a@é) + B(h,%)h(t) - ¢[h(t)]> dt < %f;dt -1

and similarly ¥»(t , 1) > 1, where 0 < t; < %. Since ¥»(t1, ;) is continuous in
t, for fixed ¢, it follows that corresponding to each ¢; with 0 < #; < 3, there exists
a value &y = go(t;) such that Ju(t;, g2(t1)) = %. Clearly 3 < g¢2(t;) < 1 for
0 < 4 £ 1. We shall now show that for each such ¢ the function g.(4) gives the
unique solution # of the equation ¥(t , t;) = 1, and is continuous.

It is easy to verify that

olh(t2)] —
[h(t1)]+ ht) — h(t)

a(t17 t2) + ﬁ(tl , tz)h(t) = <

3%(‘1_’ ) f flalt, &) + B4, t)A(1) — ¢[h(1)])
(9/0k) (a(ty, t2) + B(t, t)h(t) — ¢lh(2)]) dt.

The first factor of the integrand equals f(0) > 0 when ¢t = ¢, , while the second
factor is positive forall0 < ¢, = % < ¢, = 1and $ = ¢ = 1 because of the strict
convexity of ¢(z) and the strict monotonicity of h(¢). It follows that
[0 (ty , t2)]/0t. > O for such values of (4, t;). From the Theorem of Implicit
Functions we then obtain the uniqueness and continuity of the function g(t)

satisfying ¥o(t; , g2(t)) = 1 for 0 < & = 1. Similarly we obtain a continuous
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function ¢;(f;) which is the unique solution of the equation ¥;(g:(t), t;) = 1
for 3 < =< 1,and issuch that 0 < g;(t,) < % for # < ¢, < 1. Consideration
of the functions g,(#,) and ¢;(t) in the ), t; plane readily shows that they must
intersect in at least one point (7, ¢3) in the interior of the rectangle
0 < tl = %, 7 < to é 1 and hence that (,80 , ao) = (,B(tl ) tz), a(tl y tz)) is a solu-
tion of (*).

To show the uniqueness of (8o, a) let us assume that (8; , o) is also a solution
of ( ). Then one of the lines ay + Bir and oy + Bz must lie entirely above
the other in at least one of the sets {x:x > h(})} and {z:z < h(%)}. Suppose,
for example, a1 + iz > ay + Bor when 2 > h(%). Hence

F(og + Bih(t) — ¢lh(t)]) = F(ao + Boh(t) — ¢[h(1)])

when ¢ > §. We shall prove the existence of a value t* with 2 < t* < 1 for which
the last mequahty is strict. Since the line op + Boh(t) passes through the func-
tion ¢[h(t)] for exactly one value t* with £ < t* < 1, we have ay + Boh(t*) —
#[h(t*)] = O for this t*. It follows that

Flar + Bh(t") — ¢lh(t)]) > Fla + Boh(t") — ¢lh(t")]) = F(0),
because of the fact a; + Bih(t*) — ¢[h({*)] > 0 and F’(0) > 0. We thus have

1 1
3= | Flao+80h() — b dt < [ Flas + Bih(o) — olh(0)]) dt =
which is a contradiction, and so (8o, ag) is the unique solution to (*).

5.2. The small sample behavior of R, under Ho. In this subsection we shall
give some conditions under which the theoretical asymptotic null distribution
of R, yields an adequate approximation to the true null distribution of R, .
We here restrict ourselves to the case where n 4+ 1X; values are equally spaced
in the interval [c, d], Xo = ¢, X, = d, the points (X,, Y;) such that
Xi; = Xi £ X, being used for line estimation, and with a(¢) = 1. We then
define 6 = k;/n. According to our earlier results, under the null hypothesis of
linearity R, will have an asymptotically normal distribution with mean né
and with variance n6/2(1 — 26). The adequacy of this normal approximation,
however, depends upon the magnitude of n and .

The two major respects in which the approximation can be inadequate are

(i) distribution of R, not approximately normal

(i) Var R, = nd/2(1 — 23).

In order to determine the extent to which (i) and (ii) occur, Monte Carlo
methods have been used to investigate the null distribution of R, for a variety
of n and 6 in the case where the Y; are independently normally distributed with
mean zero and variance one. Now for large values of 6 (near 1) it appears that
both (i) and (ii) can occur, and make the asymptotic normal approximation
inadequate even for n as large as 100. For this reason we shall restrict attention
to small values of §, and more or less arbitrarily take 0 < & < 0.20. (We re-
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mark, however, that this is a fairly conservative cut off point, and for values
of 8 near 0.20 we may expect the approximation to be good.)

Under this condition our investigation then indicates that so long asn(2§) > 10
the null distribution of R, is satisfactorily normal for “ordinary”’ usage in testing
the null hypothesis of linearity. Note here that n(26) is the number of points
used to count R, , and hence that the “rule” n(25) > 10 is analogous to the
“rule’’ for approximating the binomial distribution with parameters P = %
and N by a normal distribution when NP = N/2 > 5.

Now it appears from the Monte Carlo experiments that né/2(1 — 26) is an
overestimate of Var R, . When 6§ < 0.20 and n(28) > 10 the amount of bias is
quite small, however, and the use of n5/2(1 — 26) in place of the true Var E,
will only slightly alter the upper tail probabilities involved in the test of linearity.
Since 78/2(1 — 28) = Var R, , it follows that when performing the test at a
nominal level 9 of significance one would in fact be operating at a slightly smaller

level.

TABLE I
R, |Obs.| Exp. | R,|Obs.| Exp. | R,|Obs.| Exp. | R,|Obs.| Exp.
0 01 0| o 0| 0 711
1, 0 5.879 1 1 5197 | 1| O 81 2 8.457
2| 3 2| 1 2| 0| 9.143| 9| 2
3| 8 7.299 | 3|15 7.08 | 3| 2 10| 4
4112 | 11.939 | 4| 9 12.021 | 4| 5 11| 4 5.774
513 |16.036 | 5|12 |16.516 | 5| 7 7.935 |12 6 8.009
6|21 |17.694 | 6|21 |18.362| 6|12 | 11.332 | 13 | 14 | 10.093
7116 |16.036 | 7 |18 |16.516 | 7 | 16 | 14.048 | 14 | 10 | 11.595
8|12 |11.939 | 8|11 |12.021 | 8|15 | 15.084 | 15| 16 | 12.144
9 9 7299 9| 6 7.085| 9|12 |14.048 |16 | 9 | 11.595
10 51 0] 5 1015 | 11.332 |17 | 12 | 10.093
1] 1 5879 | 11| 1 5.197 | 11 | 8 7.935 |18 3 8.009
12| 0 121 0 12| 4 19| 6 | 5.774
13| 3 20| 6
147 1 9.143 | 21 5} 8.457
151 0
6] 0
n 29 33 37 99
é 0.21 0.18 0.22 0.15
Sample mean 6.19 5.99 8.12 15.00
Sample 4.32 4.49 5.80 10.37
variance
Theoretical 6.00 6.00 8.00 15.00
mean
Theoretical 5.12 4.72 7.04 10.78
variance
x? 3.068 13.692 2.621 8.887
d.f. 8 8 8 10
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The results of some of the Monte Carlo experiments performed are presented
in the table below, which the reader may use to judge the adequacy of the
normal approximation. We remark that in approximating the true discrete
distribution of R, by a normal distribution the usual continuity correction of
% is desirable. Hence we would use, for example.

Pr {lky < R < k| Ho}
Ty — nd < R, — nd < ke — né

= Pr (2(—1?2§2—65>% - (ﬂl‘ﬁ_a‘%j)% ) (-2_(1L—62—6))%

by — no + 1 by — nd —
~®< nd VN, — @ né i
2(1 — 20), 2(1 — 2)

At present Monte Carlo Methods have only been used in the case where the
Y ;are normally distributed. Whether the conditions 0 < § = 0.20 and n(26) > 10
are appropriate for other distributions has not yet been investigated. The author
suspects that they will be appropriate in a wide variety of cases.

In Table 1 we present the observed and expected frequency distributions of
100 random values of R, , where expected frequencies are calculated from the
asymptotic probability distribution of R, . Four pairs of values of n and é§ were
investigated: n = 29,6 = 21, n = 33,6 = .18, n = 37,6 = .22,and n = 99,
8 = .15. Some relevant statistics from the samples are presented, including the
value of x* from the x° goodness of fit test.

Ho
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