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1. Summary. The operational method of Mellin transforms is employed here
to derive some interesting distribution functions. The distribution of the product
of two non-central chi-square variates is obtained and some special cases ex-
hibited. Finally, an application of the derived distributions to a problem in
products of complex numbers is discussed.

2. Introduction. In many problems which arise in the physical sciences the use
of complex variable notation greatly facilitates the description of some form of
rotational motion. This is especially true in the mathematical theory of spin-
stabilized rockets. For statistical analysis purposes it is sometimes desirable to
find an expression for the probability that the magnitude of the product of two
complex numbers (whose real and imaginary parts are independent random
variables) is contained in a circle of some specified radius.

Such a problem stimulated the work described here. The solution of the original
problem indicated the solution to a more general problem which is given here
with the thought that this also may be of interest. The basic problem was to
find the probability density function of a random variable w = ¥y, where y;
is a Rayleigh variate (with scale parameter equal to one), y. is a non-central
Rayleigh variate (with scale parameter equal to one) and ¥, is independent of y. .
Since the square of a Rayleigh variate is a chi-square variate this problem was
solved by obtaining the distribution of the product of a chi-square variate and a
non-central chi-square variate, each with two degrees of freedom. The solution
of this problem was generalized to include the distribution of the product of two
non-central chi-square variates with arbitrary degrees of freedom.

The distributions derived here were obtained by the use of Mellin transforms.
The operational advantages of Mellin transforms in problems of this type have
been described by Epstein [4], and additional information on Mellin transforms
can be found in {7] and [8].

3. The distribution of the product of two non-central chi-square variates. Let
us suppose that y; and y. are two independent random variables distributed
according to the non-central x* density function [6] with non-centrality param-
eters A; and A, and degrees of freedom %; and k. respectively. Thus the density
function of y; is

—9) by tAZ )
(1) Fi(yi) = 3y /A P o (A, J=12y;>0,
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PRODUCT OF CHI-SQUARE VARIATES 1017
where I,(z) is the modified Bessel function of the first kind defined by

(2) L(z) = i {x2”+"/[22'4+”m!r(m +n+ D}

m=0

The non-centrality parameter A; is defined by A = D _ds when
=2 (z: — dy)’
=1

and the z; are independent normal variates with zero means and unit standard
deviations. Now we want to find the probability density function of the variate
w = y1y2 . This problem will be solved by the use of Mellin transforms.

A statistical application of Mellin transforms was considered by Epstein [4].
The Mellin transform of a density function, f(z), of a positive random variable
is defined by

(3) M@ = [ 27 de = oo

If the Mellin transform is known, the density function is obtained by the in-
version integral,

a+1%

(4) fe) = 1/e) [ a7(s) ds.

a—10

Therefore the Mellin transform of the density function of y; is

(5) M)} = 37 iag s [T e, o (ay)) dy,.

0

The integral exists and is a continuous function of y; since, for small values of y;
with s + (3k;) > 1, the integrand behaves like y;(a > —1); for large values of
y; , the integrand beha,ves like yle~ @D 4% b = s + L(k; — 7)]

To evaluate the integral it is necessary to replace I ;s /2(A;y, ) by its power
series expansion and integrate termwise. Term by term integration is justified
since the series can be shown to converge uniformly. Therefore, we have that

"*A? S (34 )ik kitatme2
(6) M{f(y)} = 2&“%*”2 1r(t'I‘(m+ 1k)f Yy gy

m=0

The integral in (6) is equal to gikitetmolpig. 4 s 4+ m — 1]. Hence the Mellin
transform of f;(y;) is

() Mifiy)} = ¢ Z (A" /[T (m + 3k,) T (3k, + s +m — 1).

If we take the limit as A; — 0 in equation (7), the result is
Lima,.o M{f(y;)} = 27 T(3k; + s — 1)/T(3k)),

which is the Mellin transform of the central x* distribution with &; degrees of
freedom.
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The Mellin transform of the density function of the product of two independent
random variables is clearly the product of the Mellin transforms of the density
functions of the individual variables; therefore, the Mellin transform of the
density function of w = gy, is

M{h(w)} = M{fi(y)} M { f(y2)}
_ ialead [Z A2 T (3 + s + m — 1)]

=0 m! T(m + 1k)
(8) . l:m A2 3k + 8+ — 1):' ) = Y
;f‘o n! T'(n + %k2) =e n;o;y

AN + s+ — DTGk s+ m —j — 1)
JHm — DIC(G + $e)T(m — j + 3ke)
This theorem is stated in reference [4]. Equation (8) defines all of the moments
about the origin of w. To obtain the expected value of w, set s = 2, ete.
In order to find the density function of w we need to obtain the inverse Mellin
transform of each term of the series (8). This means that we want to find the
inverse Mellin transform of

M;=2"""TGk +s+j—1)TGke+s+m—j—1).

This can be expressed as

a-+i0

MM} = (1/2m5) f w 2Pk s +5— )T Gk +s+m—j—1)ds.

a—1i%

Making a change of variables let s'/2 = s 4+ 3k + k. + im — 1, and obtain
’+no

MM} = g athamim yHeattiatinet (4 0,0 f o2

B+ i —Fe+4 —2m)TEs — 3 (b — ke + 45 — 2m)] ()™ ds’.

The inversion integral is now of such a form that one can use the tables of Mellin
transforms in reference [5]. Formula 26, page 331, Volume I, of [5] gives

(9) M{a~2 T (3s — $»)T(3s + $»)} = K,(ax)

where @ > 0 and Rls > |Rl»|. In formula (9), K,(az) is the modified Bessel
function of the second kind defined by

wll-(ax) — I,(azx)]

K,(az) = 2 sin o

and tabulated in [2]. Therefore we have

}krl‘ikzﬂm—l K
—1 _ $h1—m—3ko+25 (w )
(10) M {M.’/} - 22m—Hk1-Hk2—l S
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Hence the density function of the variate w is

h(w) — e—&(A§+A§> Zw: i

m=0 j=0
25 A 2(m—5)y1—3k;—5ko—2m+ik k ~1
AIJA2("" 1)2 3k 1—3ko—2m-+iky+iko+im

i m = )T + 3k)T(m — j + 3ka)

Thus we have obtained an expression for the distribution of the product of two
non-central chi-square variates.

The distribution of the product of two central chi-square variates can be ob-
tained from equation (11) by simply setting A; = Ay = 0. That is, if y; is a chi-
square variate with k; degrees of freedom and y. (independent of y;) is a chi-
square variate with &, degrees of freedom then the density function of w = g1y, is

w}k’ﬁ-}kg—l K}kl——jkz (w%)
DT (3 )T (%)

It is known that if y; and ¥, are independent chi-square variates with degrees
of freedom differing by one (i.e., k2 = ki + 1) then the variate 2(w') is also
distributed as chi-square with 2k; degrees of freedom. Probably the most familiar
application of this result is in connection with the sample generalized variance
from a multinormal distribution. This result is proved on page 172 of Anderson
[1]. This fact follows from equation (12) by using the relationship

Ky(w') = 3(2m)e T,
and the duplication formula for the gamma function which is
T(3k) T (31 + 3) = 7270 (ky).

It has also been shown in [3] that the density function of a variate, say z,
which is the product of two N (0, 1) variates is f(2) = (1/x)K,(2). This result
follows from equation (12) by setting k&1 = k. = 1 and making the appropriate
transformation.

(11)

1
Kip—sky—myai(0).

(12) hw) =

4. Application to the distribution of the magnitude of the product of two com-
plex numbers. As an example of the application of the previous results let us
consider the following problem. Let 2, = w; + <, be a complex random variable
with u; and »; being N (0, 1) variates. Also let 2z = u, + %2 be a complex random
variable where s is N(u. , 1) and v, is N(uy , 1), and uy , us, v1, 02 are all inde-
pendent. We wish to find the density function of the magnitude of the product
of 2z, and 2 or

r = laz| = [(u + o) (4 + o§)]

The density function of r; = |&] = (u? + s f(r) = re ' which is the
Rayleigh density function with scale parameter 1. Of course r: is a chi-square
variate with two degrees of freedom. The density function of r; is

f(7'2) = 7‘26_%(T§+A§)10(A27‘2)~
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It is also true that r; is a non-central chi-square variate with two degrees of
freedom and non-centrality parameter A, . Hence, we can obtain the distribution
r* = rirs from equation (11) by letting ky = k, = 2, A2 = 0 and A2 = 2 + 2.
A simple transformation of variables then gives the density function of » which is

(13) 1) = 3 (AT () /12 (1))

As a second example let us consider a special case of the first example. Let us
assume that u; , us , and v; and v, are all NID (0, 1) variates. As before, suppose
we would like to find the probability density function of r = |z;2,|.

The distribution of w = 7*= rir; can be obtained from equation (13) by
setting A, = 0.

The density function of r is f(r) = rKo(r). To evaluate the probability that
r is less than or equal to some value a we have

Prob (r £a) = f rKo(r) dr.
0
Reference [5] (page 367, Volume II, formula,22) gives
fo V" Ka(y)dy = 2" T(n+ 1) — "™ K,u(a).

Thus
(14) Prob (r = a) = 1 — aK,y(a)
and the K;(a) function is tabulated in [2].
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caught many errors in the original version of the paper and pointed out addi-
tional research which can be done in this area.
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