APPROXIMATIONS FOR THE ENTROPY FOR FUNCTIONS OF
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1. Summary. If {¥.,} is a stationary ergodic Markov process taking on values
in a finite set {1, 2, - -- , A}, then its entropy can be calculated directly. If ¢ is
a function defined on 1, 2, --- , 4, with values 1, 2, --- , D, no comparable
formula is available for the entropy of the process {¥, = ¢(Y,)}. However,
the entropy of this functional process can be approximated by the monotonic
functions @, = h(X, | Xn1, -+, X1) and G, = (X, | X0, -+, X1, Yo),
the conditional entropies. Furthermore, if the underlying Markov process {Y,}
has strictly positive transition probabilities, these two approximations converge
exponentially to the entropy H, where the convergence is given by 0 < G, —
H < B"'and 0 £ H — G.< Bp" " with 0 < p < 1, p being independent
of the function ¢.

2. Introduction. Let {Y,, — © < n < «} be a stationary ergodic stochastic
process taking on values in a finite set {1, --- , D}. For any finite sequence
s= (@, - ?’I:k)77:f£{1) 7D}’j= 1.,k letp(s) =P{(Yly e, T) = 8}
and let Z; = p(Yy, -+, Yi). In extending Shannon’s [1] pioneer work on in-
formation theory, McMillan [2] has shown that associated with the sequence
{Z4} of random variables is a number H, called the entropy of the process, such
that

(1/n) log Z, - —H in L' asn —

(where the log has base 2). This result, which is fundamental in information
theory, implies that for large n it is highly probable that the sequence of states
of length n which actually occurs is one whose probability is about 27"
McMillan further shows that, if (ther.v.) U; = P{Y; =14|Y,, Y4, -} and
V = U;on {Y; = 4}, then

(1) = —FlogV

thus giving an alternate definition of the entropy.

If {Y,} is a Markov process with transition probabilities m(¢, j) =
PlY,uu=37|Yn=14Ysu, --}3,5=1,2, -, A and stationary probability
distribution \; = P{Y, = 4}, then we have U; = m(Y,,¢) and V = m(Y,, Y3),
so that

2) = —; A (i, §) log m(3, ).
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This provides an easy way to calculate the entropy of a Markov process. On
the other hand, if ¢ is a function defined on 1,2, - - - , 4 with values 1,2, --- , D,
no comparable formula is available for the entropy of {X, = ¢(Y,)}. Moreover,
Blackwell [3] has shown that, if { Y} is a stationary ergodic finite-state Markov
chain, the entropy of the process {X, = ¢(Y,)} is given by

H = -—f ; ra(w) log ra(w) dQ(w).

Here, r; is a function that is defined on the set W of all w = (w1, - -+ , w4) such
that w; = 0, 21 w; = 1 by ra(w) = Doty i jeo—1a m(3, §) for those j’s such
that ¢(j) = a. @ is the distribution of the conditional distribution of ¥, given
Xy, X_1, - - . Furthermore, Blackwell obtains an integral equation for @ and
illustrates how @ may be concentrated on a finite or countable set or be con-
tinuous. In the latter case, he conjectures that @ is singular, thus suggesting
that this entropy is intrinsically a complicated function of the transition matrix
M and the function ¢. Consequently, for application, it is desirable to find
approximations for the entropy of this functional process which converge rapidly.

It should be noted that if the functional process {X,} is Markovian®, then the
entropy can be computed directly by Eq. (2). Therefore, we shall consider only
cases where {X,} is not Markovian. Moreover, whenever ¢ is a function that
collapses only one class of states, Blackwell [3] has shown that the entropy can
be expressed as a sum of converging elements; i.e., @ is concentrated on a count-
able set. Thus we shall consider the more general case where at least two classes
of states of the Markov process collapse into single states of the functional
process.

In this paper, we show that if {Y,} is a stationary ergodic finite-state Markov
process, then the entropy of the process {X, = ¢(Y,)} can be approximated by
the monotonic functions

G-n = h(anXn_l, ,Xl)
and
Qn = h(anXn—I; ,Xl, YO)

Furthermore, if this Markov process {Y,} has strictly positive transition proba-
bilities, these two approximations converge exponentially to the entropy H,
where the convergence is given by

0<G —H=Z=By"* and 0<H—G, = Bp"™
with B = [Nplog e]/[N1min; ; m(%, j)] and
. (N, )(m(z k)m(k, n))2
0 =1- )BT <1
<e Py (N?, m(i, jym(3, m)

2 Necessary and sufficient conditions for {X,} to be Markovian are given by Burke and
Rosenblatt [4].
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where N; and N are the minimum and maximum number of states collapsed by
¢, respectively.

Examples are presented in which these functions are used to approximate the
rate of a two-state channel for several different input distributions.

3. Notations and definitions. Let Y be a random variable taking on values in
the finite space U = (u1, - - - , ux). We define the entropy h(Y) of Y as

YY) = —-ZP Y = u log P{Y = ug.

We recall for future use some mathematical properties of the kh function, given

in [1]:
(i) h(Y) = logk,
(ii) h(X, Y) = h(Y) + h(X|Y) where h(X|Y) = —D .; P{Y = u:,

X =} logP{X =v;|Y = uj,

(i) (X | Y, Z) = (X |Y) £ h(X) with equalities if X, ¥, Z are inde-
pendent,

(iv) for a,ny function ¢ defined on the range of Y, h(¢(Y)) = h(Y) and
X |Y) = KX |¢(Y)).

We also note that all of the above quantities are non-negative.

For any positive integer N, denote by I(N) the set of integers {1, 2, - - - , N}.

Throughout what follows we shall assume that we are given an 4 X A Markov
matrix M with elements m(s, 5), 4,7 = 1,2, --- , 4, a function ¢ from I(4) to
I(D) and an initial stationary probability distribution A = (A1, --+, A4) on
I(A). Further, Y,, Yy, Y,, --- will be a stationary ergodic Markov chain
taking on values in 7(4) and distributed according to (A, M). Xy, Xz, - - - will
be the process defined by X = ¢(Y%) and taking on values in (D). It, of course,
will be a stationary ergodic process.

4. Approximations for the entropy of the functional process. First, let us
define

H,(M,$,\) = (1/n)h(X1, Xz, -+, Xa).

If X is stationary (as we have assumed), then it is shown in [2] that H,(M, ¢, \)
converges monotonically downward to a limiting constant H(M, ¢, \), called
the entropy of the {X,} process. In addition, the following result has been given
in [5]

|H(M, ¢, \) — H.(M,,\)| < (2/n) log A.

Next, we let G, = h(X,| Xna, -+, X1), where {Xn = ¢(Y,,)} is the func-
tional process. From property (iii) we have that G, = Gy =z ---, and since
G, = 0, it follows that lim G, = H exists. Now using statlonarlty we have that
lim(n + 1) 2.7 G: = H(M, ¢, \). Thus lim G, = H(M, ¢, 7).

If welet G, = h(X,| Xpa, -+, X1, Yo), then we have the following

LemMa 3.1. G, converges monotonically upward to the entropy H(M, ¢, \).
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Proor. To see that G, is monotonic we note that
G =hXu| Xpa, -, X1, Y,Y)
S M Xa| Xoa, o0, Xu, 0(Y0), Yo) by (iv)
G, S WMXo| Xoa, o, X1, X0, Yu) = Guna by stationarity.
Let p(Yo| Xy, -+, Xs) = P{Yy = 4| Xy, ---} on {¥, = ¢}. Now making
use of (ii) we see that
G — G = M Xn| Xna, o+, X1) — WX | Xna, -+, X1, ¥o)
= Elog{p(Yo| X1, -+, Xu)/p(Yo| X1, -+, Xun)}.

However, for every fixed (X;,---,X,) = t., Yo = ¢, the variable
p(Yo| Xy, -+, X,) coincides with one of the P{Yo, = ¢| Xy, -+, X,}, where
1 e I(A). Thus, for any n and for any (X;, -+, Xa)

p(Yo| X1, -+, X,) —p(Yole,"',Xn—1)|
< D IPYo=1i|Xy, -, X} — P{Yo=1| Xy, -, Xoi}l].

But P{Y, = 7| X,, -+, X.} is a martingale and therefore converges a.e. Con-
sequently, p(Yo| X1, -+, X,) converges.
Also, G, = @, follows from (iii).

6. Rate of convergence of G, and G, . Our result will be for the case where the
transition probabilities m (%, j) are strictly positive for all 7, j.

Let Yy, Yy, -+, be a finite-state Markov chain with transition probabilities
m(3, j). Define a process {X,}] by X = ¢ & Ye¢ '(¢). Now for fixed
X1 = ’£1, crty Xn—l = 1:"_1, let

f"(g7 a) = P{Yﬂ = al Yo =6 Y18¢_1(1:1), R Yn—l€¢—_l(2.n—l)}-

This is the probability of going from state g to a state @ in n steps in a non-
homogeneous Markov chain with transition probabilities for the kth step given by

pPG, 1) =PV =1]|Yia=4,Yaed (i), -, Vored (Ga1)}

— m(J, l)P{Yk £ d’_l(ik); ) Yn—ls(ﬁ—l(in—l) l Y, = l}
S m(s, P Tacd (i), -, Yared (ins) | Vs = 1]

fork=1,---,n —1and p™ (@, 1) = m(j,1). This is

fa(g,0) = 2p%(g, a)p® (a1, @) -+ p™(@ns, @),
We shall make use of the following theorem concerning Markov chains. (It
may be noted that a similar result is given by Harris [7].)
TuEOREM 4.1. Let g and h be two states of the Markov chain. If m(z, 5) > 0 for
1,7 =1,2,---, A, then the following holds:

|fa(g, @) = falh, @)| < »™

)
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where

p =1 —min (&)(m—(z, Dm(l, n))z.

%,3,0m N%) m(iy ])m(j7 m)
The proof can be carried out using Doeblin’s ‘“two-particle’” method [8].
Using this result we obtain
[fa(g, 67 () — Fully 7' ()| = | ¢_§) falg, @) — ¢_;) Falh, @)

a

2 16 @) = fulh, )] = Nop™
FurthermoreP{X,, = 1:| Y, = g, Xl, ey, Xn_l} —'P{Xn=’b.'X1,"' ,Xn—l}
< Npp" .. To see this, it is sufficient to show that there exists an 4 (depending
onX;, -+ ,X,) such that P{X, = ¢| Xy, -+, Xuu} = P{X, =1|Y, =
h, X1, -+, Xoa}. But this follows from

P{Xn =iIX1,"',Xn—1} = ZhP{Xn =i7 Y0=h|X17""X"—1}

A

==;Pm;=HY@=M&,W}Xwar=MXh~WXL¢

The above results allow us to show the following

TueoreM 4.2. Let {Y,} be a stationary ergodic finite-state Markov chain with
strictly positive transition probabilities. Then the entropy of the process
(X, = ¢(Y,)} can be approximated by Gn = h(Xn| Xns, -+, X1) and G, =
B(Xn| Xner, -+ 5 X1, Yo). Furthermore, 0 < G, — G, < Bp"™,0 < p < 1,
where B = Np(loge)/(Ny min;,; m(<, j)).

Proor. There only remains to show that the approximations converge ex-
ponentially. We have

- X.| Yo, X1, o, Xu)
G, — G = Blog P Yo, Ko, -, Xo)
4 8 X X, X

Now p(X.| X1, -++, Xu1) = Ny min; ;jm(7, j) = 1/r > 0 and by the last
result p(X, | Yo, X1, ++ , Xo1) — p(Xu| X1, -+, Xu) < Npp" " There-
fore G, — @, =< log (1 + rNpp™™) = (loge)rNpp™ ™" = Bp" ™ for n sufficiently
large. Furthermore, since G, | H and G, T H we have that G, — Bp" ™ <
G. = H=G, =G+ B"".

It is interesting to note that the exponential bounds can be made independent
of the function ¢. '

ExamprLE. Consider the following transition matrix:

25 24 26 .25
23 25 24 28| withe¢(l) =¢(2) =1
27 25 26 22 #(3) = ¢(4) =2
25 26 24 25

Approximations for the entropy of this functional process are shown in Table 1.

M =
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TABLE 1
n G, G Difference
1 1.000 0000 0.999 2784 0.000 7216
2 0.999 3508 0.999 3505 0.000 0003
3 0.999 3508

6. Applications. A finite-state channel is specified by

(i) An input set A.

(ii) An output set B.

(iii) A finite set of states S.

(iv) A probability function p(b, s’ | a, s) which represents the probability
that, if the channel is currently in state s and receives the input a, it will move to
state s’ and produce output b. The capacity of such an indecomposable finite-state
channel can be defined in terms of the entropy of finitary processes, as follows.
Let the input process X;, Xz, - - - be a function of a stationary ergodic Markov
chain and let {X,, Y,} be the join input-output process. The capacity is the
upper bound over all such input processes of the rate R(X, ¥) = H(X) —
H(X | Y). For these channels, the capacity cannot easily be evaluated. For ex-
ample, the capacity of a simple two-state channel is not known. However, using
the estimates for entropies derived in the earlier sections, we can approximate
the rate of information of a finite-state channel for a given input distribution,
thus getting a lower bound for the capacity. This will be illustrated for the case
of a simple two-state channel. The computations® were performed on an IBM
704 digital computer using recursion formulas for the conditional problems.

We have for a two-state channel: A = {1,2}, B = {1, 2}, § = {1, 2} and

ol

p(b, s | a,s) if a#s,b=aqa,8=¢s"

[N

if a#s,b=3s,8=a
=1 if b=§ =a=s
= 0 otherwise.

Now we take an input distribution which is a function of a finite-state Markov
chain. Then the joint input-output process will be a function of a finite-state
Markov chain (the combined input state-output-channel state process). For
this input-output process {X, , Y.}, we can estimate H(X), H(Y), and H(X,
Y); hence also

R(X,Y)=H(X)+ H(Y) —HX,Y).

3 Supported by the Information Systems Branch of the Office of Naval Research under
Contract Nonr 222(53).
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In this example, we take a two-state Markov input

.

“pq
qa P

For computing purposes, we can represent the input, output and input-output
variables as functions of super variables, W of a Markov chain with transition
matrix:

2 3 4 5

0 0 ¢/2 g¢/2
p/2 p/2 0 O

0 0 g¢/2 g/2
92 ¢2 0 0

0 0 p/2 p/2
q/2 q/2 0 0

where the stationary probabilities are given by
>\1=>\5=1/(2+4q), A = N3’ = )\4=)\5=q(2+4Q)

The entropy associated with the {X} process is directly calculated H(X) =
—(p log p + ¢ log q). Thus to approximate the rate of the channel with this
input it is necessary to approximate the entropy only for the {¥} and {X, Y}
processes. Therefore, we have

Ru(X,Y) = HX) + Gu(Y) — Gu(X, ¥)

DO DO DO — = b
MNHNHHLQ
ootk w i =|F
o oy oyl
_BoOoW oOov oo

and
Bn(Xy Y) = H(X) + Qn(Y) - én(X; Y).

The results shown in Table 2 were obtained for different values of p of the
Markov input.

Let us modify the preceding example by feeding each input into the channel
twice. Then 4 = {(17 1), (27 2)},B = {(17 1)7 (1) 2)7 (27 1)7 (2) 2)}’ S = {1’2}

TABLE 2

p =050 p = 0.49 p = 0.51 p = 0.40
n B(X,Y) B(X,Y) R(X,Y) R(X,Y)
1 0.09816 0.09716 0.09903 0.08064
2 0.29116 0.28498 0.29719 0.22477
3 0.37951 0.37372 0.38514 0.31706
4 0.42435 0.41887 0.42969 0.36496
5 0.45000 0.44470 0.45519 0.39310




FUNCTIONS OF MARKOV CHAINS 937

TABLE 3
p = 0.50 p = 0.49 p = 0.51 p = 0.40
n R(XX,YY) R(XX,YY) R(XX,YY) R(XX,YY)
1 0.7595 0.7587 0.7597 0.7279
2 0.8884 0.8875 0.8888 0.8558
3 0.9480 0.9474 0.9481 0.9164
4 0.9754 0.9749 0.9753 0.9448
and
p(h,ba,s|a,a,8) =% if a=s,by=0abi=a,§ =5
=1 if a=ssbh=ab =53 =a
=1 if a=sbh=sb=a=a
=1 if by=be=8§ =a=s

= 0 otherwise..

Again we can represent the variables as functions of a Markov chain with the
following transition matrix:

XX vy w | 1 2 3 4 5 6 7 8
1,1 1,1 1 p O 0 0 g/4 ¢4 q¢2 0
1,1 21 2 p O 0 0 qg/4 q/4 g2 O
L1 12 3 p 0 0 0 g/4 g4 ¢2 O
L1 1,1 4 0 p/2 p/4 p/&4 0 0 0 ¢
22 22 5 g 0 0 0 p/4 p/4 p/2 0
22 21 6 0 ¢/2 ¢/4 ¢4 0 0 0 p
22 12 7 0 ¢/2 ¢4 ¢4 0 0 0 p
22 22 8 0 ¢/2 g/4 ¢4 0 0 0 »p

where the stationary probabilities are given by Ay = A3 = (2p + 1)/(6 + 4q),
A=MA=¢/(8+2¢) and s = As = As = N\s = ¢/(6 + 4q).

The results shown in Table 3 were obtained for different values of p of the
Markov input.

7. Acknowledgments. The author is indebted to Professor David Blackwell
for suggesting the problem and for his encouragement and guidance during its
solution. My thanks also go to the referee for his valuable comments.
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