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SEQUENCES OF DEPENDENT RANDOM VARIABLES'

By SmMmeon M. BERMAN
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Introduction. This paper contains an investigation of the limiting distribution
of the maximum term in sequences of random variables subject to certain kinds
of dependence.

The limiting distribution of the maximum term in a sequence of independent
random variables with a common distribution was completely analyzed in a
series of works by many writers; this research culminated in the comprehensive
paper of Gnedenko [5]. The assumption of a common distribution was dropped
by Juncosa [7]. Watson proved that under mild restrictions, the limiting distribu-
tion of the maximum in an m-dependent stationary sequence is the same as that
for independent random variables with a common distribution [11]. A complete
bibliography is contained in the book by Gumbel [6].

The first section of this paper contains a brief review of the classical case of
independent and identically distributed random variables as given in Gnedenko’s
paper [5].

The present work generalizes the classical theory.

1. In the second section, the maximum term in a sequence of exchangeable
random variables is considered. The limiting distribution is a mixture of the
distributions obtained in the case of independent random variables. This is
analogous to the findings of Blum, Chernoff, Rosenblatt, and Teicher [2] and
Buhlmann (3], who discovered that the limiting distributions of the sums of
exchangeable random variables are mixtures of normal distributions.

2. The second generalization is the case where the number of random variables
congsidered in the determination of the maximum is itself a random variable N, ,
depending on a nonnegative, integer-valued parameter n. If the sequence {N,}

is distributed independently of the observed random variables, and if N, L
as n — o, then the limiting distribution of the maximum is a mixture of the
kind described in the previous paragraph. This is similar to the result of Robbins
that the limiting distribution of the sum of a random number of random variables
is a mixture of normal distributions [10].

A theorem is also stated for the case where the sequence {N,} may depend
on the observed random sequence; an analogous theorem for sums has also been
given by Anscombe [1].

Any result obtained for the maximum term is also valid, with appropriate
modifications, for the minimum term.
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This study treats only the distribution of the maximum term in sequences of
dependent random variables with the same marginal distributions. For this
reason, the distribution of the maximum partial sum in a sequence of random
variables, about which there is a large body of research, is not considered.

1. Review of the classical case. Throughout this paper, the distribution
function of a random variable X will be denoted by P{X =< z} = F(x). The term
““distribution function’ will be abbreviated as “d.f.”” A d.f. is said to be proper if

lim,,., F(z) =1, lim,, , F(z) = 0;

otherwise, it is improper. A d.f. will be assumed proper unless the contrary is
stated. The expected value of a random variable X will be denoted by EX.

Let X;, Xz, -+, X,, --+ be a sequence of independent random variables
with the common df. F(z). For each integer n = 1, let Z, = max
(X1, ,X,). Thedf.of Z,is P{Z, = o} = P{X, Sz, ,X, S a} =F" ().

The limiting d.f. of Z, belongs to exactly one of three types; specifically, if
there exists a d.f. ®(x) and sequences {a,} and {b.} where a, > 0 for n = 1,
such that

lim, ., P{a;' (Z, — b,,)‘ =< z} = ®(x)

at each continuity point x of ®(x), then ®(z) belongs to one of the following
types. '

®y(z) =0 forz £0
= exp [—27] forz > 0;a>0
(1.1) P () = exp [—(—2)7] forz < 0;a>0
=1 forz 20
B3 (x) = exp [—e 7] — <z < ®

These are often called the extreme value d.f.’s.
Some useful relationships between the marginal d.f. F(z) of the sequence
{X,} and the limiting d.f. ®#(x) of Z, are now mentioned. If z is a point such that

0 < ®&(z) < 1, then

0 < Fla,x+b,) <1, for all large n,
limy,e Flaz + b,) = 1.

From (1.2) it follows that

(1.2)

) _log Fla,z +b.) _ .
(13) limgow — PEpe gy = 1

(1.4) limy,en(l — Fanxz + b,)) = —log ®(x).

Gnedenko found the conditions for F(x) which are necessary and sufficient




896 SIMEON M. BERMAN

for the convergence of the d.f. of Z, to each of the three types; in other words, he
characterized the domains of attraction. The normalizing sequences {a.} and
{bs} are computed from the d.f. F(z) according to the domain of attraction to

which it belongs.
If F(z) is in the domain of attraction of ®qy(z), then F(xz) < 1 for every

finite z, and
(1.5) bo=0; 1—F(a) ~n" < Gy

If F(z) is in the domain of attraction of ®«) (x), there exists a finite number x,
such that for any ¢ > 0,

F(xo)=1, F(xo—€)<1;

—1
b, = 20, 1—F(xo— an) ~n, Ony1 = Ay .

(1.6)

If F(z) is in the domain of attraction of ®¢y (), and if x, is the least upper bound
of all x such that F(z) < 1, then z, may be either finite or infinite. In both cases,
the relations

(1.7) 1—F(by) ~n™" 1 —F(ant+by) ~(ne)™, ba=bun
are valid.

2. Exchangeable random variables. Let (Q, @ P) be a probability space:
Q is a set of points w, @ is a Borel field of subsets of @, and P is a probability
measure on @. A sequence {X, : n = 1} of random variables defined on this space
is called exchangeable if the joint d.f. of any number m of these random variables
does not depend on their subscripts but only on their number m [8; p. 364].
The joint d.f. of m of these random variables will be denoted by Gu(z1, -+ - , Zm),
for each m. According to the fundamental theorem of de Finetti, Gn(z1, - , Tm)
can be represented as a mixture of joint d.f.’s of m independent and identically
distributed random variables [8; p. 365]. Specifically, one can write

(2:1) Galor, -+ ) = [ Guln) -+ Gulam) dP(),

where for fixed x, G,(x) is a random variable, and for each w, G,(x) is a d.f. in z.
From the representation (2.1), the d.f. of the maximum of n variables,
Zn = max (X1, -+, X,), is obtained:

(22)  PlZ.S7) =Gz, ,2) = [ GI(x) dP() = BAL(),

The problem to be presented here is that of finding the limiting d.f. of Z, ,
that is, finding sequences {a,} and {b,} and a d.f. L(z) such that a, > 0 and
(2.3) liMpsw P{@7'(Zn — by) £ 2} = limy.e EGa(anr + b,) = L(2)

for all points z in the continuity set of L(x). This paper will consider the class of
d.f.’s L(z) which can be obtained by using pairs of normalizing sequences which
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are, in fact, normalizing sequences for the limiting d.f. of the maximum in some
sequence of independent random variables with some common d.f. F(z). In
other words, the pairs of sequences ({a.}, {b.}) to be used in (2.3) are those for
which there exists a d.f. F(x) such that for all x,

(2.4) lim,.o F*(a.x + b,) = ®(x)

where ®(x) is an extreme value d.f. (see (1.1)). The continuity set of ®(z) is
the entire real line.

The following three theorems characterize the limiting d.f.’s of the maximum
in the three cases corresponding to the domains of attraction to which F(x)
belongs. The necessary and sufficient conditions for convergence to these limiting
d.f.’s are also given in each case.

TaeEOREM 2.1. Let {X, : n = 1} be a sequence of exchangeable random variables
on (2, @, P) such that the joint d.f’s have the representation (2.1); let
Z, = max (Xy, -+, X,). Suppose that there exist a sequence of positive numbers
{a.} and a d.f. F(x) in the domain of attraction of ) (x) such that (2.4) is true for

b =0; ®(z) = 2 (z).

Then,
(a) There exists a nondegenerate d.f. L(x) such that for all x in its continuity set
(2.5) lim,.e P{a7'Z, < 2} = lim,., EGa(ax) = L(z)
if and only if there exists a d.f. A(y) such that for all y in ils continuity set.
. log G,(u) _ }_
(2.6) lim,, e P{m S Yo = A(y),
where A(y) satisfies the conditions ‘
(2.7 A(w) — A(0—) =1; A0+) — A(0-) <1
(b) L(x) s necessarily of the form
L(z) =0 <0
= [ o@D @) 220

Proor. It follows from (1.5) that a, — < ;if x is negative, then, from (2.5),
L(z) = lim,., EGy(anx) = lim,. EGy(anr)
lim,., P{X; £ a.x} = 0.

It will now be shown that (2.6) and (2.7) imply (2.5) for z > 0. If (2.6)
holds, then by the extended Helly Bray Lemma [8; p. 181], for every s > 0,

i 2o |~ [ - [
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The left side is the limit of a sequence of monotone functions and the right side
is a continuous function; hence, the convergence is uniform in s on each closed
and bounded interval. Since z > 0,®q)(x) is not 0 or 1, and from (1.2) it follows
that for all sufficiently large n,

0 < —log F(a.x + b,) < .

It follows from these facts that if one uses the conventions, log0 = — « ;¢ = 0;
04 = o; 0/4 = «, that

. n L n _log G.(an x)]}
lim BG:(an @) = lim E {eXP [log F*(an 2) log F(a, x)

= [ e b log ()] d4 () = [ e (@) dA().

The condition (2.6) implies the convergence in (2.5) to a function L(z) of the
form given in (b).
Such a function is a nondegenerate d.f. if and only if (2.7) holds; in fact

lim L(2) = lim [ @) dA(y) = A(=) — 4(0-)

Z->00 z

and
L0+) = lim [ @@l dA(y) = A(0+) — 4(0-).

This completes the proof of the sufficiency of (2.6) and (2.7) for the convergence
in (2.5) to a d.f. of the type in (b).

The necessity will now be verified. The sequence {a,} may be replaced by the
sequence {a..k /%) without any change in the limiting d.f. [5]. The sequence of
random variables {G%(a,)} has a limiting d.f. In fact, for each positive integer %,
it follows that lim,., B[G5(a,)]f = lim,., BG*(auk™*) = L(K™*). The
sequence of real numbers {L(%¥ %) : k = 1} is bounded by 0 and 1; hence, it is
the moment sequence of a unique d.f. By the moment convergence theorem
[8; p. 185], the d.f. of G5 (a.) converges to the d.f. with the given moment se-
quence. Since 0 < G5 (a,) = 1, it follows that 0 < —n log G.(a,) £ «,and that
the d.f. of the latter random variable converges at all points of continuity to some
d.f. A(y), which is not necessarily a proper d.f.

Let {u.} be a sequence of real numbers such that u, — . Since F(z) is in
the domain of attraction of ®uy(x), 0 < F(u.) < 1 for all sufficiently large =,
so that

llog G(un)]/llog F(un)]

is a well-defined, extended real valued nonnegative random variable. By the weak
compactness theorem, one can extract a subsequence

(log Gu(un,)]/ (log F (un,)]

whose d.f.’s converge to a monotone function at all continuity points.
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Since {u,,} is a subsequence of {u,}, the former also tends to infinity; the
sequence {a,} also tends to infinity; furthermore, it follows from (1.5) that the
{an} increase monotonically. For every k sufficiently large, there is an index m
depending on % such that @m = ., < @m4:1; hence, by the monotonicity of
Go(z) and F(z),

log Go(@mi1) _ log Gu(un,) _ log Gu(am)
log F(an) = log F(un) = log F(ams)

Since, from (1.3) and (1.5),
—log F(am) ~1 — F(an) ~m™,

it follows that the left and right ends of the inequality above are asymptotic to
—m log G,(an). From this it follows that

llog Go(un,)]/[log F(tn,)]

has the same limiting d.f. as —m log G',(ax). But it was shown above that this
df. is A(y). The sequence {u,} and the subsequence {u.,} were chosen inde-
pendently of {a,} ; since .

llog Gu(uny)]/llog F (uny)]

is an arbitrary subsequence which has a limiting d.f., every such subsequence
has the limiting d.f. A(y); therefore, the sequence itself has the limiting d.f.
A (y). Furthermore {u,} is an arbitrary sequence of numbers tending to infinity;
therefore, for all y in the continuity set of A(y)

limy.o P{([log Gu(%)]/llog F(w)]) = y} = A(y).
This completes the proof of (2.6); L(x) is necessarily of the form (b), by the
proof of the sufficiency of (2.6) given above. The fact that A (y) satisfies (2.7)
follows from the assertion confirmed before that L(x) is a nondegenerate d.f.
if and only if (2.7) is true.
THEOREM 2.2. Let {X, : n = 1} be a sequence of exchangeable random variables
on (Q, @, P) such that the joint d.f.s have the representation (2.1); let
» = max (X, -+, X,). Suppose that there exist a sequence of positive numbers
{an}, a real number x, , and a d.f. F(x) in the domain of atiraction of ®u(x) such
that (2.4) 1s true for by, = o ; ®(x) = B9y (). Then,
(a) there exists a nondegenerate d.f. L(x) such that for all x in its continuity set,

(2.8) N paw Pz (Zn — 20) < @} = M poew BGOS(anz + o) = L(z)

if and only if there exists a monotone nondecreasing function A(y) such that for all
y in its continuity set

(2.9) limy.z,— P{([log Gu(w) /log F(u)]) = y} = A(y)
where A(y) satisfies the conditions
(2.10) A(0+) — A(0—) = 0; 0<A(w) —A(0-) =1;
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and furthermore,
(2.11) P{X1 = xo} = EGw(xo +) = 1.
(b) L(z) s necessarily of the form
L) = [ B dA@) 2 <0
=1 z = 0.

Proor. The proof of the sufficiency of (2.9), (2.10), and (2.11) in the case
where z < 0 is analogous to the proof of the case x > 0 in Theorem 2.1. It is

necessary only to replace a.x by a.x + .
If £ = 0, then lim,, ., EG;(a.x 4+ x) = 1. In fact, since 1 — G, (20 +) = 0,
and from (2.11),

E(1 — Go(xo+)) =1 — P{X; < 2} =0,
it is clear that G(zo +) = 1; hence,
limg 0 EGG(@nx + 2o) 2 limase BEGG(x0 +) = 1.

The proof of (b) is similar to that of (b) in Theorem 2.1.

The necessity of (2.9) and (2.10) follows as in the latter theorem: {a,} is
replaceable by {a.k"%, and the sequence of random variables {Gu(a. — Zo)}
is used in place of {G,(a,)}. It remains only to show the necessity of (2.11).
Suppose that (2.8) holds for some d.f. L(z); let

D = {w:Gulzs +) < 1}; D ={w: G,z +) = 1};
then,

£(a) = lim ([ + [ ) 62enz + 20 ar.

It follows from (1.2) that for z = 0, a.x + zo — 2o + ; hence, for w in D,
| it oo G (G + 20) = O,
and the bounded convergence theorem shows that

1msz(a,,x+xo) dP = 0, 22 0.
n->00 YD
The integral over D’ clearly converges to P(D’) so thatforz = 0, L(z) = P(D’);
since L(z) is assumed to be a proper d.f., P(D’) = lim,., L(z) = 1, so that
(2.11) must hold.

TaEOREM 2.3. Let {X,} be a sequence of exchangeable random variables on
(2, @, P) such that the joint d.f’s have the representation (2.1); let Z, =
max (X1, + -+, X,). Suppose that there exist sequences {a,} and {b,} and a d.f.



DISTRIBUTION OF RANDOM VARIABLES 901

F(z) in the domain of attraction of ®@) (x) such that (2.4) is valid for
<I>(x) = @(3)(12).

Let xo be the least upper bound of all real x such that F(x) < 1; xo may be finite
or + . Then,
(a) there exists a nondegenerate d.f. L(x) such that for all x in its continuity set

(2.12)  limn.e P{a3'(Z, — b,) < 2} = limg,e EGe(awz + b,) = L(z)
if and only if there exists a d.f. A(y) such that for all y in its continuity set

(2.13) limy.q— P{[log Gu(u) /log F(u)] = y} = A(y),
where A(y) satisfies the conditions
(2.14) A0+) — A(0—) = 0; A(o) — A(0—) = 1.

(b) L(x) s necessarily of the form
L@) = [ 2@ diw) —w << .

Proor. The sufficiency of (2.13) for the convergence in (2.12) has the same
proof as the case £> 0 in the proof of Theorem 2.1; it is necessary only to sub-
stitute a.x + b, for a.zx.

The necessity of (2.13) follows as in the proof of Theorem 2.1 : {b,} is re-
placeable by {b.x— a.x log k} and the sequence of random variables {G.(b,)}
takes the place of {G(ax)}.

Theorems 2.1, 2.2 and 2.3 characterize the limiting d.f.’s and give necessary
and sufficient conditions for convergence; yet the conditions (2.6), (2.9) and
(2.13) are not in a form that is usable in applications, since the d.f. of G,(x)
may be unknown. For this reason, an equivalent, but more convenient condi-
tion will be given. In the following, z, is defined as in Theorem 2.3.

LemmA 2.1. The limiting d.f. of

log G, (u) /log F(u) U — To—
1s the same as that of
1 — Gu(w)l/I1 — F(w)] U — To—.
Proor. This follows from the asymptotic expansion
—log Gu(u) ~1 — Gyu(u) U — To—

over the set of w where G, (zo—) has the value 1; from a similar expansion for
log F(u) ; from the fact that the random variable under consideration in the
lemma tends to zero on the set of w where G, (2o—) is less than 1; and from the
well-known theorem of Cramér [4; p. 254].

The random variable [1— G.,(u)]/[1— F(u)] is a bounded random variable
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for each 4 < zo so that its d.f. is uniquely determined by its moments. The
mth moment is

e[ =5 - [l % (7) -omecor

) 4
{1+Z< >( —-1)°'P{X; ,.-..,X,-gu}.

The formula for the probability of the intersection of m events in terms of the
intersections of the complements, together with the property of exchangeability
of the variables X, , yields the identity:

1+Z( )( —DP{X;Su, -, XiSu) =P{Xi>u -, Xn> ul;

it follows that

1 — Gu(\" _ P{Xi>u, -, Xn > uj
(2.15) B {‘1_—‘— 7w } R )

Let A.(y) be the unique d.f. with the moments given by (2.15), that is, the
df.of [1 — Gu(w)l/[1 — F(u)].

THEOREM 2.4. Let A,(y) be the d.f. with the moments given by (2.15) ; then the
condition
(2.16) limy.zy- 4u(y) = A(y)

at all continuity points is equivalent to (2.6), (2.9), and (2.13).

Proor. This is a direct result of Lemma 2.1 and (2.15).

CororLrAry 2.1. If A(y) is uniquely determined by a moment sequence
{om : m = 1}, then (2.16) holds if for each m,

Hmu—»zo—{P{Xl > Uy 7X’m > u}/[l - F(u)]m} =Vm.

Proor. This follows from the moment convergence theorem [8; p. 185].
COROLLARY 2.2. If there exists a constant ¢ > 0 such that

limy,ze— {P{X;: > u}/1 — F(u)} = c¢ and
]imu»zo— {P{Xl > u, Xz > u}/[]- - F(u)]z} = 027

then the limiting d.f. L(x) in Theorems 2.1, 2.2, and 2.3 is of the same type as
‘I‘({)(ID), 1 = 1, 2, 3.
Proor. It follows from (2.15) and (2.17) that

limyp— B{[1 — Gu(w)l/[1 — F(w)l} =
limyzo B[l — Gu(w))/[1 — F(w)]}* =

(2.17)
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Therefore, [1 — G,(u)]/[l — F(u)] converges in mean square to ¢ as u — 2o—.
Mean square convergence implies the convergence of the d.f.; hence, (2.16)
holds with A (y) the d.f. which is degenerate at c. It follows from Theorems 2.1,
2.2 and 2.3 that for each z,

lim, ., P{a;'(Z, — b,) < a} = ®y(x).

It is evident for the three types of ®;(x) given in (1.1) that ®{;(z) is of the
same type as ®;(z),7 = 1,2, 3.

The class of d.f.’s L(x) obtained in Theorems 2.1, 2.2, and 2.3 will now be
analyzed. For each d.f. A(y), there are three types of d.f.’s L(x), corresponding
t0<I>(¢)(:c), T = 1, 2, 3, given in (11)

Ly(z) =0 forz <0
= f &y (zy™'*) dA(y) r=0

0
Lo() = [ ®a(a) dA() 2 <0
=1 z = 0.
Lo (z) =fo B (z — logy) dA(y) —w <z < w.

These d.f.’s have the following significance: if Y is a random variable with
the d.f. A(y) and X;, 7 = 1, 2, 3 a random variable distributed independently
of Y, with the d.f. ®;(x), then

L (z) is the d.f. of the product Xa,-¥Y"%;
L (z) is the d.f. of the quotient X o)/ Y"*;
L (z) is the d.f. of the sum X + log Y.

The normal d.f. is not representable in any of these forms for any choice of
A(y). Lgy(z) and L (x) cannot be normal d.f.’s because

Ly(x) =0 forz < 0; Lo(zx) =1 forz = 0.

But even L) (z) cannot be a normal d.f.; it is the d.f. of the sum X + log ¥,
and according to the normal decomposition theorem [8; p. 271], the sum of two
independent random variables has a normal d.f. if and only if both have a nor-
mal d.f.

ExAMPLE. Let

A(y) =0, T
=1—¢° z > 0.

IA
L
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Then,
4 Lu(z) =0 =0
=1+ z > 0.
Lo(z) = (1 4+ (—2)7" <0
=1 220
Ly(z) = (1497 —o <z < o,

L (z) is the “logistic” d.f.; it is the convolution of the d.f.’s of the random
variables T and —7", where T and 7" have the d.f. &3 ().

3. Random Numbers of Random Variables.
Let {X,:n = 1} be a sequence of independent random variables with the
common d.f. F(z), which is in the domain of attraction of ®(x), one of the

extreme value d.f.’s in (1.1).
Let {N, : n = 1} be a sequence of nonnegative, integer-valued random vari-

ables distributed independently of the sequence {X,}. Let N, have the d.f. given
by P{N, = k} = p.(k), k = 0, where for fixed n, p,(k) = 0; 20 pa(k) = 1.
A sequence of random variables W, is defined as

W,= —o if N =0
= max (X;, -+, Xy,) if N, > 0.
Then the d.f. of W, is
P(W, < o) = 3 (W),
This d.f. is not necessarily proper:

lim,,—o P{Wo < 2} = pa(0) 2 0.

Suppose that N, — < in probability as n — . The following theorem char-
acterizes the limiting d.f. of a;'(W,. — b,) and gives necessary and sufficient

conditions for convergence.
TaEOREM 3.1. There exists a d.f. L(x) such that for all x in its continuity set,

(3.1) limp.w Pla7'(Wo — by) < 2} = limaae kz_:opn(k)lf"‘(anx + b)),

= L(x)
#f and only if there exists a d.f. A(y) such that for all y in its continudty set
(3.2) lima.o P{n 7N, < y} = A(y),

where A(y) satisfies the following condition: If F(z) s in the domain of attraction
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of ®w(z), ¢ = 1, 2, 3, A(y) satisfies (2.7), (2.10), and (2.14), respectively;
Sfurthermore, L(x) s of the form indicated in part b of Theorems 2.1,2.2,2.3, respec-
trvely.

Proor. If F(z) is in the domain of attraction of ®¢)(x), then b, = 0, and if

z < 0, then
limyw P(a W S 2} = limren pa(0) + e 3 pa(K)P*(0r2).
Since N, — o« in probability, the first term on the right is 0; since a, — =,
limg,.., fi Pu(B)F*(aaz) = liMpsw F(anz) Z; pa(k) = 0;

therefore, the entire expression is 0.
If F(x) is in the domain of ¢ () and if z > 0, then F(a,x + x0) = F(x) = 1
and

lim,.o P{an (Wa — 20) < 2} = limp.e kzop,,(lc)Fk(anx + )

> limaae g pu(k) F¥ (o) = kzoj pa(k) = 1.

If

(a) F(z) is in the domain of attraction of ®uy(z) and z > 0; or

(b) F(x) is in the domain of attraction of & (z) and z < 0; or

(¢) F(z) is in the domain of attraction of ®¢)(x) and — o < z < o ; then

0 <®i(z) <1 i = 1, 2, 3, respectively,
and, by (1.2), log F(a.x + b,) is finite and not zero for all sufficiently large n, and

Pla (W —b) S 2 = 3 pa(k) P @z + b)

= Efexp [n log F(a.x + b,) (N./n)]}.

The proof of the sufficiency of (3.2) is identical with the corresponding proof
of the sufficiency in Theorem 2.3, after the replacement of {log G.(a.x + b,)/
log F(a.x + b,)} by {n'N,}.

It remains only to prove the necessity of (3.2). The sequence of random
variables {n'N,} has a subsequence {n;'N,} whose d.f.’s converge to some
monotone function A (y) at all continuity points; for every s > 0, it follows that

limgse E{exp [—snz'N,,]} = fo eV dA(y)

uniformly in s on each closed and bounded interval, as in Theorem 2.1. If z is
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a number such that 0 < ®(z) < 1, it follows from (3.1) that
L(z) = limg.w E [exp (log F**(anx + bay)ni ‘Nay)]

= ‘[o exp [y log ®(x)] dA(y).

Since L(®'(¢™")) is the Laplace transform of A (y) and —log ®(z) assumes
every positive value as z goes through its range of values, it follows from the
uniqueness of the Laplace transform that every convergent subsequence of d.f.’s
of {n'N,} has the same limit A4 (y) ; hence (3.2) is valid. The conditions given on
A(y) in each of the three cases are proved as in the preceding theorems. The
proof is now complete.

In Theorem 3.1 it was assumed that {N,} and {X,} were distributed inde-
pendently of each other. The case in which this is not assumed is more difficult,
and there is only a partial analogy to the theory of the limiting distribution of
the sum of a random number of random variables. It was shown by Rényi [9]
that the limiting distribution for the partial sums is normal under the condition
that n N, converges in probability to a discrete positive random variable. It
is clear from Theorem 3.1 that the usual extreme value distribution is not, in
general, the limiting distribution of the maximum of a random number of random
variables in the case where n™'N,, converges in probability to a discrete positive
random variable.

In the case where {N,} and {X,} are not assumed to be independent the writer
was able to prove only the following analog of a less general theorem of Anscombe
[1], who showed that the ordinary central limit theorem holds for the partial
sums when n "' N, converges in probability to a positive constant.

TuroreM 3.2. If {N,} and {X.} are not necessarily independent of each other,
and if there exists a positive number ¢ such that

(3.3) n'N, —¢ in probability,

then, for every x,
lim,.., P{az" (W, — b,) < 2} = ®°(z).

Since ®°(z) is of the same type as ®(z) ‘(see (1.1)), W, has a limiting d.f. of the

same type as ®(z).
Proor: If (3.3) is true, then for every 6§ > 0,

(3.4) limy.e P{N, = n(c — 68)} = limysw P{N, = n(c + §)} = 0.

The event {W, = a,x + b,} can be decomposed into the union of the mutually
exclusive events,

U (¢ random variables are observed and none are greater than a,r + b,}
k=0
= U{N.=k2Z = max (X3, -+, Xz) < a.x + b,}.

k=0
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Then,
P(W, < a.x + b)) = 2 P{N, = k, Z < anz + by}

k=0
(35) [n(c=8)] [7(c+8)] o

k=0 k=l (e—8)1+1 k=t o)1+

where [¢] stands for the largest integer less than or equal to ¢.

It follows from (3.4) that the first and third sums in (3.5) tend to zero. The
limit of the middle sum in (3.5) is now computed. Let E, be the event
E, = {[n(c — 8)] < N, < [n(c + 8)] + 1}, and E, the complement of this

event. For a fixed n, the events
k

{Zr £ aux + b, = N {X: = aur + b}, k=12 --.

=1
form a monotone nonincreasing sequence; hence
[n(c+d)]
P{Nn = k; Z[n(c+6)] = anx + bn}

k=[n(c—8)1+1

[n(c+d)] '
(3.6) < > P{N, = k; Z; < a.x + b}

k=[n(c—0)]1+1
[n(etd)]

IIA

P{N, = k; Zin@e-5141 = @ + ba}.

k=7 (c—8)1+1
The last expression in (3.6) is no greater than
PUEY; Zine-n S @z + b} = FU (g0 + b,).

The first expression in (3.6) greater than or equal to F'"“* (q,z + b,) — P{E,}
since
P{E.; Zinem = @ + bal

= PN gz + by) — P{Ziern S aut + bas (B}
Since, from (3.4), lim,.,, P{E,} = 0, it follows that

limpe {F"C (a2 + b,) — P{E,}} = limpaw [F"(anz + b))

= [®(2)]"",
and

liMusw PPN (0,2 + by) = liMpow [F™ (@2 + b)) = [®(2)]";

hence,

s [n(c+d)] [n(c+8)]
[®(2)]°™ < lim inf > < lim sup > < [®(2)]%
n->0 k=[n(c—0)1+1 n->0 k=[n(c—~08)1+1

Since & is arbitrarily small, the limit of the middle sum in (3.5) exists and is
equal to ®°(x).



908 SIMEON M. BERMAN

4. Acknowledgments. This paper contains the first part of the author’s Ph.D.
dissertation written at Columbia University. The author is indebted to Pro-
fessors Gisiro Maruyama and Ronald Pyke for guidance during the writing of
the dissertation, and to Professor E. J. Gumbel who introduced the author to
the problems of extreme values, obtained the support necessary for this
work, and expressed unceasing interest in it.

REFERENCES

[1] ANscoMBE, F.J. (1952). Large sample theory of sequential estimation. Proc. Cambridge
Philos. Soc. 48 600-607.

[2] Buum, J., CrErNoOFF, H., RosENBLATT, M., AND TEICHER, H. (1958). Central limit
theorems for interchangeable processes. Canad. J. Math. 10 222-229.

[3] BurLMANN, HaNs. (1960). Austauchbare stochastische Variabeln und ihre Grenz-
wertsaetze. Univ. Calif. Pubs. Stat. 3 1-36.

[4] CraMER, HARALD. (1946). Mathematical Methods of Statistics. Princeton Univ. Press.

[5] GNEDENEO, B. V. (1943). Sur la distribution limite du terme maximum d’une série
aléatoire. Ann. Math. 44 423-453.

[6] GumBEL, E. J. (1958). Statistics of Exiremes, Columbia Univ. Press.

[7] Juncosa, M. L. (1949). On the distribution of the minimum in a sequence of mutually
independent random variables, Duke Math. J. 16 609-618.

[8] Lo&ve, MicrEL. Probability Theory.2nd Ed., Van Nostrand, Princeton.

[9] RéNyI, A. (1960). On the central limit theorem for the sum of a random number of
independent random variables. Acta Math. Acad. Sci. Hungar. 11 97-102.

[10] RoBBINs, HERBERT. (1948). The asymptotic distribution of the sum of a random
number of random variables. Bull. Amer. Math. Soc. 54 1151-1161.

[11] WaTsoN, G. S. (1954). Extreme values in samples from m-dependent stationary sto-
chastic processes. Ann. Math. Statist. 26 798-800.



