SUCCESSIVE CONDITIONAL EXPECTATIONS OF AN INTEGRABLE
FUNCTION!

By D. L. BURKHOLDER
Unaversity of Illinois and University of California, Berkeley

1. Introduction. Rota [5] has shown recently that if {7} is a sequence of
conditional expectation operators,

(l) Sn = TOTI e Tn—lTnTn—l e TITO )
and X is a random variable such that?
(2) E(|X|log™ |X]) < =,

then the sequence {S8,X} converges almost everywhere to an integrable function.’®

Here an example is given showing that this result fails to hold if (2) is re-
placed by E |X| < «. Moreover, it is shown that (2) is a necessary condition
for the almost everywhere convergence of {S,X} for every { T} if the underlying
probability space (2, @, P) is rich enough to support independent identically
distributed random variables X; , X5, - -- such that X; = X.

The idea behind our approach has several other applications. One is that (2)
is a necessary condition for

E(sup, [X; + -+ + Xu|/n) < e,

where X; , X, - - - are as above. (Sufficiency is well known.) Another is a varia-
tion on the strong law of large numbers.

The example has the following feature: The sequence of conditional expecta-
tions T, T., --- is defined by a decreasing sequence of sub-o-fields, hence the
operator S, of (1) satisfies S, = ToT,.Th .

2. Example. Let X be an integrable random variable and {a.} a real number
sequence such that

(3) 21P(X > an) = ©,
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1 This research was supported by the National Science Foundation under Grant No.
G19667. ‘

2 For real z, log* x = log z if > 1, = 0 otherwise.

3 This significantly extends an earlier result of Chow and the present author [2]. In his
paper, Rota assumes slightly more than (2), namely that E |X I ? < o for some p > 1,
However, as he has observed elsewhere (at the Symposium on Ergodic Theory, Tulane Uni-
versity, October, 1961) and as is clear from his method of proof, the condition (2) is suffi-
cient. Rota also proves a similar proposition for more general operators by reducing it to a
question about successive conditional expectations. Other closely related results have been
obtained by E. M. Stein [6].
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(4) limwB (X | X > au)/n = .

Such exist as we show later. (For measurable sets A, E(X | A) = [4XdP/P(4)
if P(A) > 0 and, for definiteness, let us suppose that E(X| A) = EX otherwise.)
Let X;, X, - - - be independent random variables, each with the same distribu-
tion as X. Let ¥, = Xjandif n > 1,let ¥, = E(X | X > a,) on the set

{o] Xn(w) > a,

= FE(X | X = a,) on the set {w]| Xa(w) = a.}. Let To = E(- | Yy, Yo, --+)
and if n > 0, letT, = E(- | X1+ --- + X, k = n) and S, be defined by
(1). Then, almost everywhere

SnXl = TOTnTOXI = TOTnXl = TO(XI + e + Xn)/n
=(EX | )+ -+ EXa|Yw))/n= Y1+ -+ Ya)/n

By Borel-Cantelli, the definition of Y, , and (3), we have that almost everywhere
Y, = E(X | X > a,) for infinitely many positive integers n. Therefore, lim
SUPrswY /N = o almost everywhere, using (4). If X is nonnegative, then al-
most everywhere Y, 4+ -+ + Y, = Y, and lim sup,..S,X; = . Otherwise,
one may proceed as follows: The condition (4) implies that @, — <, which im-
plies that E(X |X = a@.) — EX, which in turn implies that there is a real number
csuch that ¥, = ¢, n = 2, 3, --- . Therefore, almost everywhere

lim supn-0S,X; = lim suppaw((Yo—¢) + --- + (Yo —¢))/n+ ¢
= lim suppsw(Y, —¢)/n+ ¢ = .
Here, in short, the desired type of convergence fails to hold.

‘We now show that X and {a,} satisfying (3) and (4) exist. Let X be a random
variable with the density f, relative to Lebesgue measure, where

flz) =0ifz < 4,
=c/(z’logzlog’logz) if =>4,

where ¢ satisfies [Zof(z)dz = 1. Let {@.} be any real number sequence such that
P(X > a,) = ¢/(nlogn) for all large n. Then X is integrable, (3) is satisfied,
and a, — . The relation (4) also holds since for all large n, log log a, > 1,

a < BX|X > ) = 1B [ af(a) ap = BB <
’ c an log log a.

log log a, < log log n’,

log n log n’

E(X|X > an)/n = logloga, =~ 2loglog n?"

3. A more precise result.
TrrEoREM 1. Let X be an integrable random variable and X, , X, , - - - tndependent
random variables each with the same distribution as X. The following statements are

equivalent:
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(i) E(Xlog" X) = .

(ii) E(sup, X,/n) = o,

(iii) B(sup.(X; + --- + X,)/n) = .

(iv) There is a sequence {T,} of conditional exrpectation operators such that
lim sup,.S.X; = © almost everywhere, where S, is defined by (1).

REMARKS. Since
E(|X|log" |X|) = E(Xlog" X) + E((—X) log* (—X)),

at least one of the terms on the right is infinite if the left side is infinite. Thus, if
(2) does not hold and X; , X,, - - are independent random variables each with
the same distribution as X, we have by Theorem 1 that

E(supn |X1 + .- +an/n) = x©,

there is a sequence {7T,} of conditional expectation operators such that
lim Supsw |S,X1| = « almost everywhere, and so forth.

Blackwell and Dubins [1] have proved recently, along with other results, that
if X is a nonnegative integrable random variable such that E(X logt X) = o,
then there is defined on some probability space a random variable X; with the
same distribution as X and a decreasing sequence {@,} of sub-s-fields such that
sup, E(X;|@,) is not integrable. The implication (i) => (iii), in the above
theorem, implies this result since almost everywhere

E(X1IX1++Xk,kgn)=(X1++Xn)/ny n=1,2)"'

The following result is used in the proof of Theorem 1.
LemMA 1. Let X be an integrable random variable and ¢(a) = E(X | X > a) for
real a. Consider the following statements:

(i) E(Xlog*X) = .
(ii) BY(X) = oo.
(iii) There is a sequence {a,} satisfying (3) and (4).

The tmplication (1) = (ii) holds. Also, (ii) = (iii) under the further condition
that the distribution function of X is continuous.

REeMARKs. There is an integrable random variable X such that E(X log + X) =
o and no sequence {a,} of the desired type exists. That is, (i) does not imply
(iii) without some further condition. On the other hand, (iii) = (i), which fol-
lows from Section 2 and the implication (iv) = (i) in Theorem 1. The implication
sign in (i) = (ii) cannot be reversed. Let ¢(a) = E(X| X = a) for real a. Then
the statement Ep(X) = o« is equivalent to (iii). Under the further condition
that the distribution function of X is continuous, ¢ = ¢ and all four statements
are equivalent. Since none of these remarks are used in the following, their proofs
are omitted.

The nonequivalence of (i) and (iii) makes the proof of Theorem 1 slightly more
complicated than it otherwise would be but has no effect on the content of the
theorem itself.
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Proor or LEMMA 1. (i) = (ii) : To prove this we may suppose that X is non-
negative: Letting Xt = max {0, X} wehave that E(X logt X) = E(X*log™ X™)
and EY(X) = (EX — ¢(0))P(X £ 0) + EY(X™), using the fact that ¢ is
bounded from below by EX. Also, we may replace X by any other random vari-
able with the same distribution. Therefore, we may and do assume here that our
probability space is the open interval (0, 1) under Lebesgue measure and that our
random variable X is a nonnegative nonincreasing right-continuous function on
(0,1). Let Y(w) = [¢X(t)dt/wfor 0 <w < 1 and X '(a) = inf{w|X(w) £ a}
for all real a for which the set is nonempty. Then Y is nonincreasing, X (X () )
< w,and {w | X(w) > a} = {0]| X '(a)> «}. By (i), which we assume, X is
unbounded and therefore X *(a) > 0. Thus, ¢(a) = Y (X '(a)), ¢(X(w)) =
Y(X'(X(w)) = Y(w), and E¢(X) = EY. By Hardy and Littlewood ([4],
Theorem 11), (i) implies here that EY = . Thus, (ii) holds.

We now prove that (ii) = (iii) under the further condition that the distribu-
tion function of X is continuous. Suppose that EY(X) = . Then

(5) 2 P(H(X) 2 k) = =,
since, letting ¥ = max {0, ¢(X)}, we have that
Y 0
X <BY = [ [ @dp=[ P(Yznas) P(Yzh.
e Jo 0
There is a positive integer sequence {k,} such that
(6) 2 PH(X) 2 k) = o,

) lim,, ,oks/n = o,

as we show below. The function ¥ is unbounded since By (X) = . Also, ¢ is
nondecreasing, right-continuous, and ¢(a) — EX as @ — — . Therefore, for
k> EX,y ' (k) = inf{z | ¢(x) = k} satisfiesy (¢ (k) = kand {z | ¢(2) = k} =
{z |z = ¢ (k)}. Letting a,= ¢ (k.), where we may suppose that k., > EX, we
have that ¥(a.)/n = Y(¥ " (k.))/n Z ka/n and P(Y(X) 2 ka) = P(X 2 a).
Now suppose that the distribution function of X is continuous. Then P(X = a,)
= P(X > a,) and {a.} is a sequence of the desired type by (6) and (7).

To prove the existence of {k.} satisfying (6) and (7),let c¢(k) = P(¢(X) = k).
By (5) and the monotonicity of ¢,

0

> e(rs) = o, r=1,2 .-
Therefore, positive integer sequences {r,} and {s,} exist satisfying s; = 1,

(8) sl 1), S o) > n,

8=1
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where t, = 81 + -+ +s,,n=1,2, -+ . Let &y = 1 and
ktyrs = 08,8 =1, -+ | 8pta, n=12 ---.
From (8) it follows that the sequence {%,} satisfies (6); (7) follows from
kiprs/ (tn + 8) = 148/ (ta + 8) 2 10/ (tn + 1) > n.

Proor or TurorREM 1. (i) = (ii) : Suppose that (i) holds. Let U, denote the
random variable in the nth row and kth column of the following array:

X, X, Xs Xy
X; X5 X -
X X

XIO *

Let X, = U, — Vawhere U, = Un, Vo = D neag(Un) /2", and g is the char-
acteristic function of (EX, ©),n = 1,2, --- . Then X;, X, , - - - are integrable,
independent, have a common continuous distribution function, and E(X; log™*
X,) = . By Lemma 1, there is a real number sequence {a,} satisfying (3) and
(4) with X; substituted for X therein. Let Y, be defined as in Section 2 using
X, in place of X, . Let To = E(- | Y1, Y,, ---). Then ToX, = Y, almost every-
where and

E(sup, X./n) = E(sup, Un,/n) = E(supi<i<i Xi/7) = ETo(sup1si<k Xi/7)
(9) 2 E(supigige Yi/j) = E(supigisk Yi/j — Y1) + EYy
- E(Supn Yn/n) = o,

using the monotone convergence theorem and the fact, following from Section 2,
that sup, Y./n= o almost everywhere.

(i) = (iii) : In (9), replace X, by X; + -+ + X, and proceed similarly.

(i) = (iv): Keeping the notation of the previous paragraphs, let T, =
E(-| X+ -+ + Xi, k = n) and S, be defined by (1), n = 1,2, --- . Since
X, = X, we have that

lim supn-e 82 X1 = lim suprse 8, X = o

almost everywhere, using Section 2.

(ii) = (i), (iii) = (i) : Suppose that X is nonnegative. The general case can
be reduced to this one by replacing X by max {0, X}. In the nonnegative case,
(ii) = (iii). Therefore, we need to show only that (iii) = (i). Let Z, = (X; +
.+« 4+ X,)/n. Then {Z,1_j} 7= is a nonnegative martingale and by a theorem
of Doob ([3], Theorem 3.4, p. 317) we have that

E(supigiga Z5) < [e/(e — D]+ [¢/(e — DIE(Z1 log™ Z)).

The desired result follows by the monotone convergence theorem.
(iv)=> (i) : Again it suffices to consider nonnegative X. In this case, E(X log™
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X) < o implies (2), which by the already mentioned result of Rota, implies
the almost everywhere convergence of {iS,X;} for every {7,}, contradicting (iv).
This completes the proof of the theorem.

4. A variation on the strong law of large numbers.

THEOREM 2. Let (2, @, P) be a probability space, {Q.} a sequence of independent
sub-o-fields of @, and {X,} a sequence of identically distributed integrable random
variables such that X, is Gu.-measurable, n = 1, 2, --. . Consider the following
statements:

(1) B(|Xi|log" |Xu]) < e.
(il) For every sequence {®,} of o-fields such that ®, C Q,,n = 1,2, -+,

limysw(B(Xy | ®) + -+ + E(X. | ®))/n = EX,

almost everywhere.

Then (1) = (ii). Also, (ii) = (i) under the further condition that the restriction
of P to @, is nonatomic,n = 1,2, --- .

Note that E(X; | 1), E(X;| ®,), - - - are independent but are not necessarily
identically distributed.

Proor. (i) = (ii): Let ®, be a sub-o-field of @, , n = 1,2, --- ,and T =
E(-|® V ® V ---). Then, letting Z, = (X; + --+ + X.)/n, we have that

TZ,= (B(Xy|®) + -+ + E(X.|®n))/n
almost everywhere. By (i), which we assume, and by Theorem 1, the right side of
|1Z| = supa(|1Xa| + -+ + [Xa]) /0
is integrable. Thus, almost everywhere ([3], p. 23)
lim,. TZ, = T(limy-w Z,) = TEX, = EX,; .

The following lemma will be used in the proof of the second part of
this theorem.

LeMMA 2. Suppose that X is a random variable on a nonatomic probability space
(Q, @, P). Then there is a random variable V suchthat 0 £ V = 1,X + Vhasa
continuous distribution function, and this distribution function depends on (2, @, P)
only through the distribution function of X.

Proor or LEmMMA 2. If the distribution function F of X is continuous, let V' =
0. Otherwise, let D be the set of discontinuity points of . By the theory of non-
atomic measure spaces, for d & D, there is a random variable U; from @ into

[0, 1] such that
P(Us=t, X =d) =tP(X =d), 0<t=1.

Let V(w) = Us(w) if X(w) = d and d € D, = 0 otherwise. Let H(t) = 0 if
t<0,=tif0=<t=<1, = 1ift> 1. For each real number a we have that
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PX+VZa)=) PX+V=agX=d +PX+V=aXeD)

deD

> P(Usiga—d,X=d) +P(X<a,XeD)

deD

=2 H(a—dP(X=d) +P(X=<aXeD)

deD

which is expressible in terms of H and F. Both H(a — d) and P(X = a, X £ D)
are continuous functions of a. The desired result is implied.

Returning to Theorem 2, suppose that (ii) holds, the restriction of P to @, is
nonatomic, n = 1, 2, ---, and that (i) does not hold. Then either E(X; log™
X,) = o or E((—X;) log" (—X,)) = . Here assume the former is true, the
other case being similar. Let V, be an @,-measurable random variable chosen
relative to X, and (2, @, , P) as V in Lemma 2 is chosen relative to X and (<,
@ P).LetX,=X,+ V,.ThenX, < X, < X,+ 1and X;, X;, - - - are inde-
pendent integrable random variables each having the same continuous distribu-
tion function. Clearly, E(X, log™ X;) = «. By Lemma 1 and Section 2 (replac-
ing X, by X, therein), it follows that there exists a sub-o-field ®, of @, such that

0 = lim SuUpnw kZ=1E<Xk | ®)/n = 1 4+ lim Supssw ;Z"{ E(X: | ®e)/n

almost everywhere, contradicting (ii) . Consequently, under the stated additional
condition (ii) = (i).
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