MERGING OF OPINIONS WITH INCREASING INFORMATION¹

By David Blackwell and Lester Dubins

University of California, Berkeley

1. History. One of us [1] has shown that if Zn, $n=1,2,\cdots$ is a stochastic process with D states, $0, 1, \cdots, D-1$ such that $X=\sum_{n=1}^{\infty} Z_n/D^n$ has an absolutely continuous distribution with respect to Lebesgue measure, then the conditional distribution of $R_k=\sum_{n=1}^{\infty} Z_{k+n}/D^n$ given Z_1, \cdots, Z_k converges with probability one as $k\to\infty$ to the uniform distribution on the unit interval, in the sense that for each λ , $0<\lambda\leq 1$, $P(R_k<\lambda\mid Z_1,\cdots,Z_k)\to\lambda$ with probability 1 as $k\to\infty$. It follows that the unconditional distribution of R_k converges to the uniform distribution as $k\to\infty$. If $\{Z_n\}$ is stationary, the distribution of R_k is independent of k, and hence uniform, a result obtained earlier by Harris [3]. Earlier work relevant to convergence of opinion can be found in [4, Chap. 3, Sect. 6].

Here we generalize these results and also show that the conditional distribution of R_k given Z_1 , \cdots , Z_k converges in a much stronger sense. All probabilities in this paper are countably additive.

2. Statement of the theorem. Let \mathfrak{B}_i be a σ -field of subsets of a set X_i , $i=1,2,\cdots$; and let $(X,\mathfrak{B})=(X_1\times X_2\times\cdots,\mathfrak{B}_1\times \mathfrak{B}_2\times\cdots)$. Suppose (X,\mathfrak{B},P) is a probability space and let P_n be the marginal distribution of $(X_1\times\cdots\times X_n,\mathfrak{B}_1\times\cdots\times \mathfrak{B}_n)$; that is, $P_n(A)=P(A\times X_{n+1}\times\cdots)$ for all $A\in\mathfrak{B}_1\times\cdots\times \mathfrak{B}_n$. The probability P is predictive if for every $n\geq 1$, there exists a conditional distribution P^n for the future $X_{n+1}\times\cdots$ given the past X_1,\cdots,X_n ; that is, if there exists a function $P^n(x_1,\cdots,x_n)(C)$ where (x_1,\cdots,x_n) ranges over $X_1\times\cdots\times X_n$ and C ranges over $\mathfrak{B}_{n+1}\times\cdots$ with the usual three properties: $P^n(x_1,\cdots,x_n)(C)$ is $\mathfrak{B}_1\times\cdots\times \mathfrak{B}_n$ -measurable for fixed C; a probability distribution on $(X_{n+1}\times\cdots;\mathfrak{B}_{n+1}\times\cdots)$ for fixed (x_1,\cdots,x_n) ; and for bounded \mathfrak{B} -measurable ϕ

(1)
$$\int \phi \ dP = \int [(\phi(x_1, \dots, x_n, x_{n+1}, \dots) \ dP^n \ (x_{n+1}, \dots \mid x_1, \dots, x_n)] \cdot dP_n \ (x_1, \dots, x_n)$$

holds.

The assumption that P is predictive is mild and applies to all natural probabilities known to us. It is easy to verify that any probability which is absolutely continuous with respect to a predictive probability is also predictive.

Received December 12, 1961.

The Annals of Mathematical Statistics.

www.jstor.org

¹ This paper was prepared with the partial support of the Office of Naval Research (Nonr-222-43) for Mr. Blackwell; and with the partial support of the National Science Foundation, Grant G-14648 for Mr. Dubins. This paper in whole or in part may be reproduced for any purpose of the United States Government.

For any two probabilities μ_1 and μ_2 on the same σ -field \mathfrak{F} , the well known distance $\rho(\mu_1, \mu_2)$ between μ_1 and μ_2 is the least upper bound over $D \in \mathfrak{F}$ of $|\mu_1(D) - \mu_2(D)|$. Of course μ_i is absolutely continuous with respect to $(\mu_1 + \mu_2)/2 = m$ and has a density ϕ_i , so that $\rho(\mu_1, \mu_2) = \int_A (\phi_1 - \phi_2) dm = (1/2) \int |\phi_1 - \phi_2| dm$ where A is the set where $\phi_1 - \phi_2 > 0$.

Main Theorem. Suppose that P is a predictive probability on (X, \mathfrak{B}) and that Q is absolutely continuous with respect to P. Then for each conditional distribution P^n of the future given the past with respect to P, there exists a conditional distribution Q^n of the future given the past with respect to Q such that, with the exception of a set of histories $(x_1, \dots, x_n, x_{n+1}, \dots)$ of Q-probability Q, the distance between $P^n(x_1, \dots, x_n)$ and $Q^n(x_1, \dots, x_n)$ converges to Q as a converge to Q.

3. Martingale preliminaries. The proof of the theorem requires a slightly generalized martingale convergence theorem. Say that a sequence $\{y_n\}$ of random variables is *dominated in the sense of Lebesque* if $\sup_n |y_n|$ has a finite expectation.

THEOREM 2. Suppose that $\{y_n\}$, $n=1, 2, \cdots$, a sequence of random variables dominated in the sense of Lebesgue, converges almost everywhere to a random variable y. Then for every monotone increasing or monotone decreasing sequence of σ -fields \mathfrak{A}_j , $j=1, 2, \cdots$ converging to a σ -field \mathfrak{A}_j ,

(2)
$$\lim_{\substack{j\to\infty\\j\to\infty}} E[y_n \mid \mathfrak{U}_j] = E[y \mid \mathfrak{U}],$$

almost everywhere and in L_1 .

In this note we are primarily interested in the weaker conclusion that $\lim_{n\to\infty} E[y_n \mid \mathfrak{U}_n] = E[y \mid \mathfrak{U}]$. The two important special cases in which either y_n or \mathfrak{U}_n is independent of n are in [2].

PROOF OF THEOREM 2. Let $g_k = \sup y_n$ for $n \ge k$. Equalities and inequalities below are asserted to hold with probability 1. Fix k for a moment and let $n \ge k$. Then $y_n \le g_k$ and

$$(3) E[y_n \mid \mathfrak{U}_i] \leq E[g_k \mid \mathfrak{U}_i].$$

Letting

(4)
$$z = \lim_{\substack{j \ i \geq j \\ n \geq j}} E[y_n \mid \mathfrak{U}_i],$$

$$x = \lim_{\substack{j \ i \geq j \\ n \geq j}} E[y_n \mid \mathfrak{U}_i],$$

you conclude from (3) and a usual form of martingale convergence theorem [For example, see 2, Theorem 4.3, Chap. VII] that

$$(5) z \leq \lim_{j} \sup_{i \geq j} E[g_k \mid \mathfrak{A}_i] = \lim_{i} E[g_k \mid \mathfrak{A}_i] = E[g_k \mid \mathfrak{A}].$$

Therefore $z \leq \lim E[g_k \mid \mathfrak{A}] = E[y \mid \mathfrak{A}]$ by Lebesgue's theorem suitably generalized so as to apply to conditional expectations. [See, for example, 2, CE₅ Section 8, Chap. 1]. Similarly, $x \geq E[y \mid \mathfrak{A}]$, and the proof of almost everywhere convergence is complete. The proof of L_1 convergence is routine and omitted.

COROLLARY 1. Suppose that with probability 1, only a finite number of the events E_1 , E_2 , \cdots occur. Then for any monotone sequence of σ -fields \mathfrak{A}_1 , \mathfrak{A}_2 , \cdots

(6)
$$P[\bigcup_{k\geq n} E_k \mid \mathfrak{U}_j] \quad \text{and} \quad P[E_n \mid \mathfrak{U}_j] \to 0.$$

almost surely as n and $j \to \infty$.

COROLLARY 2. If f_n is any sequence of random variables that converges almost everywhere to 0 and \mathfrak{U}_j is a monotone sequence of σ -fields, then with probability 1, for all $\epsilon > 0$,

(7)
$$P[\sup_{k\geq n} |f_k| > \epsilon |\mathfrak{A}_j|, \text{ and } P[|f_n| > \epsilon |\mathfrak{A}_j|]$$

converge to 0 as n and j converge to ∞ .

Corollary 3. Let $q \ge 0$ be a density function for which $Q(B) = \int_B q dP$ for all $B \in \mathfrak{B}$; let

(8)
$$q_n(x_1, \dots, x_n) = \int q(x_1, \dots, x_n, x_{n+1}, \dots) dP^n(x_{n+1}, \dots | x_1, \dots, x_n);$$

and let

(9)
$$d_n(x_1, \dots, x_n, x_{n+1}, \dots) = q(x_1, \dots, x_n, x_{n+1}, \dots) / q_n(x_1, \dots, x_n)$$
 or 1,

according as $q_n(x_1, \dots, x_n) \neq 0$ or not. Then, with P-probability 1, for all $\epsilon > 0$,

(10)
$$P[d_n-1>\epsilon\,|\,x_1,\cdots,x_n]\to 0\quad\text{as}\quad n\to\infty,$$

and with Q-probability 1, for all $\epsilon > 0$.

(11)
$$Q[|d_n-1| > \epsilon | x_1, \cdots, x_n] \to 0 \quad \text{as} \quad n \to \infty.$$

PROOF OF COROLLARY 3. With respect to P measure,

(12)
$$E[q \mid x_1, \dots, x_n] = q_n(x_1, \dots, x_n),$$

so that according to Doob's martingale convergence theorem, $q_n(x_1, \dots, x_n)$ converges to $q(x_1, \dots, x_n, x_{n+1}, \dots)$ almost surely with respect to P. Consequently, $\overline{\lim} d_n \leq 1$ a.s. P and $d_n \to 1$ a.s. Q since q > 0 a.s. Q. An application of Corollary 2 completes the proof.

4. Proof of main theorem. Define

$$Q^n(x_1, \dots, x_n)(C)$$

(13)
$$= \int_{C} d_{n}(x_{1}, \dots, x_{n}, x_{n+1}, \dots) dP^{n}(x_{n+1}, \dots \mid x_{1}, \dots, x_{n}),$$

for all $C \in \mathfrak{G}_{n+1} \times \cdots$.

It is routine to verify that Q^n is a conditional distribution for the future given the past. Let $u = (x_1, \dots, x_n)$ and $v = (x_{n+1}, \dots)$, and compute thus:

$$\rho(P^{n}(x_{1}, \dots, x_{n}), Q^{n}(x_{1}, \dots, x_{n}))
= \rho(P^{n}(u), Q^{n}(u))
= \int (d_{n}(u, v) - 1) dP^{n}(v \mid u) \text{ over } v : d_{n}(u, v) - 1 > 0
\leq \epsilon + \int d_{n}(u, v) dP^{n}(v \mid u) \text{ over } v : d_{n}(u, v) - 1 > \epsilon
= \epsilon + Q^{n}(u) (v : d_{n}(u, v) - 1 > \epsilon)
= \epsilon + Q[d_{n} - 1 > \epsilon \mid x_{1}, \dots, x_{n}]
= \epsilon + \epsilon$$

for all but a finite number of n with Q-probability 1, according to (11). This completes the proof.

- 5. Interpretation. Usually, there is essentially only one conditional distribution Q^n of the future given the past. Therefore, our theorem may be interpreted to imply that if the opinions of two individuals, as summarized by P and Q, agree only in that $P(D) > 0 \leftrightarrow Q(D) > 0$, then they are certain that after a sufficiently large finite number of observations x_1, \dots, x_n , their opinions will become and remain close to each other, where close means that for every event E the probability that one man assigns to E differs by at most ϵ from the probability that the other man assigns to it, where ϵ does not depend on E. Leonard J. Savage observed that our theorem applies to the particularly interesting case in which P and Q are symmetric (or exchangeable). That is, if the measures P and Q on the sequences x_i are those that arise when the x_i are, for a fixed parameter value, independent and identically distributed observations, with prior distributions p and q on the parameter, then the relations of absolute continuity between P and Q are precisely those between p and q.
- **6. Caution.** Though the conditional distributions of the future P^n and Q^n merge as n becomes large, this need not happen to the unconditional distributions of the future. That is, let $P(n)(D) = P(X_1 \times \cdots \times X_n \times D)$ for all $D \in \mathfrak{G}_{n+1} \times \cdots$, and let Q(n) be similarly defined. The following is a simple example of two probabilities P and Q absolutely continuous with respect to each other for which P(n) and Q(n) do not merge with increasing n. Let R be the probability on infinite sequences x_1, x_2, \cdots of 0's and 1's determined by independent tosses of a coin which has probability r of success, and let S be the probability determined if the coin has probability s for success, with $0 \le r \le 1$, $0 \le s \le 1$, and $r \ne s$. Now let 0 and let <math>P and Q be mixtures of R and S: P = pR + (1 p)S, Q = qR + (1 q)S. Since P(n) = P and Q(n) = Q for all n, there is no tendency for P(n) and Q(n) to merge.

7. An application. By viewing the unit interval as a product of two point spaces, the interested reader will see that the main theorem yields information about the local behavior of positive integrable functions q(x) defined for $0 \le x \le 1$.

REFERENCES

- [1] Blackwell, David (1957). On discrete variables whose sum is absolutely continuous.

 Ann. Math. Statist. 28 520-521.
- [2] Doob, J. L. (1953). Stochastic Processes. Wiley, New York.
- [3] HARRIS, T. E. (1955). On chains of infinite order. Pacific J. Math. 5 707-724.
- [4] SAVAGE, LEONARD J. (1954). The Foundations of Statistics. Wiley, New York.