STATIONARY WAITING-TIME DISTRIBUTIONS FOR
SINGLE-SERVER QUEUES

By R. M. LoynEs
University of Cambridge

1. Summary and introduction. In a single-server first-come-first-served queue
the waiting-times of successive customers are related by the equation

(1) wn+1 = [wn + Un]+
where
(2) Un = Sn - Tn .

Here 8, and T', are the service-time of the nth customer, and the time between
the arrivals of the nth and the (n 4 1)th customers, respectively.

In the particular case of mutually independent identically distributed U,
the basic investigation of this equation was carried out by Lindley [1], who
found a simple necessary and sufficient condition for the existence of a stationary
waiting-time distribution and derived this distribution in certain special cases.
The theory was developed by Smith [2], who under fairly weak conditions gave
a systematic treatment of the Wiener-Hopf equation obtained by Lindley.

In the less restricted case when U, is a strictly stationary process it has been
shown by the author (Loynes [3]) that under a simple condition the existence
of a unique stationary distribution is again ensured: it is the purpose of this
paper to show how (when this condition is satisfied) the stationary distribution
may sometimes be found, and to obtain some qualitative results. The theory
will be developed in Sections 3 and 4, and some examples discussed in Section 5.

On the assumption that U, is a metrically transitive sequence the condition
just referred to is

(3) E[U,] <0,

and we shall therefore suppose this satisfied throughout the paper. The assump-
tion that U, is metrically transitive does not affect most of the arguments in this
paper, but it will be made for convenience.

For the existence of a unique stationary distribution (3) is both necessary
and sufficient, but there is sometimes more than one stationary distribution
when the inequality in (3) is replaced by equality. Such situations have been
ignored here for several reasons: they are not very common, some of the argu-
ments either break down or need adaptation, and in any case the problems are
not then as difficult, for it follows from equation (7) of [3] that the function ¢
occurring in (5) below is then identically equal to one, so that the only unknown
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1324 R. M. LOYNES

is ¢. There is never a stationary distribution when the inequality in (3) is
reversed.

Throughout the entire investigation we shall suppose the queue has a struc-
ture which satisfies the following condition (H). This is actually no restriction
at all when the queue is in the stationary state, since the variables 2, occurring
in it may be taken as (W41, Tws1), where {W,} is the stationary waiting-time
sequence. However, all the results will refer to the distribution of the waiting-
time conditional on z, , so that it will always be tacitly assumed that the distribu-
tion of 2, is known in order to allow deductions about the unconditional distribu-
tion of the waiting-time.

(H): There exists a sequence {z,} (defined on the same probability space
as w,) of random vectors—i.e., in finite-dimensional Euclidean
space—with the following properties:

(i) {2a, Sn, T4} is a strictly stationary process.

(ii) 8., T», and w, are conditionally independent given 2.1, 2n .

(iii) w, and 2, are conditionally independent given 2, .

The assumption that (H) is satisfied allows us to write down the equation
satisfied by the stationary (conditional) waiting-time distribution function.
We cannot, however, in such a general situation actually find the solution to
the equation, and to discover appropriate further restrictions which may make
this possible we may consider further the case treated by Lindley and Smith.

The general solution given by Smith was analytically complex and apparently
only obtainable from the Wiener-Hopf technique or the equally specialized
method due to Spitzer [4]. If, however, either the service-times or the inter-
arrival times had a distribution with a rational characteristic function the
solutions were much simpler in form, and in at least a few cases had been ob-
tained previously by other methods. With this in mind we impose similar con-
ditions here on the conditional characteristic functions; on that of the inter-
arrival time in Section 3, and on that of the service-time in Section 4. The lack
of success in treating the problem without these restrictions is probably no great
loss in practice, in view of the complex nature of the Wiener-Hopf solution
for the simple case.

The results obtained under the conditions imposed so far are in the nature of
aids to the solution of the problem, rather than the solution itself. A simple
situation for which the required distribution may then be obtained straight-
forwardly occurs when the following “finite-matrix” condition is satisfied:

(HF): Condition (H) holds, and 2, has (with probability one) only a finite

number k of different possible values.

An interesting result obtained by Smith showed that, roughly speaking, the
characteristic functions of the waiting-time and the service-time had the same
number of poles, and a somewhat similar result related the distribution of the
inter-arrival times to that of the waiting-time. Under (HF') it will be found that
similar results are also true. Smith in fact gave explicit formulae of a simple type
for the two special cases, but we shall content ourselves here with pointing out
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how corresponding formulae could be obtained, since it appears that they are
no longer simple when % has a value other than one.

As we have already remarked, all simple queues are included in (H) when in
the stationary state. Even under the condition that the distribution of z, be
known, a large class of queues satisfies (H), such as that in which S, and T,
are independent stationary Markov processes. An example of a queue of con-
siderable interest which apparently does not admit a specification of this type is
that in which customers are due at regular intervals but are late independently
with a lateness distribution which extends to « (if the lateness distribution and
service time distribution are both negative exponential, then (H) is satisfied,
and a brief discussion of this example will be found in Section 5).

It will be seen that by taking z, = 1 the classical case with independence is
included under (HF); two other types of queue satisfying (HF) are of some
interest, and are discussed in Section 5—one being a simple queue whose input
is a mixture of two streams of customers, and the other a queue whose input con-
sists of customers who have already been served in a first queue. In addition to
any other queues which may fall into this class, it is presumably true, that any
queue may be approximated by those of this “soluble” class, although there are
of course very great difficulties in deciding how such an approximation should
be carried out.

Finally we observe that since the content of a semi-infinite dam in discrete
time is described by the same equation (1), the results obtained here may be
applied in that context also, and in particular the finite-matrix case gives a
class of dams with serially dependent inputs for which explicit solutions can
be found.

2. Basic theory. For conditional probabilities we shall employ the usual
notation; for example the distribution function of z,-; conditional on z, will be
denoted by pr (2,—1 = z | z.). The lack of uniqueness of these distributions will
be ignored, as for example in Theorem 1, but there is no difficulty in dealing with
it. For details of this and of the properties of conditional characteristic functions
reference may be made to Logve [5].

Suppose that the queue is in the stationary state and let F(z, z,) =
pr {wny1 = 7| 24}; then F(z, 2z,) = 0 for z < 0. By H(ii) and (iii), forz = 0

we have

pr {wn1 = |2, 20} = fpr {wn S Y|2n, 20} dypr {Un £ & — Y| 24, 25}

= [ or (wn < vz} dypr (Un S & — Y] 20, 2]

taking expectations conditional on z,, and making use of the assumption of
stationarity, we obtain

F(a, ) = [ pr (s ) [ F(y, 200 dy pr (Un S & = yl2n, s,

z =0,

(4)
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where F(zx, z,) = 0for z < 0, as the equation satisfied by the stationary (condi-
tional) distribution of waiting-times. The unconditional waiting-time distribu-
tion can of course be immediately obtained from F(z, z,) whenever we know the
distribution of z,. The necessary conditional distribution of U, is obtained,
according to H(ii), as the convolution of those of S, and T, . If U, is a sequence
of mutually independent random variables, then by putting z, = 1 we return
to the usual Wiener-Hopf equation.

It is possible in principle to solve (4) by iteration: if we replace F under the
integral sign by unity and use the resulting value of the right-hand side as the
next approximation, then, continuing in the usual way, the sequence of functions
obtained converges monotonically to the required solution, and gives in fact the
waiting-time distributions of the successive customers when the first customer
does not have to wait. This approach is unlikely to be often useful for finding
explicit results.

Another possibility is to try to fit solutions of a particular type, such as sums
of exponentials; while such an attempt will not in general be successful, this may
very well be the simplest way of applying the results obtained in Section 4 (par-
ticularly Theorem 3), and it might succeed in other situations. If we know the
form of the solution, we should like to be sure before we begin that at least in
principle the unknowns are completely determined by (4). Conversely, if we
have obtained a solution of (4) by some means we have to decide whether this
is the one we require, for although we know there is only one solution which is a
distribution function in « for all z, , there may be other solutions not of this type.
We therefore give the following uniqueness theorem, which may settle these
questions. This theorem is closely connected with Lindley’s demonstration
that his solution for deterministic arrivals and x* service-time is a distribution
function.

TueoReM 1. If, for all 24, 2oy, Pr (Un S | 24, 20a) < 1 for all finite z,
then the required solution is the only solution of (4) vanishing for megative x and
tending to unity as x tends to «, such that E[sup.zo |F(z, z,)|] < .

Proor. It is evident that the required solution is of such a type. Suppose there
are two such solutions: then their difference is another, tending however to
zero at «, and we shall show that this implies that it vanishes everywhere, and
the theorem is proved.

Let this difference be D(z, 2.), and let A(2.) = sup.»o |D(z, z.)|. Then
directly from (4) we find that

|D(z, 2,)| = fpr (d2n-1|22) A(2n1) pr (Un £ |24, 2a11).

There exists a monotone subsequence ., , with a limit point z(z,), such that
[D(%m , 2)| tends to A(2.), and if we apply the dominated convergence theorem
to the right hand side of the equation above using this subsequence we find that

A(z) < [ pr (dens | 2) Aleas) pr (U S 220 | 20, 20).
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Hence
E[A(221)] = E[A(24)] £ E[A(2s-1) Pr (Un = 2(24) | 20, 201)],
which is only possible if
(1 — pr (Un = 2(2n) | 20, 2-1)]4(201) = O,

with probability 1. Thus either A(z,—;) = 0, in which case the proof is com-
plete, or x(z,) is infinite; since, however, D(z, z,) tends to zero at «, the latter
would imply that D(z, z,) = 0 everywhere, and the stated conclusion follows.

Although in some circumstances the solution may be found by trying solutions
of special forms, the only systematic method of investigating (4) seems to be by
taking Laplace (or Fourier) transforms. These (Laplace-Stieltjes) transforms
exist on the imaginary axis, but may not do so elsewhere. On the imaginary
axis, then, directly from (1) and (H),

(5) (s 2a) + ¥(s, 2,) — 1= El¢(s, 2n1)H(s, 2., zn—l)G(—sy Zn 5 Zn1) l Zn),

where ¢(s, 2z,) = [e “d.F(z, z,) is, for s = —ir, the characteristic function
of w,y; conditional on z, . Similarly ¥(s, z,) refers to —[w, + U,]” = w, +
U, — Wny1,and H(S, 2, , 2.1) and G(s, 2. , 2,1) refer to S, and T, respectively,
conditional on z, and z,—; . In addition to existing on the imaginary axis, ¢,
G and H, being transforms of the distribution functions of non-negative random
variables, also exist and are analytic (for fixed 2, , 2,—;) in Rs > 0, and ¢ exists
and is regular in Rs < 0. Furthermore, in the half-planes in which their existence
is guaranteed, these functions are uniformly bounded by unity.

The difficulty of (5) lies in the presence of two unknown functions, essentially
determined only by their descriptions as transforms. This can be overcome in
certain cases, and further investigation will begin with a rearranged version
of (5).

(6) 1- ‘//(81 zn) = ¢(S, zn) - E[¢(S, zn—l)H(S: Zn, zn—l)G(_sy Zn zn—l) l zn]-
In Section 3 we shall put restrictions on @, and in Section 4 on H.

3. Particular types of inter-arrival time distribution. The left hand side of
(6) is analytic in Rs < 0; we shall now suppose that G satisfies a condition that
will allow us to make the right hand side analytic in Rs > 0, and shall then be
able to determine the form of .

TarEOREM 2. If (i) G(—S, 2n, 2na) = N(S, 2n, 20—1)/D(s), where N is every-
where analytic, and D is a polynomial of degree m; and (ii) there is a constant A
such that whenever |s| =2 A and Rs = 0, |GH| < 1 for all 2, 2.1, then
1 — ¥(s, 2,) = sR(z., 8)/D(s), where as a function of s, R is a polynomial of
degree m — 1.

The expression of G as a quotient need not be in its lowest terms. When the
theorem is applicable, the problem of finding y, initially a function of two vari-
ables, is reduced to that of finding m functions of the single variable 2z, , which
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must be such as to make ¢ be regular in the right half plane and take the value
unity at s = 0. If it is possible to solve (6) for ¢ as an explicit function of ¥
(a condition which is in any case necessary if this approach is to be useful),
then these properties of ¥ may very well be enough to completely determine it,
and hence finally ¢. This procedure is equivalent to substituting in (6) those
values of s for which the linear operator acting on ¢ fails to have an inverse, and
this may occasionally be done directly very simply—for an instance, see example
(ii) of Section 5.

Proor. In any finite region of the right half plane HN is bounded, uniformly
in 2, , Za—1 : for we can enclose the region in a semicircle standing on the imaginary
axis on the circumference and diameter of which |HN| = |D|, and the maximum
modulus principle then gives the result.

If (6) is multiplied by D(s), the left hand side remains analytic in Rs < 0,
and the right hand side now becomes analytic in Rs > 0. The proof that the
expectation term is analytic is the only non-trivial step, and this can be carried
out by showing the term to be differentiable. The function whose expectation is
being evaluated is clearly analytic, and by the Cauchy integral formula, its
derivative is bounded uniformly in 2, , 2._1 , S0 that application of the bounded
convergence theorem to the real and imaginary parts is possible, and the result
then follows.

Now according to the principle of analytic continuation, this means that the
two sides of the equation together define a function which is analytic every-
where, and since, moreover, ¥ is bounded by unity in the left half plane, and
GH by unity sufficiently far out in the right half plane, we may apply Liouville’s
theorem to show that this analytic function is in fact a polynomial in s of degree
not greater than that of D(s). Since ¥(0, z,) = 1, this polynomial must have a
factor s, and the theorem is proved.

Under (HF) we can continue the discussion and see that with mild restric-
tions there are in general enough conditions to determine R(z., s) exactly, and
in that case ¢ can certainly be found by solving (6), which is then essentially a
set of k linear equations in % unknowns.

To see that this is so, let us multiply (6) by D(s) and consider it as a relation-
ship between certain vectors and matrices. With no loss of generality we can
suppose the possible values of z, to be 1, 2, - - - , k, and then we can write, for
instance, H(Ss, 2 , 2n—1) = H;j(s) when z, = %, 2,1 = j. The (backward) transi-
tion matrix of the z, will be denoted by P = [p.;], where pij = pr [2n—1 = j | 2, = 1].
The result of multiplication by D(s) can now be written, using the conclusion
of Theorem 2, as

(7) sR(s) = [D(s)I — Qle(s)

where R(s) and ¢(s) are column vectors having R(z,, s) and ¢(s, 2.) respec-
tively as components, I is the unit matrix, and

(8) Q = [gii(8)] = [pi;Hii(s)Nii(8)].
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According to Theorem 2, R(s) is a polynomial in s of degree m — 1, so that
the unknown coefficients are in fact km in number. Suppose now that each
H;; is analytic at the origin, and that the matrix P is irreducible: then according
to Theorem 5b of the appendix, the matrix D(s)I — @ is singular for km — 1
values of s inside the right half plane. As each term of (7) is regular there, this
implies that, for these values of s, B(s) is orthogonal to the corresponding left
eigenvector of the matrix, and thus we obtain km — 1 equations relating the
coefficients of R(s), and another k¥ equations are obtained from the fact that
¢(0, z,) = 1. With more than km equations relating km unknowns, we have in
general enough to completely determine the solution, for inconsistency is clearly
impossible. It is easy to construct examples in which there are not km independent
equations among those given by the above approach, but in all such cases that
have been tried ¢ has been uniquely determined by the fact that it is regular in
the right half plane. It has not been found possible to prove that this is neces-
sarily so, but it would be rather surprising if it were not.

The manipulations with the eigenvectors and the subsequent solution for ¢
can be combined without too much difficulty into a single explicit formula. As
the result is neither particularly informative nor particularly elegant, it has not
been thought worthwhile to reproduce it here, but even without it the connec-
tion between the solution of (7) and the corresponding result of Smith is clear,
for ¢ can obviously be expressed as a fraction with a known denominator and a
numerator known except for certain constants.

4. Particular types of service time distribution. In Section 3 G and H were
supposed to satisfy conditions which made it possible to continue ¢ analytically
into the right half plane. Now we shall impose conditions which will instead
make it possible to extend ¢ into the left half plane. Throughout this section
it will therefore be supposed that, for fixed 2, , 2,1 , H can be continued analyti-
cally into the left half plane, the result being a single-valued function, analytic
everywhere except for certain isolated singularities.

If at some point s, H is defined for all z,, 2,1, then (6) is a well-defined
equation for ¢ at this point, and may thus have a solution there (which will be
‘expressed, of course, as a function of the unknown value of 1 — ¢). Any func-
tion B(s, 2,), which is obtained by assigning to each such point s, the corre-
sponding ¢, will be called a solution of (6) in the left half plane. There may of
course be more than one solution, and in any case the solutions will not normally
be everywhere defined.

The method of approach will be on the one hand to find as nearly as possible
the form of 8, and on the other to relate 8 with ¢, the transform we are seeking.
For these purposes the following theorem is basic.

TarorREM 3. Suppose that (6) has a solution B with the following properties:

(1) B(s, z,) 1s, for fixed z, , the analytic continuation of ¢(s, 2.);

(ii) there is some a = 0 (possibly depending on z,) such that, for fized
Zn, €°B(S, 24)/s tends to zero as s tends to o (in the left half plane);
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(iii) for fizxed 2, the analytic function composed of $(s, 2,) and B(s, z,) is regular
everywhere except for poles.

Tiwn for x =2 a, F(x, 2.) — 1 is a finite sum of terms of the form

- g,(z,,)x e b’, where —b is a pole of B of order k. The poles b may depend on
2. , but in any case Rb > 0.

It would be expected, by analogy with the solution of matrix equations, that
the values of b and & occurring in the theorem depend only on G and H and can
therefore often be found directly, but that the functions g,(z,) depend on the
unknown y and must thus be found in a different way, although it is possible in
certain cases to obtain some information about them directly (see example (i)
Section 5).

The form of F(z, 2,) guaranteed by the conclusion of the theorem is of a simple
and familiar type; it is therefore desirable to find fairly simple conditions under
which the premises of the theorem are satisfied. Although a detailed examination
of the structure of the equation is the only way in which the applicability or
otherwise of condition (iii) may be determined, the following theorem shows
that it is sometimes possible to conclude directly that conditions (i) and (ii)
are satisfied.

TaEOREM 4. Suppose there are positive constants ¢ < 1 and A such that, when
|s| > A and Rs < 0, H(S, 2n , 2n—1) 4s regular and

|[H(S,y 2n y 2121)G(—S8, 20, 2n1)| S ¢

for all zn , 2n_y . Then in the region Rs < 0, |s| > A, (6) has a solution B which
is regular and bounded (so that condition (ii) of Theorem 3 is satisfied with a = 0)
and s the analytic continuation of ¢.

An obvious and interesting situation in which the conditions of this theorem
are satisfied is that in which the service-times form a completely independent
sequence and have a rational characteristic function, for then H is independent
of 2, , 2,1, |[H| tends to some constant less than one as s tends to «, and |GH| <
|H| in the left half plane.

Proor or TaEOREM 3. We first observe that by (i) 8 and ¢ are essentially
the same function, and we shall for convenience refer to the complete function
.as ¢. This function ¢ has according to (iii) no singularities other than poles, and
is, furthermore, regular in Rs > 0.

Next we remark that ¢ can not have a pole at the origin (since it takes there
the value unity), and therefore, again by (iii), is regular at that point. According
to Theorem 5b (p. 58) of Widder [6], the axis of convergence of ¢ passes to the
left of the origin; by Widder’s Theorem 7.6b (p. 70), it follows that, for suitable
c <0,

c+1iT
(9) F(r,2,) — 1= hm— f ¢(s 2n) e ds, z > 0.

T 21!'1 c—iT
From this we obtain, by an application of Jordan’s Lemma and (ii), that
1 ¢(S, zn) & d

(10) F(z,2,) — 1 = 5 .

z > a,
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where C is any contour which can be obtained from the infinite semi-circle
standing on and to the left of the line of integration in (9) without leaving the
region in which ¢ is regular.

Since, because of (iii), we can evaluate the integral occurring in (10) in terms
of the residues of the integrand at its poles, the theorem follows; there can only
be a finite number of poles because they are, by (ii), confined to a finite part of
the plane and can have no limit point.

In passing we note that (iii) was not used to prove (10) except in order to
show that ¢ is regular at the origin, although it is rather unlikely that (10)
would be of use unless ¢ has no singularities other than poles.

Proor or THEOREM 4. We construct a solution B(s, z,) of (6) in Rs =< 0,
[s| > A, by iteration. Let Bo(s, 2,) = 1 — ¢(s, 2») and

(11) ﬁk+l(81 Z,.) =1- 'P(s: Z,.) + E[ﬂk(s) zn—l)K(s: 2n, zn—l) ‘ zﬂ]

for k = 0, where K = GH.
Then |8] =< 2, and by induction

(12) |Be+r — Bl = 26",
and hence, if we define 8 by

(13) ﬁ(S, zn) = ﬁo(s’ Zn) + Z:: [Bk+l(s’ Z,.) - Bk(s, z”)])

the series converges absolutely and uniformly. The function 8 defined by (13)
is clearly a bounded solution of (6) in the region under consideration, which is
regular in the interior of the region.

We have now only to prove that 8 is the analytic continuation of ¢. Both
8 and ¢ exist on the imaginary axis for [s| > A and satisfy (6), and on combining
these two versions of (6) we find

(14) sup., |8 — ¢| =< csup,, |8 — ¢|;

since B and ¢ are bounded this implies that 8 = ¢, and an application of the
principle of analytic continuation completes the proof of the theorem.

It is rather clear that here again much more precision is obtainable under
(HF), and in fact the following corollary is true.

CoroLLARY. Under (HF'), if, for fixed zn , 2o , H(S, 2n , 2n—1) 18 meromorphic
with a finite number of poles and there exist ¢ and A such that when |s| > A and
Rs < 0 |H(s, 2n, 201)G(—S, 2, 2n1)| = ¢ < 1, then each component of ¢ is a
rational function of s. If in addition each G(—s, zn , 2n—1) s regular at the origin
and the backward transition matrix of 2z, is irreducible, the degree of the denomi-
nator of any component of ¢ is (not greater than) mk, where m is the degree of the
least common multiple of the denominators of H. In any case if for each 2z, , 2n—1 ,
H has at least one pole, there is only one solution of (6) with rational characteristic
function.

Proor. Since there are only a finite number of pairs 2z, , 2,—1 , we may suppose
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that the constants ¢ and A4 are independent of z, and 2,_; , and hence Theorem
4 is applicable, showing that conditions (i) and (ii) of Theorem 3 are satisfied.
As we have supposed H(S, 2., 2,—1) meromorphic with a finite number of
poles we can write it as the quotient of an everywhere regular function by a
polynomial. Let us now write D(s) for the least common multiple of the denomi-
nators of H, and use matrix notation as in Section 3. Then we have, for instance,
H(s, 20, 20,1) = N:j(s)/D(s) when z, = 4, z,; = j, where N;;(s) is everywhere
regular, and D(s) is a polynomial. On multiplying (6) by D(s) the result is

(15) D(s)y = [D(s)I — Ql¢,
where vi(s) = 1 — ¢.(s), and
(16) Q = [gij(8)] = [piiVii(8)Gs;(—s)].

Now in the region Rs < 0 the functions D(s), v:i(s), and g.;(s) are analytic;
consequently, provided the determinant of D(s)I — @ does not vanish every-
where, the solution of (15) for ¢ can be expressed as the quotient by this deter-
minant of a function regular in this region and hence has no singularities there
but poles. The fact that there is a unique solution to (6) and (15), when s is
sufficiently far from the origin, was proved in Theorem 4 and implies that
D(s)I — Q does not have a determinant vanishing everywhere. It only remains
to show that ¢ has no singularity on the imaginary axis, for condition (iii) of
Theorem 3 to be verified, and then the first statement of the corollary will be
proved.

Suppose for the moment that each G;;(—s) is regular at the origin. Then
again by Widder’s Theorem 5b, for s with sufficiently small real part each
Gij(—s) exists and is regular, and hence, applying analytic continuation to the
two sides of (15), each v:(s) is regular at the origin, and by the argument al-
ready used ¢:(s) can have no singularity there other than a pole. Such a pole
being however impossible, since ¢ is finite, it follows that ¢ is regular at the
origin and thus on the entire imaginary axis.

Suppose now that G;;j(—s) is not necessarily regular at the origin. Then we
truncate the variables T, at some finite value, large enough to ensure that (3)
is still satisfied when U, is the difference between S, and the new variables 7 .
A stationary waiting-time distribution exists for the new queue, which satisfies
(HF) with the same 2, , and as G" is regular at the origin it follows by what we
have already proved that ¢' is also regular at the origin. Since 7™ is smaller than
T., it is clear from (1) and (2) that the new waiting-time sequence is larger
than the old one, and then from the existence of ¢' for small negative values of
s we deduce that the axis of convergence of ¢ lies in the left half plane, so that ¢
also is not singular at the origin.

The above argument, showing essentially that (for some purposes) the inter-
arrival time characteristic function may be assumed regular at the origin, does
not depend on the finite-matrix hypothesis and may be useful in other circum-
stances.
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The second statement of the corollary follows directly from Theorem 5a of
the appendix, and the third from Theorem 1, since if H has a pole the condition
there is obviously met.

When the conditions of Theorem 5a are satisfied, it is possible to count equa-
tions, just as in Section 3, to see that there are in general enough to determine
the constants. We have, in fact, shown above that then ¢ is rational with de-
nominator T'(s), say, where T(s) is a polynominal of degree km whose zeroes
are those of the determinant of D(s)I — Q. Suppose that R(s) is the numerator
of ¢, so that R(s) is also a polynomial of degree km, and substitute this expres-
sion for ¢ into (15).

(17) T(s)D(s)y = [D(s)I — QIR(s).

There are km 4 1 unknown functions of z, in R, or equivalently k(km + 1)
unknown constants. Whenever T'(s) vanishes R(s) must be a right eigenvector
of the matrix, and the ratios of its components are determined, giving a total
of km(k — 1) equations. Whenever D(s) vanishes R(s) must also vanish,
giving a further km equations, and a final k& derive from the fact that each com-
ponent of ¢ is unity at s = 0. This enumeration may of course break down in
special cases.

5. Examples. In this section we shall consider some examples, chosen either
for their simplicity or their interest, on which our results throw some light.

(i) Winsten, [7], has considered a queue in which the nth customer, due to
arrive at time n, actually arrives at n + 1, , where {l,} is a sequence of positive,
bounded, mutually independent, (and identically distributed) random variables.
The service-times are independent and negative exponential.

Such a queue can be treated by the methods of the present paper, although
the complexity which occurs when the customers can arrive so late as to be out
of the order in which they are due is, if anything, rather greater than in Winsten’s
approach. We should in fact take (li—pi2, la—pts s lnpts, ** 5 lnyp) for z,
when I, is bounded by the integer p, in which case 7', is a (complicated) function
of z, and 2z,_; . Then the integral equation (6) for ¢ has a degenerate kernel.

This example is a convenient one, at least when 0 < [, < 1, for showing the
application of our results, but in order to avoid mere duplication of Winsten’s
results we shall suppose the service-times to be the sum of a constant d and a
negative exponential variable with parameter a. The structure of the arrival
process will not however be changed, since it will suggest two generalizations.

Thus, assuming 0 < I, < 1 with probability one, we have

(18) To=14 1l — 1.,
and taking I, as a suitable z, ,
(19) H(s, 2n ) 20)G( =S8, 2n ) 2n1) = [a€ /(a + §)]e" @),

It must be supposed that d < 1, since otherwise inequality (3) cannot be satis-
fied.
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"~ From (6), which becomes now
(20) 1 — y(s, lnta) = ¢(s, lna) — f apr(ln) (s, L) lae ™/ (a + s)Je"Hirei7t,

it follows that ¥ can be extended to be analytic everywhere, in particular at the
origin, and on solving (20) for ¢ it is immediate that the conditions of Theorem
3 are met witha = d — [,4,.

The solution is

4)(8, b)) =1 — 'P(S, lny1)
(21) aeHn1—ds
a4+ s — qel—ds

so that the only pole of ¢ occurs at the unique root b in the left half plane of the
equation
(22) a+ b= a"™

The application of Theorem 3, with at the same time a more careful investiga-
tion of the contour integral in (10), leads now to the conclusion that

(23) F(#,ly) = 1 — ce"@Fine?

[ 1 = ys, bl dpr ),

when z + 1,41 = d, where ¢ is a constant as yet unknown.

To obtain F(z, l,+,) when z + l,4; < d, and to find ¢, we use the integral
equation (4) directly. We see immediately that, provided z = 0, F(z, l,y1) is
a function only of y = z + l.41, say f(y), and after an integration by parts
find the following equation for g(y) = f(y)e*:

y+l—d
(24) 0(y) = ae= fo g(1)P(2) dt,

where P(t) = pr[l, < {].
Now the values of g(y) for y = d are known in terms of ¢, so that by the aid
of the equation

(25) 0@) = @) = 2™ [ g)P() a,

deduced straightforwardly from (24), g(y) can be found successively in the
intervalsy = 2d — 1,y = 3d — 2, -- -, always in terms of ¢. Since d < 1, only
a finite number of these intervals need be considered to give g(y) for all non-
negative y, and then a linear equation for ¢ is obtained from (24) by setting
y = 0.

The fact that ¢ is determined uniquely by (24) follows from Theorem 1, so
that the linear equation for ¢ cannot be an identity.

(ii) The example of paragraph (i) is easy to solve largely because the integral
equation (20) has a degenerate kernel. A more general form for T, which also
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gives rise (in conjunction with suitable service-time structure) to a degenerate
kernel is

(26) Tw = fo(lasa) + fi(ls) + -+ + foaa(las),

where {l,} is a sequence of mutually independent identically distributed ran-
dom variables, and the functions f; are unrestricted except for the limitation
that the resulting 7', must be positive. The appropnate choice for z, would be
(ln+1 sy ooy n—k+1)

Similarly, when S, has this generalized moving average form and 7, has a
characteristic function of such a type that Theorem 2 is applicable, the solution
is straightforward, for the way in which the unknown coefficients of R(z,, s)
depend on z, may be found by setting s equal to the various zeroes of D(s).

It is of some interest that the queue whose arrival process structure is given
by (26) and whose service-times are mutually independent and have a rational
characteristic function can be investigated in a completely different manner.
Supposing for simplicity that the service-times are negative exponential with
parameter a, then without any restriction on 7', it follows from (4) that F(z, z,)
is differentiable with respect to z (except at x = 0) and satisfies

(27) [0F (z, 24)/0x] + aF (z, 2,) = aB[F(x + Tn, 22) | 24}

When T, is given by (26) it happens that (27) can easily be manipulated to
give the solution, and although in this case the results are more directly ob-
tained via Theorems 3 and 4, it is conceivable that there are queues for which
the opposite is true.

(iii) A generalization of (18) in a rather different direction results from sup-
posing that

(28) Tw = Va+ L(2s) — L(24-1),

where V, is a sequence of mutually independent (identically distributed)
random variables, {z,} a stationary Markov sequence, and L an arbitrary func-
tion, all restricted by the condition that T, must be positive.

If the service times form a completely independent sequence, (6) can be
written as

(29) V[ — (s, 2n)] = B(8, 20) — H(8)G(—38)E[®(s, 2n) | 2ul,

where ®(s, z,) = ¢ **“"¢(s, 2,), and G(s) is the transform of the distribution
of V,, rather than of T,.

For fixed s (29) is a linear integral equation of the second kind, with param-
eter H(s)G(—s), and the well-developed theory of such equations may make it
possible to discuss the behaviour of ®, and hence of ¢, with relative ease. If, for
instance, H is such that the conditions of Theorem 4 are satisfied, then all the
singularities of ¢ are clearly confined to a bounded part of the plane: at least
one such singularity is to be expected for every eigenvalue, so that if there is
an infinite number of eigenvalues, there is likely to be a non-isolated singularity
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of ®. This will usually be the case unless (HF') holds, or the kernel is degenerate.
If (HF) holds, a somewhat different approach has of course already been given
in Section 4.

A queue which happens to have just this structure is one (apparently due to
Kendall) mentioned by Wishart in the discussion on Winsten’s paper: the
customers are due to arrive at unit intervals, but are late independently with a
negative exponential lateness distribution, and the service is also independent
and negative exponential. It is readily verified that

(30) Tn =1 + Mp4a + Tnyl — My — Ty

where m, is the number of customers overdue at the instant of arrival of the
nth customer, and z, is the time that has then elapsed since the last arrival-due
point. Furthermore (m,, x,) is clearly a Markov process (and consequently,
since m, is integral and 0 £ z, < 1, m, + 2, is also Markov). Unfortunately
the transition probabilities are so complicated that detailed progress seems
unlikely, and, in addition, according to the remarks made in the previous para-
graph ¢ has probably a non-isolated singularity.

The structure assumed may also arise when customers arrive late in a different
way. If they are due at intervals V, , but are late an amount L(z,), then pro-
vided these quantities are restricted to ensure that customers arrive in order,
T, is clearly described by (28). If in particular the customers were not much
late, they would normally arrive in order, in which case (28) could be considered
to represent small perturbations of the expected arrival pattern; these pertur-
bations need not be supposed independent of each other, since {z,} is a Markov
process.

(iv) In addition to the queue treated by Lindley, Smith, and others, there
are as we have already observed at least two others with a direct physical
meaning that fall in effect under (HF). In both we use the Erlang device, repre-
senting a variable whose distribution is of Erlang type E; as the sum of [ inde-
pendent Poisson variables.

Suppose that a queue with independent inter-arrival-times and service-times,
having distributions E» and E, respectively, has a finite waiting-room of size M,
and that the customers join a second queue immediately on completing their
service in the first. On applying the Erlang device we obtain at any instant two
phases p, g with 1 = p = P, 1 = ¢ = @ and we construct a Markov chain
z by writing z = (m, p, ¢) where m is the number of customers present in the
first queue. One customer actually arrives at the second queue whenever m
decreases by one, but the waiting-time will be unaffected if instead we suppose
that a customer arrives each time z changes its state in any way, provided that
the service-times for these extra customers are set equal to zero. If now the
(real) service-times form a sequence of mutually independent identically dis-
tributed random variables, (HF) is clearly satisfied for the modified queue,
taking for z, the state of z immediately after the arrival of the nth customer;
it is in fact the situation of Section 3 that concerns us here, and aside from
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purely practical difficulties the problem may be considered solved. Some care
must be taken in the interpretation of the results, since only those transitions
at which real customers arrive are of interest. There is, however, no difficulty,
for the answer we obtain, pr [w, < 2 | 2,—], is by H(iii) equal to pr [w, < | 2,1,
2,] and we can therefore ignore other transitions, and merely evaluate all quanti-
ties conditional on a real customer having arrived.

It would, of course, be rather more interesting to deal with the case M = o,
but this seems to be impossible unless P = @ = 1. In fact, except in this latter
case, it seems that even with negative exponential service-times the characteristic
function of the waiting-time may not be meromorphic.

For the second example we suppose that the stream of arriving customers is
formed by mixing several independent streams, each of which has independent
Erlang inter-arrival times. On representing each of these component streams by
means of the Erlang device, a Markov chain z = (py, P2, - - -) is formed, where
P1, P2, -+ are the various phases. As in the previous example, with suitable
service-time structure the queue is made to satisfy (HF) by adding fictitious
customers with zero service-time.
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discussions and to the Department of Scientific and Industrial Research for a
Research Studentship.

APPENDIX

Our goal is the following theorem on the number of singularities of the oper-
ators acting on ¢, on the right hand sides of (7) and (15) respectively. The
theorem applies in the finite matrix case and is obtained at the cost of imposing
further restrictions. The number of possible values of z, will again be denoted by
k, and the (backward) transition matrix of the z, by P = [ps;], where p;; =
Pr(ze = jlz. =1

TueoreM 5. Under (HF): (a) If H(s, 2, 2.—1) can be expressed as N (s, zn,
2n1)/D(s), where N s analytic everywhere and D(s) is a polynomial of degree m,
if G s analytic at the origin, if P is irreducible, and if sufficiently far from the
origin ©n the left half plane |GH| < 1, then the operator D(s)I — @ occurring in
(15) has singularities for km values of s inside the left half plane. (b) If G(—s,
Zn , 2n-1) Can be expressed as N (s, zn , 2n—1)/D(s), where N is analytic everywhere
and D(s) is a polynomial of degree m, if H is analytic at the origin, if P is irre-
ducible, and if sufficiently far from the origin in the right half plane |GH| < 1,
then the operator D(s)I — Q occurring in (7) has a singularity for km — 1 values
of s inside the right half plane.

We treat the situation considered in Section 4 and Theorem 5a. The matrix
operator in which we are interested is then

(A1) D(s)I — @

where I is the k X k unit matrix,
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(A2) Q = [gij] = [pi;N:i(8)Gis(—s)],

and N;;j(s) = D(s)H;j(s) is an analytic function of s.

This operator is singular whenever D(s) is equal to one of the eigenvalues of
the matrix Q. Inside the left half plane these eigenvalues are the roots of a poly-
nomial equation of degree k, in which the coefficients are analytic functions of s.
It is not difficult to show that the eigenvalues may be combined to form a number
of analytic multiple-valued functions, with isolated branch points. To achieve
this we may merely adapt the discussion of algebraic functions given in Knopp
[8], taking care of the number and position of the branch points with the following
remark. Either the discriminant of the characteristic equation is analytic and
not identically zero, or it vanishes everywhere, in which case the equation can be
factored into two (or more) polynomials whose discriminants are analytic and
not identically zero. The zeroes of the discriminants, which give the branch
points of the multiple-valued functions induced, are therefore isolated. In the
whole half plane there may of course be an infinite number of branch points.

Since the eigenvalues generate multiple-valued functions, we may represent
them on a Riemann surface; it is not difficult to see that Rouché’s theorem may
be applied to a contour on a Riemann surface, except that a zero occurring at a
branch point is counted only once, no matter how many sheets join there, and
we shall apply Rouché’s theorem in this way to the two functions D(s) and
A(s). A(s) is, of course, the eigenvalue function. The contour we shall use will
be that induced on every sheet by the semi-circle in the left half plane standing
on the imaginary axis on and outside of which |G;;(—s)H;(s)| < 1. This contour
will clearly enclose all the zeroes of D(s), and since there are just k sheets, it will
encircle them k& times.

To be able to use this contour, G will be assumed analytic at the origin. It
may be that this is not necessary.

For given s on this contour we know that

(A3) INii(s)Gii(—3)| < |D(s)]

except at the origin, where equality holds, and if A(s) is an eigenvalue of Q,
there is some vector c:(s) such that

(A4) A(s)ei(s) = ; PiilN:;(8)Gii(—$)ci(s).

If M is the maximum value of [ci(s)| as ¢ varies then [\(s)| M =< |D(s)| M,
with strict inequality everywhere except possibly at the origin. Hence on every
sheet, everywhere on the contour except possibly at the origin, [D(s)| > |A(s)].
By considering the integrals used in the proof of Rouché’s theorem, it will be
seen that this exceptional point does not matter unless D(0) = A(0).

From inspection of (A4), A(0)/D(0) are just the eigenvalues of the matrix P.
If we now assume that P is irreducible, it follows that the sheet of the Riemann
surface on which A(0) = D(0) has no branch point at the origin. Thus this
branch of A(s) is differentiable at s = 0, and consequently so is the corre-
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sponding c:(s). Dividing by D(s), differentiating, and setting s = 0, we find,
since ¢;(0) = 1

(A5)  [N(8)/D(8)]s=0 + ci(0) = j; piic;(0) + ; il E:iT — Ei;S],

where E;;T = E{T | 2. = %, 2a—i = j}.

Multiplying (A5) by p; and summing over %, where {p;} is the unique sta-
tionary distribution of the z,, we find [A(0)/D(0)]' = E(T) — E(S) which is
positive because of the condition necessary for a stationary distribution to exist.

Hence if the contour on this sheet is deformed to pass just to the left of the
origin, then everywhere on the contour [D(s)| > |A(s)[, and Rouché’s theorem
can be applied to the function D(s) — A(s). The number of zeroes of D(s)
enclosed by the contour is km.

The case when G is restricted is treated similarly, and we have completed the
proof of the theorem.
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