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1. Introduction and summary. In the theory of analytic characteristic functions
(c.f.’s), it is well-known that:

(1) the order of an entire c.f. cannot be less than unity, unless the function
is identically equal to one (P. Lévy); and

(2) a necessary and sufficient condition (NASC) for a distribution function
(df.) F(z) #= e(z) to be a “finite” d.f. is that its c.f. be an entire function of
order one and of exponential type (G. Pélya). (Throughout this paper, F(x)
will invariably denote a d.f., and f(¢) the corresponding c.f.)

These two results lead us naturally to the investigation of conditions under
which a d.f. will have an entire c.f. (i) of order one and of maximal type, or (ii)
of given finite order greater than one, or (iii) of infinite order. Sufficient con-
ditions for (ii) were obtained for absolutely continuous d.f.’s by D. Dugué
[2], and for general d.f.’s by E. Lukacs (see [4], p. 142).

The scope of the present paper extends beyond the problems (i), (ii) and (iii)
above. In Section 6 below, we obtain NASC’s for a d.f. to have an entire c.f.
of given finite order greater than one. Section 7 deals with NASC’s for a d.f. to
have an entire c.f. of given finite order greater than one and given type (maximal,
intermediate, or minimal). In Section 8, we consider entire c.f.’s of order one:
we first obtain NASC’s for a d.f. to have an entire c.f. of order one and maximal
type; next, we obtain a relation between the extremities of a “finite” d.f. # e(z),
and the type of the corresponding entire c.f. (which is of order one); and finally,
we obtain as a corollary the fact that there cannot exist an entire c.f. of order
one and of minimal type. These constitute the main results of this paper.

In addition to the above, we obtain in Section 3 a theorem on the moments of
a d.f., and in Section 4 a theorem on the interval of existence of the integral
defining the moment-generating function of a d.f., these theorems being closely
related in form and in content to the main results mentioned above. Allied re-
sults on analytic c.f.’s which are not entire, and on entire c.f.’s of infinite order
are given in Section 9.

2. Certain pre-requisite definitions and results. We collect in this Section
certain definitions and known theorems which we will require.

2.1. Order and Type of Entire Functions. We assume familiarity with the con-
cepts of analytic functions and entire functions of a complex variable, and with
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ENTIRE CHARACTERISTIC FUNCTIONS 1239

the maximum modulus principle for analytic functions. (See, for instance, [6],
pp. 98, 295 and 163 respectively. We shall treat “regular” and “analytic” as
synonymous phrases.)

Let f(z) be an entire function. For every » > 0, |f(z)| has a maximum for
2| < r, which is attained on the circle |z| = r, by the maximum modulus principle.
We shall denote this maximum by M (r, f).

The order p of f(z) is then given by

(2.1.1) p = lim sup,. 4« [In In M(r, f)/In 7].
If p > 0 and is finite, then the type 7 of f(2) is given by
(2.1.2) 7 = lim Sup,,4+e [In M(r, f)/r],

f(2) is said to be of maximal, intermediate, or minimal type according as r = + o,
0 <7< +w,or 7= 0.1t is said to be of exponential type if it is either of
order one and of finite (that is, not maximal) type or of order less than one; in
other words, there exists some constant 4 > 0 such that for all sufficiently large r

(2.1.3) M(r,f) = exp (Ar).

The following theorem relates the order and the type of an entire function to
the coefficients in its power-series expansion (cf. [6], p. 326):

TarOREM 2.1.1. Let the series D oo ca.2" represent an entire function of the
complex variable z (so that the radius of convergence of the series, given by
lim inf,. o o] ""™, is infinite). Then the order p and the type = (in case p is
Jinite and positive) of the entire function are given successively by

p = lim SUPssiw [2 In (1) /—In |c,|],
(2.1.4)
rep = lim SUPn. 1o 72fca|” ™.

2.2. Analytic characteristic functions. A c.f. f(¢) is said to be an analytic c.f.
if it coincides in some (real) neighborhood of ¢ = 0 with an analytic function of
the complex variable z = ¢ 4 . We cite below certain basic and well-known
results on analytic c.f.’s, which will be required in the sequel. Proofs of these
results can be found, for instance, in [4], Chapter 7.

TaEOREM 2.2.1 (P. Lévy-D. A. Raikov). If f(t), the c.f. of F(z), coincides in a
(real) neighborhood of t = 0 with an analytic function of the complex variable
z = t + w, then the latter is analytic in a ‘‘horizontal” strip of the
form —a < Im(z) < B(a > 0,8 > 0), and admits the representation

+o0
(22.1) (z) = [ exp (izz) dF (z)

in that strip. It is possible, depending on F, for o or B or both to be infinite. In case
both are infinite, we say that F has an entire c.f.

It is known further that the points —7a (if « is finite) and 8 (if 8 is finite)
are singularities for f(z).

THEOREM 2.2.2. If F(x) has an entire c.f., then, for every r > 0,
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(2.2.2) M(r, f) = Max [f(ir), f(—ir)]
“where M(r, f) is as defined in Section 2.1.

TuroreM 2.2.3. If F(z) has an entire c.f., then, for every r > 0 and every x = 0,
we have

(2.2.3) M(r,f) = 1 — F(z) + F(—=z)]-¢".

TuroreM 2.2.4 (P. Lévy). If F(x) 5% e(x) has an entire c.f., then the order of
the c.f. is not less than unity. (Here, e(x) denotes the degenerate d.f. having the
origin as its discontinuity-point.)

We say that a d.f. F(z) is finite (or bounded on both sides) if there exist real

numbers a and b such that F(a) = 0 and F(b) = 1. We define the left and
right extremities of such a d.f. in an obvious manner:

lext F = sup {a|F(a) = 0}; rext F = inf {b| F(b) = 1}.

The following is a well-known result on finite d.f.’s due to G. Pélya [5] (see
also [4], p. 141):

TurorEM 2.2.5. The c.f. of any “finite” d.f. F(x) % e(x) is an entire function
of order one and of exponential type. Conversely, every entire c.f. f(z) of order one
and of exponential type corresponds to some ‘‘fintte” d.f. F(x), whose exvtremities
are given by the formulas
(22.4) lext F lim supy. .+ [In f(2y) /y],

rext F' = lim sup,. 4 [In f( —7y)/yl.

3. A theorem on the moments of a d.f. For the purposes of this and the fol-

lowing Sections, it is convenient to introduce the following notation:

F(z) invariably denotes a d.f., as already indicated in Section 1,
3.1) T(z) =1—F(z) + F(—2),

g(z) = {InIn [1/T(2)}}/In

h(z) = {—In T(z)}/z*"=

The following result is closely related to a result of H. Cramér’s giving a
sufficient condition for the existence of the moment of a specified order (see
(1], p. 71).

TueoreM 3.1. Let F(x) be an arbitrary d.f. which is not “finite”, so that T(x) > 0
for every x > 0. Let

(3.2) 8 = lim inf,, 1 [—In T(z)/In z].
Then [*3 |z|* dF (z) (i) s defined for all k in [0, 8), and (ii) does not exist
for any k > 8. (In general, nothing can be said about the existence of the integral

fork = 4.)
We remark that if F(z) has a “finite” d.f., then, of course, absolute moments

of all orders exist.
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Proor.

(i) Itis clear that § = 0. If § = 0, there is nothing to prove. Hence we need
only consider the case > 0. Let then § > 0, and let k¥ be any number in [0, 3).
We choose any number r such that

(3.3) k<r<a.

By the definition of 3, there exists X = X(r) > 0 such that for all z = X,
—In T(z) = rInz, that is, T'(x) < 1/2" so that, for all z = X, we have

(3.4) 1—F(z) £1/2" and F(—z) £ 1/2.
On integrating by parts, and using (3.3) and the first relation in (3.4), it is
easy to see that

+00 A4
f & dF(z) = limgnye — f 2 dll — F(z)]
-+
— X[ — F(X)] + & fx 2L — F(2)] do

+0
< X*[1 — F(X)] +kf & dn < +co.
X

Similarly, using the second relation in (3.4) together with (3.3), we prove
that[;x |z|* dF (z) < 4 . Obviously, f_i |z|* dF(z) < X*. The above three
inequalities together yield (i).

(ii) Let now % be such that f:w |z* dF(z) = C < + . Then, for any z > 0,

00
21 — F(z)] < f ¥y dF(y) = C,

and

#H(—a) s [yl are) s c.
Hence, for any ¢ > 0,
#*T(z) < 2C
whence it follows that
lim inf, i [—In T'(z)/In 2] = k.
Thus (ii) is also proved.

4. An existence theorem for the integral defining the moment-generating
function of a df. Let F(z) be an arbitrary d.f. Consider the function M(¢) of
the real variable ¢ defined by the relation M(¢) = [*3e" dF(x). In general,
M(t) may not be defined for any real value of ¢ other than ¢ = 0. The follow-
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ing theorem concerns the existence of M (¢) and shows that there is always an
existence-interval of values of ¢ associated with it, which, depending on F,
may also degenerate into the single point { = 0, or consist of the entire real
line. (If M(¢) exists in some t¢-interval containing the origin as an interior
point, then we call it the momeni-generating function of F(x).)

TuroreMm 4.1. Let F(x) be an arbitrary d.f. Then, (1) the integral M (1) is
defined for all points t in the open interval (—B, o), where

B = lim inf,, 1 [—In F(—z)/x]
and
a = liminf,, o [—In[1 — F(x)]/z],

and where it is understood that B (respectively a) is to be taken as infinite
if F(—x) = 0 (respectively if 1 — F(xz) = 0) for some x > 0; and (ii) the integral
does not exist for t < —B (if B is finite) or for t > a (if a s finite). (In general,
nothing can be said about the existence of the integral M (¢) for ¢t = —g or for
t= a.)

Proor.

(i) We first note that « = 0, 8 = 0. Consider the ¢-interval [0, @). If « = 0,
then, M (0) being defined, there is nothing to prove. Hence we need only con-
sider the case @« > 0, and show that M (t) is defined for all ¢ in [0, «).

Let 0 < t < a. Choose any r such that ¢ < r < «. By the definition of «,
we can find X = X (r) > 0 such that for all z = X,

{—=In[l — F(z)]/a} = r,
that is, for all z = X,
(4.1) 1 — F(z) < exp (—rx).
On integrating by parts, and using (4.1), we obtain

+o0 4
f e dF(2) = — lim 4ote f e d [l — F(2)]
X p.¢

—+o0
<1 —F(X)] + tf "% da,

X
from (4.1),
(42) < "1 - F(X) + 1
since ¢ < r. Also, obviously,

X

(4.3) [ ¢ dF (z) < ¢*F(X).

From (4.2) and (4.3), we see that M (t) exists for 0 < ¢ < a.
We then consider the t-interval (—g, 0]. If 8 = 0, then, M (0) being defined,
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there is nothing to prove. Hence we need only consider the case 8 > 0. We
proceed exactly as before, mutatis mutandis, and show that for 0 < ¢t < 8,

e ¥dF(z) < + .

It is obvious that M (¢) is defined for all ¢ > 0if 1 — F(xz) = 0 for some
z > 0, and for all ¢t < 0 if F(—z) = 0 for some z > 0. These facts motivate,
and agree with, the definitions of o and B given above for these two cases re-
spectively. Thus (i) is proved.

(ii) Let, for some ¢ > 0, [¥2 e dF(y) = C < + ». Then, for any z > 0, we
have e“[1 — F(z)] < fi’” e’ dF(y) £ C, whence we derive at once that

lim inf,, 10 {—In [1 — F(z)]/z} = ¢, t.e.,t

Similarly, if fiﬁ ¢ "dF(y) < + o for some ¢t > 0, then ¢t < 8. Thus, (ii) is
proved.

From Theorem 4.1, we derive the following consequences.

CoroLLARY 1. A NASC for F(x) to have an analytic c.f. is that « > 0, 8 > O.

Proor. If @ > 0, 8 > 0, then [T exp (dzx) dF(z) is defined and analytic in
the open neighborhood —a < Im (2) < B of the origin, and coincides with the
c.f. of F(z) on the real line. Hence, by definition, F(x) has an analytic c.f.

Conversely, if F(z) has an analytic c.f., say f(z), then it is known from the
proof of the Lévy-Raikov Theorem (Theorem 2.2.1; see, for instance, [4], p. 132)
that f(z) admits the representation

lIA

«.

-+
(44) f(z) = / exp (izz) dF (z)

in a strip of the form —y < Im (2) < 8(y > 0, § > 0), which is also the strip of
convergence of the integral (that is, the integral converges for —y < Im (2) < §,
but not for Im (2) < —+v or for Im (z) > §). Since —8 < ¢ < ais the interval
of convergence of M (t) = f(—1t), it follows that we must have y = o, § = 8.

It is also known (see, for instance, [4], p. 132) that —4y, 26 are singularities
for the function (4.4) above, so that —<«, i3 are singularities for f(z).

The above considerations further yield the following

CoroLLARY 2. A NASC for F(x) to have an entire c.f. is that « = 8 = -+ .

6. Two basic lemmas. In this Section, we establish two lemmas which are
essential for the proofs of the main results in the sections that follow.
LemMmA 5.1. The integral

o0
I(2) = f exp (tex — ka't®) dx | a> 0,
0

defines an entire function of the complex variable z, of order 1 4+ (1/a), and of
type (c/k)M?, where
(5.1) c=a"/(1 + a)'*

Proor. Let z be an arbitrary, but fixed, complex number. Since, for x = 0,
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exp (tzz — ka'™®) = D 12 fa(2),

where f,(z) = (1/n!)(2)"2" exp (—kz'"*), and the partial sums of the series
on the right are dominated by the function exp (||  — kz'**) which is in-
tegrable over [0, 4 « ), we have, by the Dominated Convergence Theorem of
Lebesgue’s (see, for instance, [1], p. 47), that

+o0 +-00

I(z) = g;o A fa(z) dz.
But,
+0 +o0
(@) dz = (1/n1) (32)" f " exp (—ka'™®) da.
0 0

Making the substitution k2'** = y, and setting 6 = 1/(1 + «), we have (with
the usual notation as to the Gamma-function)

+eo
. \nol'{o(n 4+ 1 n
fo fa(z) dz = (1/n!) (i2) % =cp 2", say,
so that I(z) = 120 c2". We now invoke Stirling’s approximation to the
Gamma-function, namely, that, as x — + <,

I'(z) ~ (2r)le "},

where the symbol ~ denotes that the ratio of the two members of the above
relation tends to unity as x — -+ o« (see, for instance, [6], pp. 420421). By
applying this to T'{é(n 4 1)} and to n! = T'(n + 1), we have that, as n — + o,

(52) loal ~ 8Hle/(n + 1)17*(8/k)% ",

It follows from (5.2) that the radius of convergence of the power-series
D 20 caz™—given by lim inf,. 1 .|~/ —is infinite, and so the series represents
an entire function of z. (That I(z) represents an entire function of z is also
obvious from straightforward considerations. We utilize the power-series ex-
pansion for /(z) primarily in order to determine the order and the type of the
entire function.)

From (5.2), it follows that —In |c.| ~ (1 — §)n In (n), so that, by relations
(2.1.4) of Theorem 2.1.1, the entire function I(z) is of order p = 1 + (1/a).

Again, from (5.2), it follows that n |c.|”” ~ nle/(n + 1)]°“™P(8/k)".
Noting that p(1 — 8) = 1 and that p§ = p — 1 = 1/a, we then have
n |ca|”™ ~ e(8/k)"®. By relations (2.1.4) of Theorem 2.1.1, it then follows
that the type 7 of I(2) is (¢/k)"®, where ¢ is given by (5.1). This completes
the proof of the lemma.

We recall Definitions 3.1 and 5.1 before proceeding to

LeMMA 5.2. If for all x = X(>0) we have

(5.3) T(z) < exp (—ka'™), a > 0,
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then F(x) has an entire c.f. f(z) which is either of order 1 4+ (1/a) and of type
<, or of order less than 1 + (1/a), where r = (¢/k)™®.
Proor: Let A > X, and r > 0; on integration by parts,

f: e€°dF (z) = — j: e dll — F(z)]
=[—e* {1 —F(x)}lg +r [: [1 — F(z)] e*dx

= 0= PO - 1L = FW) 47 [ 11 = F@) e da,

whence, using (5.3), and letting A — + «, we have
-0

j:w €*dF(z) = *[1 — F(X)] + rL 1 —F(x)]e*de

00

=l —-FX)] + rf exp (rz — ka't*) dz

X

again by virtue of (5.3),
~}-00
<l —-FX)]+ r[ exp (rx — kz'™®) dz.
0
Also, obviously, [%,¢”dF(z) £ ¢*F(X), so that

~+o0 X 00
[ e*dF(z) = f e*dF (z) + f ¢’ dF (z)
) — o0 X
(54) o
=& +r f exp (rz — ka't®) dz
0

Exactly in the same way, we derive, using (5.3), that
+o00

—X -+o0
e "dF(z) = f e "dF(z) + [ ¢ " dF(z)
0 —c0 X

(5.5) -
<r f exp (rx — k') dx + ¢~
0

Hence, from Theorem 2.2.2 and relations (5.4) and (5.5) above, it follows that
F(z) has an entire c.f. f(2) such that

M(r,f) = Max [f(ir), f(—ir)]
<r f +w exp (rx — kz'™®) dx + €'*.
0

The statement of Lemma 5.2 is an immediate consequence of the above in-
equality and Lemma 5.1.
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6. NASC’s for an entire c.f. of given finite order greater than one. We first
recall the notations (3.1). ;

TrEOREM 6.1. A NASC for F(x) to have an entire c.f. of order 1 + (1/a) (a > 0)
18 that

i) T(x) > 0 for every x > 0;
and
(ii) lim inf 10 g(z) = 1 + a.

Proor. The necessity of (i) is ‘clear from Theorem 2.2.5. g(z) is therefore
defined for all sufficiently large . We turn to the necessity of (ii). In view of
our assumption as to the order of f(z), corresponding to any given e > 0, there
exists an R = R(e) such that forallr = R

(6.1) Mr, ) < exp Ao+
Hence, from (2.2.3), we have that for any z = 0, r = R,
T(x) < 2exp [—rz 4+ FTHOH,

Choosing z = X = 2RY*™, and defining r = (iz)*“**?—so that r 2 R, we
have, for any 2 =2 X = X(¢), T(x) £ 2 exp [—(22)'"™ ], where
€ = o’¢/(1 + ae). It follows that

(6.2) lim infss 0 g(2) = 1 4+ a — €.
Since ¢(>0) and consequently ¢ are arbitrary, we have
(6.3) lim inf,, 10 g(z) 2 1 4+ a.

We proceed to show that the inequality sign cannot hold here. Suppose indeed
that it does. Then we can find a v > @ and an X = X(y) such that, for all
z 2 X, g(z) = 1+ v. And this implies that, forallz = X, T'(z) < exp (—2'"").
By Lemma 6.2, it then follows that F(z) has an entire c.f. of order
<14 (1/v) <1+ (1/a). This contradiction to our assumption establishes
the necessity of condition (ii).

We proceed to the sufficiency part of the proof. Condition (i) implies not
only that the c.f. of F(z) is not an entire function of order one and of exponential
type—by virtue of Theorem 2.2.5—but also that g(z) is defined for all sufficiently
large x. We turn to condition (ii).

If lim inf,, 0 g(z) = 1 4+ @, then, corresponding to any ¢ > 0, we can find
X = X(e) such that, for all z = X, g(z) = 1 + a — e This implies that for
all such 2, T(z) < exp (—2'"*"°). Hence, by Lemma 5.2, F(z) has an entire
c.f. f(z) of order <1 4+ [1/(a — ¢)]. Since ¢ > 0 is arbitrary, it follows that the
order of f(z) is =1 + (1/a). We proceed to show that the inequality sign can-
not hold here. Suppose indeed that it does. Then we can find a v > «, and an
R = R(y), such that, for all » = R, M(r, f) < exp (+'*™"). This being of
the same form as (6.1) leads to a relation analogous to (6.2), namely,
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liminf,sjug(z) 2 14+v> 1+ a
This contradiction establishes the sufficiency of the conditions given.

7. NASC’s for entire c.f.’s of given finite order greater than unity and given
type. The concept of “type” is a useful refinement to the notion of “order” in
measuring the “growth” of an entire function. In this section, we establish results
which exhaust all possible “types” for c.f.’s of given finite order greater than
unity.

TaroreM 7.1. A NASC for F(z) to have an entire c.f. of order 1 4 (1/a) (a > 0)
and of (finite) type 7 > 0 s that

(1) T(x) >0 forevery z > 0;
and
(ii) lim inf,., 1o h(z) = ¢/7%

where h(z) and ¢ are defined respectively by (3.1) and (5.1). We notice that ¢ is
a function of a.

Proor. Let F(z) be assumed to have an entire c.f. of order 1 + (1/a) and
of finite type 7 > 0. The necessity of (i) follows from Theorems 2.2.5 and 6.1;
k() is therefore defined for all z > 0. We turn to the necessity of (ii); under
the above assumption, corresponding to any e¢ > 0, we can find B = E(e) such
that, for all r = R,

(7.1) M(?",f) < exp [(T + 6)7‘1+(1/a)]'
Hence, by (2.2.3), we have that for any x = 0,7 = R,
T(z) < 2exp [—rz + (v + &r' ).

Let now a be any positive number. Setting 7 = az®(r = R) and defining X by
R = aX*®, we have, forz = X,

—In T(x) = —In2+4 xH—a[a —_ (T + e)al+(l/a)]’
whence
lim infx_,+w h(x) =>a — (T + e)al+(l/a).

This being true for any a > 0 holds, in particular, for that value of a which
maximizes the right hand member of the above inequality, that is, for

a = {a/[(r + &) (1 + a)}".
Hence, with ¢ defined by (5.1),
(7.2) lim inf,, 40 A(z) = ¢/(7 + €)°.
Since e > 0 is arbitrary, it follows that
(7.3) lim inf, .40 h(z) = ¢/7°%
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We assert that the inequality sign cannot hold in (7.3). Suppose indeed that it
does. Then we can find k¥ > ¢/7% and X = X (k) such that for z = X, h(z) = k.
Hence, by Lemma 5.2, we see that, to any ¢ > 0, there corresponds B = R(e)
such that, for » = R,

M(r,f) < exp [(7 + &)r'TV?),
where
T, = (c/k)(lla) <7

Since we have assumed that the order of f(2) is 1 + (1/a), the above inequality
can only mean that the type of f(z) is < + < r. This contradiction establishes
the necessity of condition (ii).

Turning to the sufficiency part, we note that (i) ensures not only that F(x)
cannot have an entire c.f. of order one and of exponential type, but also that
h(z) is defined for all z > 0. By (ii), we then have that corresponding to any
k < ¢/7% we can find X = X(k) such that for all x = X, h(z) = k; whence,
by Lemma 5.2, we see as above that f(z) is an entire function with the following
property: for any ¢ > 0, there exists B = R(e) such that, forallr = R,

M(r,f) < exp [(7 + )"V,
where
7 = (e/k)Y™.

Now it is easy to verify that (ii) implies that lim inf,, . g(x) is equal to 1 + «,
so that it follows from Theorem 6.1 that the order of f(2) is precisely 1 + (1/a).
Hence, from the above, we see that the type of f(z) is <7. Since k < ¢/7% is
arbitrary, it follows that the type of f(2) is =<r. Again, we assert that the in-
equality sign cannot hold here. Suppose indeed that it does. Then we can find
” < rand R = R(+”) such that, forall » = R, M(r, f) < exp (+"r'tV®),
Hence we derive in the same way as (7.2) from (7.1) that

lim inf,, 10 A(z) = ¢/(7")% > ¢/7"

This contradiction establishes the sufficiency of the given conditions.
TureoreM 7.2. A NASC for F(x) to have an entire c.f. of order 1 + (1/a) (@ > 0)
and of minimal type (7 = 0) is that

i) T(x) >0 forevery z > 0;

(ii) lim inf,, 40 g(z) = 1 + «;
and

(iii) lim, .4 h(x) (exist and be) = + .

(Note. We say that lim,. . f(z) exists if lim inf . e f(2) = lim SUp..tw f(2)
whether this limit be a real number or 4+ or — «.)
Proor. The necessity of (i) and (ii) follows from Theorems 2.2.5 and 6.1.
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Since 7 = 0, relation (7.1) with + = 0 holds in this case, and we
obtain a relation corresponding to (7.2) with r = 0, in the same way, giving
lim inf,, 10 h(z) = ¢/ for any ¢ > 0. Hence (iii) is necessary.

Turning to the sufficiency part, we notice that (i) ensures that: g(z) is defined
for all sufficiently large x > 0, and h(z) for all z > 0; and that the c.f. of F(z)
is not an entire function of order one and of exponential type. (ii) then ensures
that the c.f. is an entire function of order 1 4+ (1/a), by Theorem 6.1. Finally,
by (iii), if k¥ be any arbitrary positive number, however large, there exists
X = X(k) such that h(x) = k when # = X, whence we derive, in view of
Lemma 5.2, that, since f(z) is of order 1 4+ (1/a), the type of f(z) should be
less than or equal to (¢/k)™“®. Since k is arbitrary, we see that the type must
be zero.

TraeOREM 7.3 A NASC for F(z) to have an entire c.f. of order 1 + (1/a) and
of maximal type (7 = + =) s that

(i) T(x) >0 forevery x > 0;

(i) lim inf,, 10 g(z) = 1 + «;
and

(iii) lim inf,., 1o h(z) = 0.

Proor. The necessity of (i) and (ii) is obvious in the light of Theorems
2.2.5 and 6.1, as before. Since the type is maximal, lim inf,. . A(z) cannot be
either finite and positive, or infinite, by virtue of Theorems 7.1 and 7.2. Hence
it can only be zero, since A(x) = O.

As for the sufficiency of these conditions, we notice the obvious roles played
by (i) and (ii), as in the proof of Theorem 7.2. Lastly, (iii) ensures that the
type of the c.f. is not finite and positive, or zero, by virtue of Theorems 7.1 and
7.2. Hence it is maximal.

Thus, Theorems 7.1, 7.2 and 7.3, among themselves, exhaust all possible
types for entire c.f.’s of given finite order greater than unity. It is to be noted
that condition (ii) in the statements of Theorems 7.2 and 7.3 cannot be dropped;
to this extent, these two theorems differ from Theorem 7.1, in which condition
(ii) is sufficient to take care simultaneously of both the order and the type of
the c.f.

8. The type of an entire c.f. of order one. We begin with a set of NASC’s for
a d.f. to have an entire c.f. of order one and of maximal type. The proof closely
follows that of Theorem 6.1, with certain minor, but essential, modifications.

TueoreM 8.1. A NASC for F(x) to have an entire cf. of order one and of maxi-
mal type is that

(1) T(x) > 0 forevery z > 0;
and
(i) limg,, 1o g(x) (exist and be) = + «.
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Proor. Let F(z) have an entire c.f. of order one and of maximal type. Then,
by Theorem 2.2.5, (i) holds, and therefore g(z) is defined for all sufficiently
large . We turn to the necessity of condition (ii); by our assumption, given
any ¢ > 0, three exists R = R(e) such that forallr = R

exp (r'*) 2 M(r, f) = 3*T(x)
for all x > 0, from relation (2.2.3), so that, for all such r and =z,
T(z) < 2exp (—rz + r').

Choosing z = X = 2R‘, and defining r = (32)“?, we see that T(z) <
2 exp [—(32)'*"9] whence lim inf,, 4 g(z) = 1 + (1/¢). Since ¢ > 0 is ar-
bitrary, the necessity of (ii) is immediate.

To prove the sufficiency, we first note that (i) ensures that F(z) cannot have
an entire cf. of order one and exponential type as well as that g(x) is defined
for all sufficiently large z. Turning to condition (ii), let

lim, o g(x) (exist and be) = 4 .

Then, corresponding to any ¢ > 0, we can find X = X(¢) such that for all
z = X,

g(x) = 1+ (1/e).
This implies that for all such z

T(x) < exp (__xl-l-(l/e)).

By Lemma 5.2, F(z) has therefore an entire c.f. of order < 1 + e Since ¢ > 0
is arbitrary, and since, by virtue of condition (i), f(2) is not identically equal to
one, it follows from Theorem 2.2.4 that the order of f(z) is precisely equal to
one. That the c.f. cannot be of exponential type and so can only be of maximal
type then follows from Theorem 2.2.5 and condition (i) above.

We have seen that Theorem 2.2.5 gives a NASC for a d.f. F(z) = e(z) to
have an entire c.f. of order one and of exponential type, namely, that F(x) be
“finite.” Here, we establish a relation between the type of the c.f. and the
extremities of the “finite” d.f. to which such a c.f. belongs.

THEOREM 8.2. Let F(x) # e(x) be a “finite” d.f., and let its left and right ex-
tremities be a and b respectively. Then the type of its c.f. is given by Max (b, —a).

Proor. By definition, the type of an entire function of order one is given by

(8.1) 7 = lim Sup,. 4 [In M (7, f) /7]

Also, by Theorem 2.2.5, the left and right extremities of F are given by
a = lext F = —lim sup,.i [In f(ir) /7],

(8.2) . .
b = rext F = lim sup,. .+« [In f(—2r)/7].

Hence, noting that by Theorem 2.2.2 M(r, f) = Max [f(ir), f(—ir)], we see
at once from (8.1) and (8.2) that
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(8.3) 7 = Max (b, —a).

Again, we have, for r > 0, the elementary inequalities:

flir) = ‘/'b exp (—rz) dF (z) < exp (—ar),

a

f(—ir) = fb exp ( rz) dF(z) =< exp (br),

a

so that

(8.4) M(r, f) < Max [exp (—ar), exp (br)].
From (8.1) and (8.4), we have at once

(8.5) r < Max (b, —a);

(8.3) and (8.5) combine to give us the statement of the theorem.

CoROLLARY. There exists no entire c.f. of order one and of minimal type.

Proor. Suppose that there does exist such a c.f. Then, by Theorem 2.5.5, it
should correspond to a “finite” d.f. If the extremities of this d.f. be a and b,
then we must have, by Theorem 8.2, that @ = b = 0. But this means that
F(z) = e(z), that is, that f(z) is identically equal to one, and so the c.f. is no
longer of order one.

ReMARK. It is of interest to note that both P. Lévy’s theorem (Theorem
2.2.4) and the above corollary are immediate consequences of the following
result from function-theory, which is itself derived from the Phragmén-Lindelsf
extension of the maximum modulus principle. For details on the derivation of
the result (quoted below), the reader is referred to Yu. V. Linnik [3], p. 32.

TuEOREM. If an entire function, which is not a constant, has order less than one,
or order one and minimal type, then it cannot be bounded on any straight line (of
the complex plane).

To apply this result to our situation, we need only note that every c.f. is
bounded on the real line (|f(¢)] < 1 for all real ¢).

9. Analytic c.f.’s which are not entire, and entire c.f.’s of infinite order. An
almost immediate consequence of Theorems 6.1 and 8.1 is the following:

TaeoreM 9.1. In order that a d.f. F(x) have either an analytic c.f. which is not
entire, or an entire c.f. of infinite order, it is necessary (but not sufficient) that

(i) T(z) >0 forevery z > 0;
and
(ii) lim inf,, 1 g(z) = 1.

Proor. If F(z) has an analytic c.f. (not necessarily entire), then, by Corollary
1 to Theorem 4.1, « > 0, 8 > 0, where « and 8 are as defined in the statement
of Theorem 4.1. Let r be any positive number strictly less than both a and 8.
Then, from the definitions of « and B, it follows that (cf. [4], p. 137)



1252 B. RAMACHANDRAN

T(z) = O(¢™™) as x — + . Hence we have at once that lim inf,, ., g(z) = 1.
But, by virtue of Theorems 6.1 and 8.1, the inequality sign cannot hold here if
F(x) satisfies the conditions of the present theorem.

That the above conditions are not sufficient is seen by considering the example:

F'(z) = aexp (—z/In z) forz = e,
F'(z) =0 otherwise,

where a is a certain positive constant. F(z) does not have an analytic c.f., though
it satisfies conditions (i) and (ii) above. In proof of these assertions, we need
only note that, for a suitable constant c, and for all z = ¢, ¢ exp (—%z/In z) =
T(z) =z aexp (—z) > 0 and that M (¢) is not defined for any ¢ > 0. (Refer also
to Corollary 1 to Theorem 4.1).

We can, however, obtain NASC’s for F(z) to have an analytic c.f. which is
not entire, or an entire c.f. of infinite order, as immediate consequences of Corol-
lary 1 to Theorem 4.1, and Theorem 9.1 and Corollary 2 to Theorem 4.1, re-
spectively. The proofs are obvious and so we omit them.

TareorEM 9.2.1. A NASC for F(x) to have an analytic c.f. which is not entire is
given by the following:

liminf., 4o [—In [l — F(z)]/2] = a > 0,

@ lim inf, 4o [—In F(—2z) /2] = 8 > 0,
(with the same understanding as in the statement of Theorem 4.1); and

(ii) at least one of a and B is finite.

Then the cf. is analytic in the strip —a < Im (2) < B.

TaeorEM 9.2.2. A NASC for F(x) to have an entire c.f. of infinite order is given
by conditions (i) and (ii) of Theorem 9.1 together with the following:

limg, 4w [—In [1 — F(z)]/2] (exist and be) = + o,

(i) limg, o [—In F(—2z)/z] (exist and be) = + .

The following lemma (analogous to Lemma 5.2, but less informative) and
theorems indicate how Theorems 6.1 and 8.1 can be extended to entire c.f.’s of
infinite order, for various “rates of growth” of such functions. The proofs are
similar to those in Sections 5, 6 and 8—no essentially new ideas being involved—
and are given here for the sake of completeness.

LemmA 9.1. Suppose that a df. F(x) is such that for all * = z,,

(9.1) T(z) < Lexp [—Mz(In z)?]

where L, N, 8, xo are all positive constants. Then, the c.f. of F(z) is an entire function
f(2) such that

(9.2) lim Supys 4w [In Inln M(r, f)/Inr] < 1/s.

Proor. Let 7, = A(In 2,)°. Consider any r > ro, and define X = X (r) by the
relation
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AMIn X)) =2r, or X = exp[(2r/A)"?]

so that X = z, . Then, proceeding as in the proof of Lemma 5.2, and using (9.1),
we arrive at the relation

+0

[x @) = ¥ — F(O)] + 1 [ en-rold
<1 —-—FX)]+Lr ./:w exp [rz — Az(In z)°] dz.

But [%° exp [rx M(n 2)°] de = [° exp [—2(A(In 2)° — #}]]dz, <
o0

17 exp (—rz) dz < 1/r. Also, [X, €7 dF(z) < ¢*F(X) so that

+c0
f €*dF(z) £ €* + L < exp [r exp {(2r/N)Y?}] + L.
Similarly it is found that

[:w e “dF(z) = f__x e “dF(z) + [:w e " dF ()

0

< exp[rexp {(2r/A)¥?}] + L.
Hence it follows that F(z) has an entire c.f. f(z) such that
M(r,f) = Max [f(ir), f(—ir)] < exp [r exp {(2r/N)""}] + L.

Relation (9.2) is an immediate consequence of this inequality.
TuroreM 9.3. A NASC for F(z) to have an entire c.f. f(z) such that

(9.3) lim suprs 4w [InInIn M(r, f)/Inr] = « (a>0)
s that

(i) T(xz) > O for every x > 0; and

(ii) lim inf,, 1 ¢(z) = 1/a,
where

¢(x) = [{Inln[1/T(z)] — In z}/In In z].

ReMARrk. The (standard) Poisson distribution gives us an example of such
a d.f., with « = 1.

Proor. Let (9.3) be satisfied. The necessity of condition (i) follows from
Theorem 2.2.5. Turning to the necessity of (ii), we have that, corresponding to
any e > 0, there exists R = R(e) such that for all r = R,

(9.4) M(r,f) < exp [exp (r*™)]
whence it foillows from (2.2.3) that for all such r and z = 0,
T(z) < 2¢"M(r,f) < 2exp [exp (r*"*) — ra].
Let X = exp (R*"). For any z = X, take r = (In 2)"“*® in the above inequal-
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ity, so that » = R. From the above, we then have for any z = X, T(x) <
2 exp [z — z(In 2)"“"9], whence it follows that

(9.5) lim infz, yo@(z) = 1/(a + €).
Since € > 0 is arbitrary, it follows that
(9.6) lim inf,, ;0 é(z) = 1/c.

We assert that the inequality sign cannot hold here. Suppose indeed that it
does. Then we can find vy < @ and X = X(y) such that forallz > X ,

(9.7) ¢(z) 2 1/y

which implies that T(z) < exp[—z(In )“”]. By Lemma 9.1, it then follows
that

(9.8) lim Supys 4w [In In In M (7, f)/In 7] < 4.

But, v < a, contradicting (9.3). Hence the necessity for (ii).

Turning to the sufficiency part, we see that condition (i) ensures that F(z)
does not have an entire c.f. of order one and of exponential type, and also that
¢(z) is defined for all sufficiently large z. Then condition (ii) implies that, to
any € > 0, there corresponds X = X(e) such that for all z = X, T(z) <
exp [—z(In 2)"®*. Then, from Lemma 9.1, noting that ¢ > 0 is arbitrary,
it easily follows that

lim Sup,s4w [In InIn M (7, f)/In 7] £ a.

The sign of inequality cannot hold here; for, if it did, we can find v < a and
R = R(y) such that for all r = R, M(r, f) < exp [exp (r")], whence it follows,
in the same way as (9.5) from (9.4), that

lim inf, 40 $(2) = L/y > 1/a,

contradicting condition (ii). Hence (9.3) holds.
TueorREM 9.4. A NASC for F(z) to have an entire c.f. f(z) such that

lim,, 4o, [In In In M (r, f)/In r] (exists and is) = 0

18 that

(i) T(z) > 0 for every x > 0;
and

(ii) lim,, . ¢(z) (exist and be) = + o,

where ¢(x) is as defined in the statement of Theorem 9.3.

Proor. The necessity part follows from (9.5), on noting that the argument
leading up to that relation is valid also if @ = 0, and from the fact that ¢ > 0
is arbitrary. The sufficiency part also follows from the proof of Theorem 9.3, on
noting that if (9.7) holds for arbitrary ¥ > 0, however small, then so does (9.8).
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