ON THE EFFICIENCY OF OPTIMAL NONPARAMETRIC PROCEDURES
IN THE TWO SAMPLE CASE!

By ProrR WrroLp MIKULSKI
Unaversity of California, Berkeley

1. Summary. A series of papers has been published recently dealing with the
efficiency of nonparametric procedures in testing statistical hypotheses. A fre-
quently discussed problem is that of the efficiency of nonparametric procedures
compared to some parametric methods in the two sample case, when the hy-
pothesis tested asserts no shift versus the alternative that two samples are
drawn from two populations with distributions differing only by the location
parameter.

Hodges and Lehmann in [5] compared the Wilcoxon test with the -test for
this case. Chernoff and Savage [3] have proved that the Fisher-Yates test com-
pared to the f-test has Pitman’s efficiency exceeding one, with equality sign
achieved only if the underlying distribution is normal. In [3] it has also been
shown that under mild regularity restrictions the optimal nonparametric
procedure as compared to the best parametric procedure (in the sense of the likeli-
hood ratio test) has Pitman’s efficiency equal to unity assuming that the under-
lying distribution is known. Also in [3] the authors implicitly stated the following
question: “Suppose we construct two tests for the two sample problem,
one parametric and one nonparametric for some fixed distribution believed to
oceur in investigated populations. How does Pitman’s efficiency behave if the
true distribution departs from the assumed one?”” The present investigation
deals with this particular problem.

It turns out that among a class of distributions satisfying some regularity con-
ditions, the normal is the only one possessing the property proved in [3].

This investigation was suggested by Professor E. L. Lehmann to whom I
would like to express my gratitude for stating the problem and for all his valu-
able comments.

2. Assumptions, definitions and notation. Let XX, -+ X»n Y1Y5--- YV be
independent random variables such that Pr{X; =< 2} = K{z 4+ (1 — M)A}
fork=1,2,---,nand Pr{Y; = 2} = K(z — M) forj=1,2,---, m,
with K(-) being a Lebesgue absolutely continuous distribution function,
A =n/(n + m) and A = 0 an unknown parameter.

For the purpose of constructing test procedures for the hypothesis H:A = 0
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against the alternative H:A > 0 we shall assume that K(z) = F(z), for some
completely specified F satisfying regularity restrictions listed below. For con-
struction of nonparametric tests this will be assumed only under the alternative,
leaving K arbitrary under the hypothesis, and for construction of parametric
tests it will be assumed that K(z) = F(z) for any A = 0.

2.1. Regularity assumptions. Concerning the common distribution function
F we shall make the following regularity assumptions:

AssumprioN 1. F(2) is twice continuously differentiable forall z e (— w0 ; 4+ ).

AssumpTION 2. f(2) = F'(2) > Oforallze (—w; + ) and

LU @@+ 8 de— [X21f'(2) /f()Tf(2) de < o as & — 0.

(This implies also [¥% f'(2)dz = 0.)

AssumpTioN 3. g(2) = — f'(2)/f(2) is monotone increasing.

AssumpTioN 4. F(2) is such that either

case (a) g(— o) = ¢ ;9(+ ©) = ¢; with both ¢; and ¢, finite, or

case (b) g(— o) = —ow0;g(+ ) = Foo.
In case (b) it will be assumed in addition that g(z) is twice continuously differ-
entiable and 0 < ¢'(2) < 4o forallze (—e; + o).

AssumprioN 5. Let F*(2) = F[h(2)], where h(z) = g '(2) (inverse function)
and let ¥ be the inverse function of F*. It will be assumed that:

(2.1.1) [dPF* () /du’] < Clu(l — u)]"*P i=01,2,

for all 4 ¢ (0; 1) for some C and some § > 0.
Remark 1. If U is a random variable with c.d.f. F(u), density f(u) and the
logarithmic derivative of the density —g(u), then F*(2) is the c.d.f. of Z = ¢(U).
Remark 2. Using directly the definitions involved we find that Condition
(2.1.1) is equivalent to the following:

lg(2)| = C{F(2) 1 — F(2)]}""
lg'(2)| = C{F(2) [1 — F(2)}" ™f(2)
9" (2) + g(2)g'(2)| = C{F(2)[1 — F(2)]}"""f(2).

2.2. Discussion of assumpiions. Most of the assumptions imposed on F are
needed in order to make the problem and the asymptotic approach meaningful.
That concerns in particular Assumptions 1 and 2 needed for construction of
parametric tests and Assumption 5 needed for the asymptotic normality of the
nonparametric test statistic. (In [3] p. 974 Chernoff and Savage express the
belief that the asymptotic normality holds without this assumption, however
this has not yet been proved.)

Additional requirements imposed on F in this paper are therefore Assumptions
3 and 4. Assumption 3 in case (a) (of Assumption 4) is not essential, however,
it simplifies the notation and allows a relatively concise formulation of Assump-
tion 5, which otherwise would have to be more involved. In some cases (as with
F being a Cauchy distribution) the asymptotic normality of the rank test sta-
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tistic can be verified directly and Assumption 3 disregarded. Under Assumption 4
(b) Assumption 3 is simply a consequence of 4 (b) and hence does not impose
additional restrictions. The restrictions on the derivative of g in 4 (b) allow the
‘use of variational technique in the proof of the theorem. Although it seems to be
likely that the result of the theorem remains valid if one of the ¢’s, defined in
‘Assumption 4, is finite and the other infinite, the method of the proof does not
work in that case and this is the reason for considering cases (a) and (b) only.

3. Optimal tests. The locally most powerful rank test for testing the hypothe-
sis H:A = 0 versus H:A > 0 has the critical function ([6] p. 237)

(3.1) Bt (X: V) TV 2 e
' W ’ B T}t < Ca
where
N -
(3.2) Tv = > Elg[lVv¥}Z;

j=1

with V% being jth order statistic in the joint sample of X’s and Y’s and Z; = 0
or 1 according to whether the jth order statistic is an observation of one of ¥’s or
X’s. The expectation Ef-} is computed under the hypothesis A = 0, and N =
n -+ m.

The asymptotically optimal parametric test in the sense of [7] has the critical
function

TN ; Ca
(33) Pry(X;Y) =

TN < Ca
where
(3.4) Ty =—(1-=2) ; g(Xs) + A élg(yj)

and X\ defined in Section 2 is assumed to satisfy the relation 0 < A < 1. (One
can show that this test is equivalent to a large sample likelihood ratio test).

Assume now that N increases. For reasons of simplicity we assume that X\ is
constant and hence N runs through a subset of integers defined by A. All conclu-
sions remain valid if we allow N to take on all integer values in such a way that
corresponding Ay — A # 0 or 1.

Pitman’s efficiency can be defined in several equivalent versions. We shall
quote here the following:

If for a statistic Ty there are functions ax(A) and Bx(A) such that for A in
a vicinity of zero £[(Ty — ax(4))/By(A)] — N(0; 1) and Bx(Ax)/Bxy(0) — 1,
then

an(Ay) — cvzv(O)]2

ET = llmN-»o[ AN N1/26N(O)
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with Ay = 0 (N ) is called the efficacy of the T procedure, provided this limit
exists.

The comparison of two procedures T and T reduces to comparison of two
sequences of sample sizes Ni and N, with the property, that at the same sig-
nificance level a, values Nif and N, give the same power of T'y* and Ty, corre-
spondingly for some alternative value A close to zero. (This involves a slight
difficulty in achieving exactly the same value of the power, which can be removed
by randomization. The question is well known and we shall not discuss it here.)

The limit

e(F;F) = lim N,/Nj

Nk,Nl’:—wo

is called Pitman’s efficiency of T™ with respect to T.

It is known [3], that ¢(F; F) = Emn / Er provided the proportions of X’s in
joint samples tend to a common limit. This requirement was assumed to be satis-
fied, in our case, in the remark following Formula 3.4. Now suppose that the true
distribution of X’s and Y’s is not F but some ¥ with the density y. The question
to be investigated is how our tests constructed for F will perform under ¥. On
¥ we must put mild restrictions to assure normal limits of Ty and Ty .

AssumprioN 6. We shall assume throughout this paper that ¥ is such that the
integral [T2 ¢*(z) ¥ (2) dz is finite and Ty , properly standardized, has under
¥ a normal limit.

By kr we shall denote the class of distributions satisfying Assumption 6 for
some fixed F.

We define ey in the following way: er = infe., e(F; ¥) where e(F; ¥) is Pit-
man’s efficiency of the LMPR test to the asymptotically optimal test in the
sense of [7], both derived for F, with ¢(F; ¥) computed under ¥.

4. Main theorem. We shall prove the following:
TaroreEM. Under Assumptions 1-6 the relation

(4.1) ep = 1

holds if and only if F is N(u; o) for somepe (— o ; 4+ ) and o & (0; + ).

The sufficiency part has been proved in [3] and it remains to prove the neces-
sity. We shall proceed in the following way.

First we shall compute Pitman’s efficiency e(F; ¥). Next it will be shown that
if F satisfies the Assumption 4(a) then er = 0. Hence if F satisfies Assumptions
1-5 and er = 1, then F necessarily satisfies 4(b). To conclude the proof we will
show by variational methods that Assumption 4(b) together with Formula 4.1
necessarily imply normality of F.

4.1. Derivation of Pitman’s efficiency. Let us denote by J the function

(4.1.1) J(2) = g[F'(2)]

where F'(-) is the inverse function of the c.d.f. F(-). From [3] we find
+o0

ax(A) = N\ [ I (y) + (1 = Ne(y — A)l(y) dy
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and hence

d
*I — — —

+w0
(4.12) - 1%7 [ I (y) + (1 = N)¥(y — A(y) dy
This can be written ay (0) = — NA(1 — \) fi’ﬁ J' ()W (y)dy provided the

differentiation can be carried out under the integral. Also from [3] (p. 978) we
find

B3(0) =2 NA(1 — \) { [ 7w au [ [ ) du:r}
where
| ) du = [ @l = [ g do
and
/OIJ(w du=— [ f@ads =0

Hence we obtain
(4.1.3) B¥(0) =X N(1 — M)A Varyg = N (1 — N1,

where I, is also known as infg, , that is the information of the c.d.f. F(z — A)
at A = 0.

(The difference in constants in (4.1.2) and (4.1.3) compared to [3] occurs
because of slightly different definition of Ty .) Now let us find ' and 8 corre-
sponding to T'. We have

wn(d) = =E[ (1 =0 o8 = 5007 ]
and

+o0
Eg(X) = f_w g(z)¥le + (1 —N)Al dz

40
Eg(Y) = f_w g(y)ly — Al dy.

Hence

(414)  ax(0) = NA(1 — ) 3‘% o [:w g(z + A)Y(z) de = NA(1 — N se
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and finally
(4.1.5) B¥(0) = NA(1 — \) Varg g = NN(1 — N Lug .

Hence we find

e =[5 o =
and
(4.1.6) e(F; %) = [La/Iss] e/ 1.
We shall remark here, that there is no restriction of generality in assuming that:
(4.1.7) I, = 1.

This follows from the fact that ¢(F; ¥) remains invariant under multiplication of
all observations by a constant.

4.2. A special case. Let us consider the following:

Lemma 1. If k(2) is a continuous bounded function on (— «; 4+ «) and there
exists a finite number M such that k s monotone on (M; + «) and R(a, ; az) s a
rectangular distribution on the interval (ay ; as) then limg,, . Var [k(Z) | R(a; ; a0)]
= 0. for any a; .

Proof of this lemma is immediate and will be omitted. Using Lemma 1 we can
prove a special case of the main problem contained in Lemma 2.

Lemma 2. Under Assumptions 1, 2, 3,4 (a), 5, 6, ez = 0.

Proor. Let ¥ = R(a; ; az). Inserting this in (4.1.6), after elementary com-
putations, we obtain

Doy & —c | Varzg
o(F; B) = [g(a@ = g(ao] Vatr g

Hence by Assumption 3 and Lemma, 1
2
RT . _ C2 — C1 . VarR g —
er = limg,.o e(F; R) I:c—————-2 = (al)] limgye Vars g 0

4.3. Proof of the theorem. From Lemma 2 it follows that the relation er = 1
implies case (b) of Assumption 4. It remains to show that this implies the
normality of F.

Let k17 C k7 be the class of distributions ¥ such that the identities

0
Le = [ T@W¥@) do

o0

Iw = | ¢'(y)(y) dy

hold. Then infy., e(F; ¥) < infee,, e(F; ¥) and it suffices to show that infy.., ,
e(F;¥) < 1 unless F is normal. Using (4.1.7) we can see that the inequality

(4.3.1) /L] Isw = 1
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is equivalent to the inequality

(4.3.2) Iy (Ig)! — Iy 2 0.

Let ¥¥(2) = ¥[h(2)] and ¢* be the density of ¥*. Let us denote
(4.3.3) o= (Iw)}

and define z(J) by

(4.3.4) V()] = F*(J).

By substitution y = h(z);dy = B (z) dz in Iy we obtain

+o0 e
(435) Iw = [ IV (@) do = [ T @) xpm(m))d

From (4.3.4) it follows that
¥ (2) do = f*(J) dJ
() =)/

On the other hand by (4.1.1) we have J[F*(u)] = u. Hence F*[J(2)] =
Differentiating both sides of this identity with respect to z we obtain

J'(2) = {1/f" I (2)]}-
Now if z = ¥*(z), then using (4.3.4) we find

(4.3.6)

(4.3.7) T (@)] = /(D]

Hence by (4.3.5), (4.3.6) and (4.3.7), we obtain for I,y
400

(4.3.8) Iy = [w f—*hg,‘(%);i,‘, .

Now let us consider Isy
+o0
I = [ 4 W) dy.
Substituting ¢(y) = z;¢'(y) dy = dz;y = h(z) we have

40 e ¥
Lo = [ ¥h() dal = [ W @/W @)

and hence
+0
(43.9) I = [ fZ—,((‘ng
Combining (4.3.8) and (4.3.9) we can write (4.3.2) in the form
e f* (J ) '
(4.3.10) [ oA )dJ = 0
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where ¢ in terms of z(J) is defined by formulae (4.3.11), obtained from rela-
tions (4.1.5), (4.3.3) and (4.3.4).

+0 +o0
(4311) [ao x(J)f*(J) dJ = M1 5 [m xz(J)f*(J) dJ = M2 5 M2 — [.L% = 0'2.

From definition (4.3.4) it follows that x(J) is a nondecreasing finite function,
mapping the whole real line onto itself. Hence z(J) satisfies side conditions

(4.3.12) 2(—w) = —w; z(+ow) = 4w,

Let us consider the functional on the left hand side of the inequality (4.3.10).
The minimization of this functional for each class of functions z(J), satisfying
side conditions (4.3.11) and (4.3.12) for fixed w; and ¢, is equivalent to the
minimization of

Sl
@313) [ G — atoimde = bos | £ ar,
where a(o; 1) and b(e; p1) are Lagrange multipliers.

A necessary condition for a function z to minimize (4.3.13) is that x satisfies
Euler’s differential equation (8G/dx) — (d/dJ) (8G/3z’) = 0 where @ is the
integrand of (4.3.13).

For our particular G we obtain

h(x) (20 o h'(J)
Wy (x“ - 1) T @R ROR@

’ "
h(J) a — 2bx — h__'_—'(z;)(;l)s =

(4.3.14)

“ W@ @y
We can observe that the function: zo(J) = oJ + p1.

(1) Satisfies side conditions (4.3.11) and (4.3.12).

(2) Gives the left-hand side of (4.3.10) equal to zero and hence ¢(F; ¥,) = 1
(for ¥, corresponding to z, by (4.3.4)).

(3) Does not satisfy (4.3.14) for all ¢ and p; unless F is normal. The first two
conclusions are immediate. Conclusion 3 follows from the next Lemma 3. Before
we state the lemma let us first rewrite (4.3.14). Substituting x, for = in (4.3.14)
we obtain

0.

n ( J)
W(J)
. h”(O'J + I-"l) . :I
|:2b(0'7 ﬂl)(O'J + Ml) + m + a(a,ul) .
Lemma 3. A unique solution for F (induced by h by definitions of Section 2.1)
of the functional-differential equation (4.3.15), with a and b being arbitrary func-
tions, such that F satisfies Assumptions 1, 2, 3, 4(b), 5 of Section 2.1, is a normal
distribution.

B (J) [— J + ] = oh'(oJ + )

(43.15)
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Proor. We shall introduce a transformation 7 = oJ + p ;6 = 1;2 = — %’
a

We can easily observe that the range of 7 coincides with that of J (— ;4 ),

8 varies in (0; ) the same as o and £in (— «; 4 ) the same as p; . Hence the

identity (4.3.15) implies the identity

Y _ h"(6r + §)
oh' (67 + &) [67 lor T o + g]

- 1 . _E h”(T) 1 . _E
= [2” (5’ 5) T e T (E’ 5)] .

This can be rewritten in the form

{6h’(6f + &) [Zb (5:8)(or + &) + 1/ + &)

o g w0

h”(T)

(43.16) 4+ R (7) [T — W]} — 8k (87 + £)[2b(5; £) (67 + &)

oo + et o =i [o(L - a(li-9)] -0
By the identity (4.3.15) the first bracket is identically equal to zero and hence
(4.3.16) implies
— K'(7 + £) {[2b(5; §) + 1]6°r + [2b(5; §) + 1]6¢
+ a(8; £)8) = h'(0){[26(1/8; — &/8) + 1r + a(1/8; — £/8)}

If we consider £ and & as arbitrary but fixed and vary 7, then both sides of 4.3.17
vanish identically only if

2b(8; ) = —1;  2b(1/6; — £/8) = —1
a(s;¢£) =0 a(1/8; — £/8)= 0.

Now let us suppose that for some § % 1 and for some £ 4.3.18 is not satisfied.
Then for those 7 for which both sides are different from zero we can write:
(4319) N0 _ 126065 + 116w+ [20(6:8) + 16t + al6;8) 8
o W (ot + &) [26(1/5; — £/8) + v +a(1/5; — £/8) ~

Since the left-hand side is positive by assumption and the right-hand side, con-
sidered as a function of 7, by fixed £ and §, is the ratio of two linear functions, we
can conclude that the right-hand side is positive for all 7¢ (— o - ) only if
it is a constant. Since § was assumed to be different from one, taking

(4.3.17)

(4.3.18)

r = — £/(86 — 1) we find that the left-hand side is equal to one (by Assump-
tion 4(b)) and we can conclude that
(4.3.20) W' (r) /b (67 + 8] = 1.

On the other hand for fixed § and 7 the left-hand side of (4.3.19) is a continuous
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finite function of ¢ (by Assumption 4(b)). Hence the numerator and the de-
nominator of (4.3.19) have the same set of zeros in £. This implies that the rela-
tion (4.3.20) considered as a function of ¢ holds, provided that for some § < 1
some ¢ and 7, (4.3.19) is defined. Under this assumption it follows that »'(7) is
necessarily constant.

On the other hand, if (4.3.19) is not defined for any § # 1 and any £, we have
2b(8;8) = —1;a(8;£) = Oforall § #% 1 and all £ If that is the case, then denot-
ing the left-hand side of (4.3.15) by ¢, we have o(r) = dp(dr + £) for any
8 5 1 all r and all £ This is possible only if ¢(7) = 0. Since 2’ > 0 (by Assump-
tion 4(b)) this is possible only if 4 satisfies the following differential equation

B () /(1)) = 7.

Solution of this differential equation leads to

2(2¢) 7% arc tg[r/(2¢)f] + u c>0
—h(1) =3-2/7+ u ) c=0
(—=20) 7 log [[r — (=20)/Ir + (=20} +u ¢ <O

By Assumption 4(b) h is a monotone continuous function, mapping (— «;
+ ) onto itself. Neither of these solutions satisfies this condition. Hence the
case o(7) = 0 can be excluded.

We have shown here that A" = const. and hence h(r) = or + u which gives
g(r) = (1) = (r+ — u/o) and g(7) = — f'(+)/f(+). Hence f is necessarily a
normal density which concludes the proof of Lemma 3 and of the theorem.

5. Examples and concluding remarks.
Exampre 1. Logistic distribution.

F(z) = 1/[1 + ¢ “".

Assumptions 1, 2, 3, 4(a), 5 can be verified. The LMPR test is the Wilcoxon
test. The lower bound of its efficiency compared to the optimal parametric test
in the sense of [7] is (by Lemma 2) er = O.

ExamprLe 2. Cauchy distribution. Let

dy

11
1@ = 22| e

Here ¢ is not monotone. However asymptotic normality of Tx can be verified
directly by means of Corollary 1 of [3]. Hence we find e, = 0.
Exampre 3. Mixture of two normal distributions.

F@) = [ ) + (1 = D) de 0<n<1,
with

o(2) = o(z — u)
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ea(2) = (2 — §)
o(2) = (2r) P exp (— £°/2).

It can be verified that Assumptions 1, 2, 3, 4(b), 5 are satisfied if | — u| < 2.
In this case we can only conclude that, ex < 1.
ExamrrLe 4. As another example we can consider the distribution

z

F(x) =c / e—cosh(y—u)/v dy.

As in Example 3 we find that it satisfies assumptions 1, 2, 3, 4(b), 5 and e¢r < 1.
It could be interesting to find explicitly er in case (b) of Assumption 4.
Another kind of problem of interest could be to find e for restricted classes

of distributions ¥. For one such class when ¥(z) = F[(x — /o] the answer is

an immediate consequence of formula (4.1.6) and is contained in the following:
LemMA 4. For ¥(z) = Fl(z — n)/c] we have

(5.1) e(F; %) = 1

and ep = 1. If either u 5% 0 or ¢ % 1 then the equality tn (5.1) ¢s achieved only ¢f F
s normal and e(F; ¥) > 1 for any other F.
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