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A TEST FOR EQUALITY OF MEANS WHEN COVARIANCE
MATRICES ARE UNEQUAL!

By T. W. ANDERSON

Columbia University

Let z” be an observation from the p-variate normal distribution N(u,

%, ),a=1 -+ ,N,,g =1, g Consider testing the null hypothesis’
(1) H:M(l) —_— . — M(Q)~

When the covariance matrices £, are equal, the hypothesis is a form of the so-
called general linear hypothesis, and a number of tests are available. (See
Chapter 8 of Anderson (1958), for example.) When ¢ = 2, Bennett (1951) has
extended the procedure of Scheffé (1943) to give an exact test based on Hotel-
ling’s generalized T”. (See Section 5.6 of Anderson (1958).) In this note we
extend previous procedures to ¢ > 2.

As an example, let ¢ = 3and N, = N, = N; = N, say. Let

- Yo = 028 + 028 + az 22,

Ra = b1 xﬁ,l) =+ bz xff) —+ b3 xff),
where ZLI a, = 0,2.0_1b, = 0and (a1, a2, a;) and (b, by, bs) are linearly
independent. (In practice the indexing of the observations in each sample would
be done randomly.) Then the hypothesis (1) is equivalent to the hypothesis

3 3
(3) &Yo = Z aﬂ”(ﬂ) —_ 0, 8 = Z b,,p,(") = 0.
o=1 g=1

. . ’ ! .
The covariance matrix of (y. 2.) is

(4) ( a§21+a§22+a§23 a1b121+a2b222+a3b323>
10121 + a2 b2 Zp + a3 b3 I b§21+b§22+b323. )

The hypothesis (3) can be tested by a T -statistic
(5) T" = N(7 )8~ (f)
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where

(6) S = 1 i (ya - g)(:’/a - :’7)’

N—la_lza—é Za — 2
and § and Z are the sample mean vectors. When the null hypothesis is true,
(N — 2p)T?/(N — 1)2p has the F-distribution with 2p and N — 2p degrees of
freedom.

It does not matter what linear combinations (2) are used for the test because
the T’-statistic is invariant with regard to linear transformations; indeed, the
linear combinations may be chosen as some contrasts of special interest. The
fact that the test is based on a sample covariance matrix S with only N — 1
degrees of freedom is a characteristic also of the case ¢ = 2, for which Scheffé
(1943) showed that this was the maximum number of degrees of freedom for a
it-test when p = 1. Here N must be greater than 2p. This extension to ¢ = 3
neglects the fact that the off-diagonal submatrices in (4) are symmetrie; if such
symmetry is imposed on the estimate of (4), the resulting test criterion will not
be T? and may not have a distribution simply related to the F-distribution.

For any ¢ > 3 with equal N, (2) may be replaced by any ¢ — 1 linearly inde-
pendent linear combinations, the coefficients of each summing to 0,

. g
(7) Yy =D a2, i=1,+,¢g—1, a=1---,N.

g9=1

A T’statistic may be constructed from the resulting N vectors of (¢ — 1)p
components. If not all N, are equal, suppose N; to be the smallest; define

. 2 q o
y = a2z + Zz as’(Ny/N,)*
ﬂ=

(8) o o
: [xf:” — (1/Ny) ; 2 + (N, N.»‘*ﬂZl xé‘”:l, a=1-,N;.
Then
o N o
(9) g(z) - Z a;z)i(a)’
g=1

and the sample covariance matrix is computed from y’. (See Section 5.6 of
Anderson (1958) for details.)
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