CONDITIONAL DISTRIBUTION OF ORDER STATISTICS AND
DISTRIBUTION OF THE REDUCED ¢th ORDER STATISTIC
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1. Introduction and summary. In case the underlying distribution of a sample
is normal, a substantial literature has been devoted to the distribution of quan-
tities such as (X — u) /vand (X — w)/w, where X ;) denotes the ¢th ordered
observation, » and v are location and scale statistics of the sample, or one is a
location or scale parameter and w is an independent scale statistic.

The case ¢ = 1 or »n has been frequently studied in view of the great impor-
tance of extreme values in physical phenomena and also with a view to testing
outlying observations or the normality of the distribution. Bibliographical
references will be found in Savage [10] and, as far as the general problem of
testing outliers is concerned, in Ferguson [4]; references to recent literature in-
clude Dixon [1], [2], Grubbs [5], Pillai and Tienzo [9]. .

Thompson [12] has studied the distribution of (X; — X)/s where X, is one
observation picked at random among the sample, and this statistic has been
used in the study of outliers; Laurent has generalized Thompson’s distribution
to the case of a subsample picked at random among a sample [7], then to the
multivariate case and the general linear hypothesis [8]. Thompson’s distribution
is not only the marginal distribution of (X, — X)/s but its conditional dis-
tribution, given the sufficient statistic (X, s), hence it provides the distribution of
X, given X, s, and, using the Rao-Blackwell-Lehmann-Scheffé theorem, gives a
way of obtaining a minimum variance unbiased estimate of any estimable func-
tion of the parameters of a normal distribution for which an unbiased estimate
depending on one observation is available, a fact that has been exploited in
sampling inspection by variable.

The present paper presents an analogue to Thompson’s distribution in case
the underlying distribution of a sample is exponential (the exponential model
is nowadays widely used in Failure and Queuing Theories). Such a distribution
makes it possible to obtain minimum variance unbiased estimates of functions
of the parameters of the exponential distribution. Here an estimate is provided
for the survival function P(X > %) = S(z) and its powers. As an application
of these results the probability distribution of the “reduced” 7th ordered observa-
tion in a sample and that of the reduced range are derived. For possible applica-
tions to testing outliers or exponentiality the reader is invited to refer to the
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2. An exponential analogue to Thompson’s distribution. Let Xy and X be
the smallest observation and the arithmetic mean of a sample X = (X;, -- -,
X.) of n independent observations with probability density

(1) (1/c)e”"™"° forz = m; O otherwise.

Let X = (Xo, --+, X@w) be the order statistic of the sample.

It is well known [3] that (X, X)) hence (Xq), Y), where ¥ denotes X — X, ,
constitute a complete and sufficient statistic for the distribution of X. Note
that n(X —m) = n(Xq — m) +nY. Now 2n(X — m)/c and

2n(Xq — m)/c

are chi-square variates with 2n and 2 degrees of freedom respectively. Since
Y/c is parameter free and independent of X, it follows that 2nY/c is ¢hi-
square with 2(n — 1) degrees of freedom and independent of X .

Let £ = (&, -+, &) be a subsample of X with order statistic ¥ = (£qy, -+ -,
£Ew) and sufficient statistic ({u), £ — £w), and X* = (X7, -+, X¥_4) the
complementary subsample (so that X = (& X*)) with order statistic X* =
(X%, -+, Xta_w) and sufficient statistic (X5, , Y*), where Y* = X* — X¥, .

The conditional density f(¥ | Xqy, ¥) of E given Xg,, Y, is parameter free,
and according to the Rao-Blackwell-Lehmann-Scheffé theorem the expected
value, with respect to f, of any unbiased estimate ¢(¥) of an estimable function
Y(m, ¢) of the parameters m, ¢ is the uniformly minimum variance unbiased
estimate of y. This density is obtained by writing the joint density of ¥, X o,
Y* making the change of variables X&, = Xty (X, Y, ¥), Y* = Y*(Xqy,
Y, ¥), then dividing by the joint density of X, , Y. The latter is
(3) [n"/c"T(n — 1)]Y" " exp —(n/c)[(Xwy — m) + Y].

The joint density of ¥, X&), Y™ is
. ki(n — k)" */c"T(n — k — D]Y*" " exp —[k(§ — X{)
@ + n(Xt — m) + (n — k) Y/

By definition one has
(5) Y*=nY/(n — k) — [k/(n — B)]E - X)) — (X&),
and there are two cases to consider according to whether &, is greater than or
equal to X . ‘

In case £y > X, then X¢, = Xq) ; by substituting the proper values into
(4)—the Jacobian of the substitution is

J(E,X?l) ) Y*; %, Xo,Y) =n/(n—k)
—and dividing by (3), one obtains the conditional density

. ki(n — 2)! k kE—Xo "™ 1
(6) f(fl (X(l); Y) = m(l - ﬁ)[l - ﬁ % ():I (nY)"

in the domain where the bracket is positive.
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In case ény = Xy, let € = (§y, &), where & = ({0, - -+, £w) ; using the
same technique as above yields the conditional density of ¥, X¢, given Xy,
Y. By integrating X&) — Xq from 0 to [nY — k(¢ — X)]/(n — k), one
obtains

- _ kln =2 1. kE—Xo "1
(7) f('f IX(l);Y) = (n_—k——l)‘ﬁl: n Y 1y 1

in the domain where the bracket is positive. As the reduced variables Uy =

(¢ — Xa)/nY are independent of X5y and Y, the densities above provide also

the marginal densities of U = (Uq, --+, Uw) and U = (U, -+, Um).
For k = 1, one obtains

fE|Xa,Y) =1/n if ¢ =Xq,

_ _ _1 _E—X(l),l]"_s_l_

(8) =(-2 (1 n)[l v al
if Xg < § £ X + 1Y,
=0 otherwise,

which provides also the marginal density of the reduced variable
U= (¢ - Xw)/nY.

The corresponding distribution is the analogue for the exponential case of

Thompson’s distribution for a normal sample.
3. Best estimates of S(z) and S"(x). Let S(z) denote the “‘survival function”
S(z) = P(X >z) =& ™ for x = m,
=1 otherwise.

(9)

An unbiased estimate of S(z) is the characteristic function I,(X) of the set
(z, + ®), hence the minimum variance unbiased estimate for S(z) is

BIL(X) | X , ¥), namely
8@ = [ 11 X0, V) &

=1 fz < X(l)
n—2
(10) = (1 - ,%)[1 - ”"n—,if‘l] if XS 2 < Xo + ¥
=0 if x> Xq +nY.

At the same time,
8(z) = P(t>z|Xqy,Y) = P(U>w, with u=(x— Xu)/nY.

This result is consistent with the one given by Tate [11].
Similarly, the minimum variance unbiased estimate for S"(x) is obtained by
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integrating (6), with k = r, over the domain & = (z, ©), -+, & = (x, ©).
The structures of S(z) and S'(z), however, suggest trying an estimate T'(z;
X, Y) obtained by replacing 1 — 1/n by some k and Y by Y/r in S(x).
Taking the expected value of T'(¢; Xy, Y), (integrate ¥ from r(z — Xq))/n
to 4+ and Xy from m to + ) one obtains k = 1 — r/n, which yields

S (=)]* =1 ifr< Xq,
n—2
(11) = <1 — %)[1 — %%&] Xy 22Xy + Yn/r,
-0 ifx > Xq + Yn/r.

4. Distribution of the reduced sth order statistic.
(i) Lemmas: It is well known [6] that if 4, - - - A, are n events, possible out-
comes of a trial, the probability of obtaining at least z of these events is

(12) P(Zz2) =Y (-1 (Z _ }) 2P (Ql Aj..),

where P()i=1 4j;) denotes the probability of obtaining 4;,, ---, 4;, simul-
taneously and where the summation extends to the set of f combinations

of n events r by r.
It is also known that

(13) 2P (Ql Aj,.) = 1Bz,

where Z'" is the factorial moment of order r of the number of successes Z.
(ii) Let N, be the number of observations with a value at least equal to =

in a sample of size n. The probability distribution of the 7th order statistic

Xu is P(X@y £2) =1— P(N, 2n — 4+ 1), therefore is given by (12)

with A; = [X: = 2] (so that 3. P(Nim A4;,) = (f) S(z)) and

z2=n—1+ 1.
It follows from (13) that P(X ) =< z) admits
(14) 1— Z (_1)r+n—i+1 <7' - 1> Na[:r]/,r!
r=n—i+1 n —1

as an unbiased estimate and

S i [T 1 N Lr]
a  1- 3 e (07 B[N X,y
a0 =1- > =TT P[0 44l Xo, 7]

r=n—1i+1 n —1 =1
(17) =P Xy 2z|Xy,Y)

as its minimum variance unbiased estimate.
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As NI/r!is an unbiased estimate of Y P()iz 4j,) = (:")S'(:v) it follows

that
[r] r
E[ ;' X, Y:l = E P(nl Aii , X, Y)

is the minimum variance unbiased estimate <:L)[S'(x)]* of <f> S"(z). Making
the proper substitution in (16), (17) yields (in view of (11))

(18) P(Xo52|Xe, ) =1- 3 (i (2" is@r

r=n—i+1 n —

k
_ gyt (T — L\ 1
- 2, o E )
.(1_£””_r_31_<2)"'2
n Y

forz = X and k £ nY/(z — Xa), ([S(x)]* = 0forr > nY/(z — X)).
Smce Usy = (X(,) — Xq)/nY is independent of Xy, Y, one has

k

P(Uo Su) =1~ % (—1yrm (”)(r _ t)

r=n—i+]l r
. (1 — 7;) 1 — ru]”?
n

Il

(19)

(20)

foru =2 0and k =-1/u.

TABLE I
Probability of the reduced range, P(R < u)
n lu= .10 .20 .30 .40 .50 .60 .70 .80 .90 1.00
3 | .00000 | .00000 | .00000 | .00000 | .0000 .20000 |.40000 |.60000 | .80000 | 1.00000
4 | .00000 | .00000 | .00000 | .04000 | .25000 | .52000 |.73000 |.88000 | .97000 | 1.00000
5 | .00000 | .00000 | .04800 .184004 .50000 | .74400 [.89200 |.96800 | .99600 | 1.00000
6 | .00000 | .00000 | .05450 | .36800 | .68750 | :87200 |.95950 |.99200 | .99950 | 1.00000
7 | .00000 | .00032 | .14498 | .53824 | .81250 | .93856 |.98542 |.99808 | .99994 | 1.00000
8 | .00000 | .00365 | .26244 | .67475 | .89063 | .97133 [.99490 |.99955 | .99999 | 1.00000
9 | .00000 | .01724 | .38704 | .77641 | .93750 | .98689 |.99825 |.99990 [1.00000 | 1.00000
10 | .00000 | .03998 | .50476 | .84883 | .96484 | .99410 |.99941 {.99998 |1.00000 | 1.00000
TABLE II
90 % and 99 % quantiles of the reduced range
n 3 4 5 6 7 8 9 10 11 12

R.90 | .95000 | .81743 | .70760 | .62394 | .55907 | .50741
R.99 | .99500 | '94226 | .86428 | .78853 | .72179 | .66440 | .61517 |.57271 |.53584 |.51357
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In case ¢ = n one obtains the distribution of the reduced range R,

k it fn —1
(21) Prsw=-1-X 0" ("7 a-w ks

i=i
Table I provides for n = 3 to 12 and for some values of u the probability of
the reduced range. Table II gives, for n = 3 to 12, the 99% point of the same

statistic.

Alternatively, by means of the transformation (X — X))/ (X — X)) =
1/nU) , one can use these tables to study the deviation of the smallest value
from the mean, studentized by the range. Note also

Xw — X)/(Xwy — X)) =1 — 1/nU
and (X — X)/(Xw — X)) = (nUw — 1)/2U¢ .
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