ABETRACTS OF PAPERS

(Abstracts of papers presented at the Central Regional Meeting, Madison, Wisconsin,
June 14-15, 1968. Additional abstracts appeared in the March and June, 1963 issues.)

8. Two Normally Distributed Distribution-Free Statistics. C. B. BeLL and
KieLL Doksum, San Diego State College.

For the 1-sample H, : F = F,, the statistic Z = n™1 > J(F,(X;)), where J is the in-
verse of the cpf of a standard normal, is compared with the Birnbaum-Chapman
U=n1) Fo(X:) and X. For the 2-sample H{ : Fi = F., one considers ¢ =
nt 3 W(R(X:)) — m™ Y, W(R(Y;)), where R(X;) is the rank of X; in the combined
sample; the W; (1 = ¢ < n 4 m) constitute an independent random sample from » (0, 1);
and the W (z) are the order statistics. ¢ is compared to the Fisher-Yates ¢; , Van der Waerden
¢l , Wilcoxon V and Student T'. Theorem 1. Z is DF wrt the class of continuous cpfs; and
under H, is exactly n (0, n~1) for all n. Theorem 2. ¢ is DF wrt the class of continuous cpfs;
and under Hj is exactly n (0, n~! 4+ m1) for all n and m. Theorem 3. The asymptotic relative
efficiencies A (-, -) for translation alternatives (and the appropriate number of samples)
satisfy (a) A(U,X) = A(V,T) (= 3r— for normals); (b) A(Z,X) = A(c:, T) = Alet ,T) =
A, T) 2 1, with equality iff the cpfs are normals. Inverses of ¢pfs other than n(0, 1),
and generalizations to k-sample and independence hypotheses are considered.

9. A New Test of Fiducial Consistency. Roserr J. BueHLER, Iowa State
University.

Let y be a (univariate) future observation and x be a vector of past observations, both
having distributions depending on 6. A function L (x; &) provides a system of ‘‘upper pre-
diction limits’’ for y with “fiducial”’ probability « if P(Y = L(X; «) | 8) = « for all 6.
Lemma: L (x; ) exists for 0 < a < 1if and only if there exists an ancillary statistic ¢ (X, Y)
having a uniform distribution on the unit interval (¢ (X, ¥) ~ U(0, 1)) for all 6. Formally,
L(x; ) is the value of y for which ¢ (z, y) = «, and formally ¢ (x, y) = P;(Y < y | x) where
Py denotes fiducial probability. In “Statistical Methods and Scientific Inference,’’ pp 113
and 126, Fisher implicitly indicates that P;(Y < y | x) can be obtained from the fiducial
density f;(6 | x); explicitly, ¢(x, y) = Py(Y < y|x) = [P(Y < y| 0)f;(6]|x)ds. The
following consistency test is proposed: Is¢ (X, Y) ~ U (0, 1) for all 6? This test is different
from Lindley’s (J. Roy. Statist. Soc. Ser. B 20 (1958) 102), although similar in spirit. Sup-
pose z; = t; + 6 (orat; + 0) and y = u + 6 (or cu + 0) and the joint density f(¢:, -, ¢n)
g(u) is given. In the (generalized) Pitman case f;(6 | x) (or f;(6, o | X)) is the posterior
density corresponding to a uniform prior density of 6 (or of 6 and log ¢). Consistency is
shown to hold. Immediate generalizations follow by separate transformations of the variates
and parameters.

10. On Asymptotic Normality of a Class of Statistics Related to Linear Stochastic
Processes (Preliminary report). K. C. CHANDA, Iowa State University.

Let F.(z) denote the sample distribution function of random variables X (1), -+, X (n)
being a realization from a linear normal process {X (¢), ¢ = 0, 1, ---} defined by X (¢) =
> Lo giet — 7), B{X(8)}) = 0, > 20lgil < « where {e(t), t = 0, £1, ---} is a pure white
noise normal process with mean zero and standard deviation unity. Let F(z) = P{X(¢) =
z}. It is then shown that under a set of mild regularity conditions and for arbitrary
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real numbers z; , - - -, 7; the joint distribution of n}{F.(z;) — F(z:)} (1 < ¢ < k) is, asymp-
totically, normal with mean vector zero and dispersion matrix = = ((¢:;)) where o;; =
Dl Bt 8, 0), Bk, t,0) = P{UQ) S 6, U@+ 1) =t} — tt;, UQ) = F{X(1)/a}
ete., t; = F(xi/o), and o = V{X(¢)}. Let K(s, t) = min(s, ¢t) — st + 2 >R ks, t, ),
(0 = s, t = 1). Then it is conjectured (the author has not been able to prove yet) that
for 0 < ¢ < 0, limu, g P{lb._coce nt [Fa(@) — F(@)| = ¢} = Plmaxoci<1 |[Y ()| = ¢}
where Y (¢) is a separable normal process with (i) E{Y (¢)} = 0, (ii) Cov {Y (s), Y (?)} =
K (s, t). It may be noted that if I (¢, =) is defined as a function which takes the value 1
whenever £ < z and 0 otherwise then F,(z) = D i1 I{X (t), z} /n. More generally, if {W (¢),
t =0, =1, ---} is a stochastic process defined by W (¢) = G{X (t)} where G'(z) is integrable
with respect the normal measure with zero mean then the property of asymptotic normality
proved above can be extended to the class of statistics Sl W) /n.

11. On the Consistency of the Two-Sample Empty Cell Test. M. Csorco and
Irwin GurrmaN, McGill University and University of Wisconsin.

S. 8. Wilks, in the Proc. Fourth Berkeley Symp. I1(1961) and again in his recent book,
Mathematical Statistics (Wiley, 1962), proposed a two-sample empty cell test. The procedure
is as follows. Denoting the order statistics of the first sample of n; observations by X, ,
ey, X(m) ) define cells I, y "y I1u+1 byI; = (X(.'._l) ) X(i)), T = 1, ey, My +1 where X(o) =
— o and X(u41) = +». Let a second sample of n, observations be taken and let r; be the
number of observations of the second sample that lies in I; . Finally, let S, be the number of
I; with r; = 0, that is, S, is the number of empty cells. A new proof that a test of the hy-
pothesis that the samples come from the same population which rejects if the observed
value of S, is “significantly” large is given. The method of proof uses the ‘“law of total
probability”’ (see p. 106 of Feller, An Iniroduction to Probability Theory and Its Applica-
tions, 1, 2nd ed.).

12. Quasi-Martingale Processes. DonaLp L. Fisk, Michigan State University.
(Introduced by Herman Rubin)

The real valued process {X (), F(t),t & T = [a, b]} defined on (2, F, P) is called a quasi-
martingale process if X (¢) has the following decomposition: X (¢) = X1(¢) + X:(t) where
{X1(t), P(t), te T} is a martingale process and X,(t) has almost all sample functions of
bounded variation on T. Theorem: If {X (t), F (), t € T} is a uniformly bounded a.s. sample
continuous process such that for some sequence of partitions {Ily} of T with || Ily || — 0
and Oy C Oy for N = 1,2, -, im EQ | EX () — X)) |FE)) ) <K <
then the X (¢) process is a quasi-martingale. If {X (¢), F(¢), t ¢ T} and {(Y(@#), Ft), te T}
are quasi-martingales satisfying certain continuity and boundedness conditions then
Z@t) = [t Y(s) dX(s) = Plim 2.* [V (t}) + Y ()X () — X (¢)]1/2 exists for all ¢ in T
and furthermore the process {Z (), F(t), t ¢ T} is a quasi-martingale process.

13. Bayesian Bio-Assay. CHARLEs H. Krarr and CONSTANCE VAN EEDEN,
University of Minnesota.

Consider the bio-assay problem in which the observation at each dosage level, ¢, is bi-
nomial [n, F (t)]. A characterization of the class of all a priori distributions for the distribu-
tion function F is given. The corresponding Bayes’ estimates are found for a class of loss
functions and this class of estimates is shown to be a complete class.
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14. Mean and Variance of a Generalized Two-Coin Tossing Problem (Prelimi-
nary report). SR1 GoraL MouaNTY, State University of New York.

Let Gi(r, a) denote the game which starts with coin ¢, ({ = 1, 2) and played with the
following rule: (i) the kth trial is made with coin 1 or 2 according as the (k — 1)st trial
is a tail or a head (¢ > 1) and (ii) stop making further trials when for the first time the
total number of heads is equal to rn + a, where n is the number of tails,r = 0 and a > 0
are integers. Assume p; to be the probability of obtaining heads in a single trial with coin
i such that p1 + p2 = r(q1 + ¢z), where ¢; = 1 — p; . The mean and variance of the number
of trials in Ga(r, @) are obtained as a(p1 + ¢2)/ (p1 — r¢z) and a(r + 1)*prgz(qs + p2)/ (21 —
rq2)® respectively, and that in Gi(r, a) as [(@ — 1) (01 + @) + {1 + r(q1 — @2)}1/ (21 — 7¢2)
and [(@ — 1) (r + 1)*p1g2 (@2 + p2) + (r + 1)’qu{ps + rg2(q1 — ¢2)}/ (pr — 7¢2)? respectively.
The solution to the “ballot problem’’ follows from a special case of the game, when p1 = p: .

15. A-Continuous Markov Chains. Suu-Tex C. Moy, Syracuse University.

Let a Markov transition probability function P (z, A) have the representation P (z, 4) =
J 4 p(, y)\(dy) for (\) almost all z. P is conservative if every A-non-null set 4 is recurrent
(the probability that a sample path starting at z will ever meet 4 is 1 for (A\) almost all
z e A). P may be described as a A-méasurable Markov operator which possesses a density
function. Let p(™ (z, y) be the density function of P(®(z, A). The following theorems are
proved. (1) The space is decomposed into at most countably many indecomposable closed
gets C1, Ce, +++. (2) For each C; there is a o-finite invariant measure u; which is equivalent
to A on C; and vanishes outside C; . Every invariant measure js of the form Z aipi . (3) for
(AXAXA) almost all (z, y, z) € Cs X C; X C; there exists limy. N ™ (z, y)/ >N pne
(z, z) = f(y)/f(z) where f is the density of u; with respect to A.

16. On Selecting the Factors for Experimentation. M. S. PateL, Purdue Uni-
versity.

In this paper, each factor is assigned a prior probability p of being significant and a fac-
torial experiment is conducted with a set of factors, each with two levels using an orthogonal
plan for main effects. It is assumed that o? is known. Then using a normal deviate test with
a level of significance «, the expected number of correct decisions is obtained. This number
is then maximised w.r.t. « and is shown to be minimum for p = % which implies that only
those factors should be included in the experiment for which p # §. '

17. Prediction in Location and Scale Parameter Families. F. L. Ramsey and
R. J. BUEHLER, lowa State University.

Let z; = t; + 6 and y = u + 6 where the joint density f(t , - -+, t.)g(«) is given. From
observations x = (%1, ---, &) it is desired to predict y. Let the fiducial density f;(0 | x)
be defined as the posterior density given a uniform prior density of 6, and let g;(y | x) =
Jg(y — 0)f; (6 | x) d6. Theorem 1: For any ‘‘location invariant’ predictor B = B(z), Ex(B —
y)* = E;(B — y)* where E; is expectation with respect to gr(y | #) and Ep is conditional
expectation given constant ancillaries » — @1, *+, @, — & . This result and those following
are analogous to results of Pitman (Biometrika 30 (1939) 391), but y here replaces 6. A
typical consequence is Corollary 1: The mean of g;(y | x) is the minimum mean square error
predictor of y. Next let z; = of; + 0,y = ou + 6, and let f; (6, o | x) be the posterior density
with respect to a uniform prior density of 6 and log o. Theorem 2: For any location and scale

_invariant predictor B, Eg{oc~1(B — y)}* = E;{c™*(B — y)}* where Er is conditional expecta-
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tion for constant (x; — 21)/ (2 — 1), +++, (®n — #1)/ (22 — x1) and E; is expectation with
respect to the trivariate (fiducial (?)) density o~lg(c~1(y — 6))f7(6, o | ) of (y, 6, a).
Corollary 2: The minimum mean square error invariant predictor of y is E;(e~2y)/E;(s72).

18. Likelihood Ratios of Differential Processes. HErMaN RusiN, Michigan
State University.

Let P;, j = 1, 2, be two separable differential processes on [0, T'], such that if X is a
sample function, X (0) = 0 and X has only discontinuities of the first kind and is every-
where continuous in probability. If the logarithm of the characteristic function of X (¢)
under P; is fi(, §) = —307(t) + imi(t) + [Z0 [§ e — 1, — iAhi(z, u)] dG;(x, u), then
the processes are not orthogonal if and only if: (1) [2, [§ {[d(G1 — Gz)/d(Gy + G2)](x, t)}?
d(G1 + G2) (z,t) < =, (2) 61 = 02 = o2, and (3) if the h; are so modified that hdGy = hdG: ,
which can always be done under (1), then [§ [d(m; — m1)]?/do? < «. In this case the likeli-
hood ratio of P, with respect to P; can be computed with probability 1, with the values 0
and « occurring only if some factor is 0 or «, respectively.

19. Some Applications of the Jifina Sequential Procedure to Observations
With Trend. Sam C. SAUNDERs, Boeing Scientific Research Laboratories,

Seattle, Washington.

Let each random variable of a sequence have a density which is a Pélya frequency func-
tion of order two. To this sequence we apply the Jifina sequential procedure to determine a
tolerance interval. We find some sufficient conditions on a type of trend permissible for this
sequence which enable us to show that in the case of such trend, when the Jifina procedure
is used, the sampling will stop sooner and the tolerance interval cover more of the popu-
lation (in a stochastic sense) than would occur in the case the sequence was without trend.
Similar considerations for one-sided tolerance limits are shown to hold when the sequences
of observations have densities which have non-decreasing hazard rates. This work invites
some numerical comparisons in simple cases of the expected sample size and coverage of the
Ji¥ina procedure with the Wilks fixed sample procedure in the case of trend.

20. Comparison of Combined Estimators in Balanced Incomplete Blocks. V.
SesuADRI, McGill University.

In the analysis of balanced incomplete blocks there arise two independent estimates of
treatment differences which have been combined by Yates to produce an efficient estimator.
Graybill and Weeks have suggested an alternative combined estimator. The aim of the paper
is to compare the variances of the two estimators. Yates’ estimator is a weighted combina-
tion of the two independent estimators where the weights are random when the analysis
of variance yields a positive estimate of the block variance, while constant weights are used
when a negative estimate of the block variance is obtained. Using theorems on conditional
expectation to calculate the variance of Yates’ estimator, it is shown that for all values
of the ratio o/c? (the ratio of the block variance to the error variance), Yates’ estimator
is superior to Graybill and Weeks estimator, from the point of view of minimum variance.

21. Bio-Assay With Prior Information. MoRr1s SKIBINsKY, University of Minne-
sota. '

Lep n, 8, a be given numbers; n a positive integer, 0 < 6 < 3,0 < a K 1. Let o;, X:,
7 = 1, 2, be random variables defined on a measurable space (2, A) and denote by M (5, )
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the family of all probability measures on ¥ such that: (i) P,(X1 = z1,X2= 2|6, = 61,
62 = 0;) = f(x1, 61)f (22, 62), [p], forz1 , 22 =0,1,---, nand 0 < 6,, 6 < 1, where f(z, 6)
is the value at z of the binomial frequency function with parameters » and 6; (ii) p(0 <
0:=0:=1)=1; (ili)) p(6 =6:and 6, =1 —35) 21 — a. A two step maximum likelihood
procedure suggested by Skibinsky and Cote, Ann. Math. Statist. 3¢ No. 3, for the case of
one X and one 6 is applied to obtain a predictor of (61, 6;) from (X;, X;). For e = a
positive number, ¢ (which is < %), this predictor specializes to the estimate obtained by
Brunk, Ewing, Reid and Silverman, Ann. Math. Statisi. 26 641-647 (the case of two events)
which is a maximum likelihood estimate when only conditions (i) and (ii) above are taken
to hold. Relative to the squared distance between (6,, 6:) and predictor, the two-step
predictor may be shown, for0 < a< ¢, and &’ > 0 sufficiently small to be uniformly better
over M (5, ') than this estimate.

22. An Algorithm for the Analysis of Multidimensional Partially Balanced
Designs. J. N. Srivastava, University of North Carolina. (By title)

In this paper, the linear associative algebras generated by the association schemes of
MDPB (multidimensional partially balanced) designs (defined earlier by the author) are
considered. It has been found that such an algebra is non-commutative. However, using the
properties of the commutative algebra generated by the association scheme of ordinary
PBIB designs, an algorithm has been developed for the analysis of MDPB designs. This
algorithm does not involve any matrix inversion, and reduces the analysis to multiplication
and addition of matrices of very low order. These results have a direct application to the
analysis of (possibly nonorthogonal) balanced or partially balanced factorial fractions.
For the balanced case, the matrices involved have orders ranging from 2 X 2 to 6 X 6 (under
the assumption that 3-factor and higher order interactions are negligible).

(Abstracts of papers presented at the Western Regional Meeting, Eugene, Oregon,
June 20-21, 1963. Additional abstracts appeared in the June, 1963 issue.)

5. Exchangeable Processes Which Are Functions of Stationary Markov Chains.
S. W. DuarmaDHIKARI, University of California, Berkeley.

Let {Y., n = 1} be an exchangeable process with a countable state-space J. { Y} is then
a mixture of sequences of independent and identically distributed random variables with
values in J. In this paper, it is proved that {¥,} is a function of a stationary countable-
state Markov chain if, and only if, the above mixture is a countable mixture. The proof
of the “if”’ becomes straightforward as soon as the sequences of random variables which go
into the mixture are treated as Markov chains. The “only if”’ part is proved by taking the
Cesaro limit of powers of the transition probability matrix of the underlying Markov chain.

6. Confidence Bands in Straight Line Regression. ANTRANIG V. GAFARIAN,
System Development Corporation, Santa Monica, California.

This paper develops a method for obtaining confidence bands in polynomial regression
when the observations are independently distributed with constant but unknown variance.
The bands may be obtained, in principle, over arbitrary sets of the independent variable
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with exact preassigned confidence coefficients. In general, difficult distribution problems
result when specific applications are attempted. Some progress has been made in’ the case of
first degree polynomials. A table is provided to obtain a constant width confidence band
which contains the true but unknown straight regression line for values of the independent
variable in some arbitrarily selected interval with an exact preassigned confidence coeffi-
cient. The method is compared with the well known hyperbolic band for the whole regres-
sion line.

7. On the Robustness of Some Non-Parametric Estimates for Shift (Prelimi-
nary report). ARNLIoT H@yLAaND, University of Oslo.

Let X3, -+, Xmand Y1, -+, Y, be N(= m + n) independent observations from dis-
tributions P(X; < u) = F(u) and P(Y; < u) = F(u — A) where F is supposed to be con-
tinuous but otherwise unknown. The estimates A; = median (Y; — X;), [the median of
the set of mn differences (Y; — X;)], and A; = median [(Y; 4+ Y;)/2] — median [X, + X.)/2]
are considered and compared with A* = ¥ — X. Under these assumptions Hodges and
Lehmann have shown that the asymptotic relative efficiency of A; to A*, (&, A*) = 1207
[ff?(z)dx]?. Here it is shown that under the same assumptions e (3, , &,) < 1 with equality
only when F is symmetric; furthermore that if in fact an unknown scale parameter ¢ is
present and F (u) = H(u — 0), G(u) = H[(u — 6 — A)/c) where H is symmetric about 0 and
6 is unknown, then e (A, , A*) is still 12«:[[1" (z)dz]? while e (A, , A*) depends on ¢ and A (=
limy,,m/N). In particular if A = } and —log f(z) is convex, e(&;, &,) = 1 with equality
for ¢ = 1.

8. On the Efficiency of Optimal Non-Parametric Procedures in the Two Sample
Case With Nuisance Parameters. ProrR WritoLp MikuLski, University
of Maryland.

Consider Pitman’s efficiency of the locally most powerful rank test relative to the likeli-
hood ratio test for the two sample problem when the distribution of random variables in
question is assumed to be specified up to location and scale parameters only. Suppose that
the information about the distribution is false and Pitman’s efficiency for these two tests
is computed under some other distribution. It turns out that a necessary and sufficient
condition for this lower bound to be equal to unity is that the distribution for which the
procedures are derived is normal. This result is obtained under some regularity restrictions
similar to those involved in the same study when nuisance parameters were absent.

9. Correlation Models. R. F. Tare, University of Washington. (By title)

Assume X univariate and Y multivariate. The sample multiple correlation coefficient
based on (X,, Y,) is r; the population multiple correlation is p. The distribution of Y
given X = z is multivariate normal with mean vector u (z) and covariance matrix independ-
ent of . Models are specified by placing various restrictions on x(-) and on the distribution
of X. Results are related to those of Tate (Ann. Math. Statist. 26 (1954) 603-607), Olkin
and Tate (Ann. Math. Statist. 32 (1961) 448-465), and Das Gupta (Psychometrika 26 (1960)).
It is shown, for example, that if X has coefficient of excess y = —4, and finite eighth mo-
ment, then r ~ 9 (p, (1 — p2)2(1 + 4vp?)/n). Thus, the cases X-normal and X-double ex-
ponential lead to the same limiting distribution.
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(Abstracts of papers presented at the European Regional Meeting, Copenhagen, Denmark,
July 8-10,1963. Additional abstracts appeared in the June, 1963 issue.)

3. Mean Square Expectations for Orthogonal Contrasts in Mixed Model
Analyses of Variance. Kraus ABt, United States Naval Weapons Labora-
tory, Dahlgren, Virginia. (Introduced by Victor Chew)

In this paper mean square expectations for orthogonal contrasts in mixed model analyses
of variance arediscussed for the cases of two-way and three-way crossed classifications with
one or two fixed-effects (or Model 1) factors and with the other factor(s) of the random-
effects (or Model 11) type. The formulas are given for the most general orthogonal cases of
unequal but proportional cell numbers and for the cases of equal cell numbers. Also included
are the appropriate variance ratios for testing all null-hypotheses concerning orthogonal
contrasts and their interactions with other factors. In the derivation of the mean square
expectations variance components are defined for the interaction effects between (fixed
factor) orthogonal contrasts and random factors. The introduction of these interaction
variance components is shown to be necessary because it is impossible to maintain the usual
assumption that the variance of the corresponding interaction term in the linear model is
equal for all levels of the fixed factor. Besides the necessary additions the notation, linear
model and method used for deriving the mean square expectations are the same as in the
author’s “Table of Expectations of Mean Squares in the Analysis of Variance for Crossed
Classifications,” (NWL Report No. 1833, 2 April 1963).

4. A Monotonicity Property of a Class of Tests of the Equality of Two Covari-
ance Matrices. T. W. Anperson and 8. Das Gupra, Columbia Uni-
versity.

Invariant tests of the hypothesis that =; = =, are based on the characteristic roots of
818z" , where =, and =; and 8, and S: are the population and sample covariance matrices,
respectively, of two multivariate normal distributions, and the power of such a test de-
pends on the characteristic roots of =; =7’ . The power is an increasing funection of each
ordered root of Z; 27' if the acceptance region of the test has the property that if (c; y
“«++, ¢p) is in the region any point with coordinates not greater than these, respectively, is
also in the region; here ¢, = ¢c; = - = ¢, are the roots of 187" . Examples of such accept-
ance regions are ¢; < a and ¢, < @, with a constant.

5. Quantum Mechanics and Probability Theory: Criticism of Feynman Posi-
tion. H. Breny, University of Liége.

Tt has been contended that the foundations of quantum mechanics are incompatible
with classical probability theory (see e.g. Feynman, R. P., Second Berkeley Symp. 533-542;
also Hibbs, A. R., Appendix II of Probability and Physical Sciences by M. Kac). If true,
that thesis would have far-reaching consequences, for quantum-mechanical reasoning does
make use of classical probability theory (laws of large numbers). In fact, a critical analysis
of Feynman’s reasoning shows that it is inconclusive, and that quantum mechanics and
probability theory are quite compatible.

6. Asymptotic Regression Curves With Different Asymptotes. I. M. CHAKRA-
vARTI, University of Geneva.

Stevens (1951) gave a fully efficient method of estimating the parameters in the asymp-
totic regression y = « + A\, 0 < A < 1. This article provides an operational method for
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obtaining least squares estimates when «’s are different for different experimental units,
but 8 and A are the same. The model used here is thus, y;; = « + B\, 5 = 1,2, -+, n;,
i=1,2, --+, k, where y;; is the response observed on the sth experimental unit at the dose
t:; . Starting with a preliminary estimate r of A, the first step is to calculate the elements of
a square matrix B of order (¥ + 2) and those of an one-columned matrix ¥ of (& + 2)
elements. The matrix-product B~'Y provides the elements for calculating the improved
estimates. The operations are repeated until the desired accuracy in the estimates

is achieved.

7. On Optimal Stopping Rules for Maximizing s,/n in Coin Tossing. Y. S.
Cuow and HerBERT ROBBINS, Columbia University.

Let 21, %2, --- be independent random variables with P(z, = —1) = P(x, = 1) = }.

We observe z;, #;, --- sequentially; if we stop with z. we receive the reward y, = (z; +
<+« + xa)/n. A stopping rule is a random variable 7 with positive integer values, such that
the event + = k is measurable with respect to z;, ---, @i for every k = 1, 2, ---. Using 7

our reward is the random variable y, . We show that there exists an optimal stopping rule
t; i.e., one for which E(y;) is a maximum. ¢ is difficult to exhibit explicitly but we give
approximations to E(y.).

8. An Estimator for the Population Regression Coefficient From a Stratified
Sample. M. pE Vries, A. C. Nielsen (Nederland) N. V. Amsterdam.
(Introduced by J. Hemelrijk)

In sample surveys the design of the sampling scheme usually aims at optimal efficiency
for enumerative data. However, such samples often have to be used for analytical investi-
gations which were not considered as part of the original sample plan. Usually such investi-
gations require more complicated calculations and are less efficient. In this paper for the
case of a stratified sample, the population regression coefficient and correlation coefficient
have been derived for a real or assumed linear relationship. (This problem should be clearly
distinguished from the regression estimator which serves a different purpose.) In order to
simplify calculations, a biased version of the estimator is proposed. This biased estimator
is examined in a multiple regression example.

9. Maximum-Likelihood Estimation of the Parameters of a System of Simul-
taneous Regression Equations. J. Dursin, London School of Economics.

The problem of full-information maximum-likelihood estimation of the parameters of a
system of simultaneous regression equations is attacked by transforming the equations of
maximum likelihood into a set more amenable to solution. The equations so obtained lend
themselves to solution by a straightforward Newton-Raphson iterative procedure. They
also show up clearly the relation between maximum-likelihood estimates and three-stage
least-squares estimates. Methods are given for dealing with the special problems arising

. from the presence in the model of identities and of under-identified and just-identified
equations. )

10. Exact Power Values of the Wilcoxon (Mann-Whitney) Two-Sample Test
Against Lehmann’s Alternatives. HErRBERT B. EIsENBERG, System De-
velopment Corporation, Santa Monica, California.

Tables of the exact power values of the one-sided and two-sided Wilcoxon (Mann-Whit-
ney) two-sample tests against Lehmann’s alternatives (i.e., Hy : G = F against the alterna-
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tives Hy : @ = F*, where k is a positive number) have been computed. These cover a range
of values of the parameter & from } to 4, all combinations of sample sizes2 < n < m = 10,
and selected values of the significance level

11. Distribution Functions With Given Marginal Distributions. Hans G.
KeLLERER, University of Munich.

Let I be a finite index set and F; the class of all distribution functions F defined on the
product space By = (R, ¢ € I). Then each F ¢ & defines a collection of marginal distribu-
tions FT ¢ Jp corresponding to the different subsets T’ of I. Now if T is any system of such
subsets, the following main theorem holds: Necessary and sufficient for the existence of a dis-
tribution F & & with the marginals Fr & §r for T ¢ T is the condition (¥) D res [ rp grdFr =
0 for all bounded continuous functions gr | Rr with D 7. gr = 0 everywhere in R;.
Using this theorem it is possible to give a simple combinatorial characterization of those
systems £, for which the condition (*) may be replaced by the usual consistency condition.
In this case of ‘‘solubility’’ explicit solutions of the problem can be stated. Furthermore it is
possible to extend the main theorem to the case of an arbitrary index set; this yields in
particular a generalization of Kolmogorov’s well known theorem.

12. Some Limit Theorems for the Dodge-Romig AOQL Single Sampling In-
spection Plans. A. HarLp and E. Kouseaarp, University of Copenhagen.

In a previous paper by Hald (Technometrics, 1962) limit theorems for the Dodge-Romig
LTPD single sampling inspection plans have been derived. The purpose of the present
paper is to find similar results for the AOQL plans. The main results are that the highest
allowable fraction defective in the sample converges to the AOQL, the difference being
of order (log n)*/nt, and that sample size asymptotically is proportional to the logarithm
of lot size. It is further shown that the producers risk asymptotically decreases inversely
proportional to lot size and that the average amount of inspection for lots of process average
quality apart from sampling inspection is independent of lot size. Finally, numerical in-
vestigations have shown that the asymptotic formulas for acceptance number and sample
size are good approximations to the exact solution also for small lot sizes and a compact
graphical representation of the asymptotic solution is given. From a purely probabilistic
point of view the most interesting is perhaps the following result regarding the Poisson
distribution: The equation B(c, ) = b (c, z) has the asymptotic solution ¢ = = + [ log-
(z/27)] + (1/6) log (#/27) — % + 0(1) where B(c, ) = D_i-0 b(i, z) and b (i, #) denotes
the Poisson probability for the outcome ¢ when the parameter is z.

13. On the Semimartingale Convergence Theorem. S. JoHANSEN and J. KARUSH,
University of Copenhagen.

Let (0., n = 1) be a nondecreasing sequence of signed measures on nondecreasing o-fields
of a probability space, and let X, = dp./dP. Let ¢ = lim ¢, (defined on the union field)
and suppose ¢ is o-finite. It is shown that the semimartingale convergence theorem (slightly
extended) asserting that X, converges a.s. can be obtained as an immediate consequence
of simple semimartingale inequalities. The limiting function X is then characterized meas-
ure-theoretically, as follows: X +(X~) = du+/dP (du— /dP), where p+ (u—) is the maximal
measure contained in the content ¢ (¢o). This provides a completion of the approach of
Andersen and Jessen (Danske Vid. Selsk. Mat.-Fys. Medd. 26 No. 5 (1948) 8 pp). A simple
illustrative example is given of the decomposition of a content into its maximal ¢-additive
and ‘“‘purely finitely additive’’ parts.
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14. Analysis of Computer Failure Patterns. I: A Branching Poisson-Process
Model. PETErR A. W. Lewis, University of London.

Models for computer failures generally assume that the sequence of failures in each com-
ponent position constitute a renewal process, with failures in each component position
being independent of the failures in other component positions. The superposition of these
renewal processes—the failure pattern of the computer—should then form a Poisson-proec-
ess. Experience has shown however, that the times-between-failures of a computer are not
exponentially distributed and also that they tend to be correlated with one another. These
deviations from a Poisson-process are explained by the following model. Initial failures of
components constitute a main process, which is assumed to be Poisson. Independently,
each of these initial failures is repaired with probability ¢g. Otherwise the failure recurs some
time Y, later, is then repaired with probability 1 — p, and so forth. The random variables
{Y;} are assumed to be independent and identically distributed, but no assumptions are
made as to the form of their distribution. The non-zero times between the recurrences of
failures in these subsidiary processes are due either to the fact that the component failure
is intermittent rather than catastrophic, or to the fact that the failed but unlocated com-
ponent is not used in computing for some time. The pooled main and subsidiary processes
constitute the computer failure pattern. Conditions for stationarity and a complete prob-
abilistic description of this branching Poisson-process are given.

15. A Comparison Between the Variability of the Partial Regression Coefli-
cients of z; on z, and Those of z; on z;. EsNaAR LyrrkENs, University
Institute of Statistics, Uppsala, Sweden. (Introduced by H. Wold)

For samples from different %£-dimensional populations a large sample test is designed for
the hypothesis that all partial regression coefficients of z; on 2. and partial regression
coefficients of ; on z; are equal against the hypothesis that one and only one of the two sets
of regression coefficients are not equal in all populations considered. Instead of an approxi-
mately F-distributed test variable, used in my paper on the corresponding bivariate problem
at the conference in Dublin 1962, a test variable distributed approximately as the difference
between two independent x2-distributed variables is used. The distribution function of
such a difference is tabulated by K. Pearson, S. A. Stouffer and F. N. David (1932) in ‘“Fur-
ther application of the T, (x) Bessel function’, Biometrika 24 293. Furthermore we meet
also in the multi-dimensional normal case the difficulty that the underlying normally dis-
tributed variables appearing in the x2-sums do not form a bivariate normal distribution,
although the marginal distributions are normal, but in the large sample case the deviation
from the bivariate normal distribution does not in general seem too serious.

16. A Test of Whether Two Regression Lines Are Parallel When the Variances
May Be Unequal. Ricaarp F. PorraOFF, University of North Carolina.

The principal topic covered in this paper is the development of a test of the hypothesis
that two regression lines are parallel under the conditions that the two sets of error terms
are normally distributed but with (possibly) different variances. An incidental topic which
is covered concerns a test for the slope of a single regression line; no normality assumption
is required for this second test. Both tests are analogous to the Wilcoxon test: the test
statistic for each test is based on a symmetric sum of correlated binomial variates.
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17. Nonsensical Maximum Likelihood Estimators. OLav RE1ERsgL, University
of Oslo.

All references of this abstract are to T. Koopmans: Linear Regression Analysis of Eco-
nomic Time Series, De Erven F.Bohn N.V., Haarlem, 1937. We consider the specification
given in Section 7 with the following modifications: The matrix ¢ is supposed to be diagonal
and we assume known that each e has a lower positive bound when the & are normalized
by (7.5). Using the results of Section 8 on maximum likelihood estimation when ¢ is given,
we derive maximum likelihood estimators when e is not supposed to be known. The main
result is that any local maximum and the absolute maximum of the likelihood function
must occur when all £4x except one are equal to their respective lower bounds. Any solution
of the system of equations which we get when the partial derivatives of the likelihood func-
tion are equated to zero will give a saddle point of the likelihood function. Neither the
solutions giving maxima of the likelihood function nor the solutions giving saddle points
have any relation to the true values of the parameters ey .

18. Random Division of an Interval. F. W. SteuTEL, Mathematisch Centrum,
Amsterdam. (Introduced by W. R. van Zwet)

An interval of length ¢ is divided into n parts by n — 1 random points. The relation that
exists between the distribution function P,(z1, --- , 2z ;t) of the n intervals and the dis-
tribution funection Q. (21, - , za ;7) of n independent exponentially distributed random
variables with mean ! may be written as [§ Pn(21, -+ , 2s ;8)t"le~"tdt = [(n — 1)1/
7]Qn(21, * - , 2a ;7). By interpreting the integral as a Laplace-transform the probability
of any event concerning the n intervals may be obtained by Laplace-inversion of the prob-
ability of the corresponding event concerning n independent exponentially distributed
random variables. A special case of this relation has been used by M. Dwass (1961), T'rabajos
Estadist. 12 (1, 2). Some applications are given.

19. Simultaneous Confidence Intervals for Weighted Sums of Classification
Probabilities. PAIRLEE J. STiNsoN and JouN E. WaLsH, Veterans Ad-
ministration Hospital, Sepulveda, California; System Development
Corporation, Santa Monica, California.

Several (K in all) large-sized groups of individuals are considered, where each individual
belongs to exactly one of a given set of U classifications and the groups are independent.
Thus, the data are expressible in the form of a K X U table with independent rows and each
row representing independent trials from a multinomial distribution with the classifications
as categories. For each classification, relative comparisons of the corresponding multinomial
probabilities for the groups are of interest. Specified weighted sums of the group prob-
abilities (for a fixed classification) are used for the comparisons. K — 1 comparisons can be
made for each of a stated U — 1 of the classifications. A separate interval based on the
observations is developed for each of the (K — 1) (U — 1) weighted sums of probabilities.
These intervals are such that the probability is (approximately) at least a specified amount
that all these interval relations are simultaneously satisfied. Basis of results is development
of a suitable statistic with a large-sample chi-square distribution. These confidence regions
yield tests which have advantage of indicating which comparisons led to significance.
Results are useful for bio-medical retrospective studies, such as investigating possible
causes for lung cancer.
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20. Progressive Correction (Preliminary report). C. S. vaN DoBBEN DE BRUYN,
N. V. Philips’ Gloeilampenfabrieken, Eindhoven, Holland. (Introduced
by L. C. A. Corsten)

A new method for extrapolating time series, of which the mean is not a constant but
exhibits long-term drifts or sudden shifts, is presented. Whereas being very responsive to
changes in mean level the technique yields a stable and unbiased estimate of the mean if it
is a constant; this combination of stability and adaptivity is achieved by reacting slowly
when the error of prediction is small compared with the variation in the series (noise) and
quickly whenever the error becomes large (thence the name progressive correction). A
special case is chosen and its adaptivity and stability are compared with those of exponential
smoothing. The mean square error (m.s.e.) of the predictor is compared with the m.s.e.
of exponential smoothing and the Wiener predictor, for the case of a Markov series. The
need for criteria other than the m.s.e. of prediction for choosing a predictor arises if an
inventory-control system utilizes the predictions; the variance of predictions (not of
prediction errors) and the speed and manner of response are possible successors of the
m.s.e. and they are computed for the chosen form of progressive correction.

21. Non-Parametric Regression Analysis. G. S. Watson, Johns Hopkins
University.

Let (X;,Y;)(¢ =1, ---,n) be identically and independently distributed and suppose
that E(Y | X = z) = m(z) exists. The problem is to estimate the regression function m (x)
with the minimum of assumptions about the joint distribution of X and Y. A class of estima-
tors that is suitable when m(z) and the marginal density of X are continuous is 7 (z) =
S Yiba(x — Xi)/ Doi-1 8.(z — X;) where the function 8,(-) depends on the configura-
tion of (X1, -++, Xa). 1/n times the denominator provides an estimator of the density of
X. Large sample theory and Monte Carlo investigations have been made.

(Abstracts of papers presented at the Annual Meeting of the Institute, Ottawa,
August 27-29, 1968. Additional abstracts appeared in the
March and June, 1968 issues.)

1. Distribution of the Number of Admissible Points (Preliminary report).
O. BARNDORFF-NIELSEN and Mirton SoBEL, University of Minnesota.

Let X;= (Xa, X2, -, Xi) denote mutually independent d-dimensional vector
random variables with a common absolutely continuous distribution function F = F;(z:)
Fa(zs) -+ Fa(xa), i.e., the d components are mutually independent but the marginals need
not be common. Define X; to be an admissible point in the set {X; , X, - -- , X,} if there is
no X; in the set such that X;» = X (@ = 1,2, -+, d) with strict inequality for at least
one «. The number of admissible points, A, , in a sample of size # is distribution-free, i.e.,
its distribution does not depend on F. For small values of n, the exact distribution of 4, is
derived, as well as the mean and variance, for arbitrary d = 1. For small values of d, the
exact distribution of A, is obtained for arbitrary n = 1. For d = 2 if the points X; ({ = 1, 2,
-.-) are taken sequentially then the sequence {4}, (4; being the number of admissible
points among the first ¢ points) is a realization of a Markov Chain with non-stationary
transition probabilities. It is also shown that for d = 2 and n — «, the distribution of 4.
is asymptotically Normal and similar results are conjectured for d = 3.
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2. On the Limit Behaviour of Extreme Order Statistics. OLE BARNDORFF-
N1eLsEN, University of Minnesota. (Invited)

The aim of the paper is to indicate the current state of research in theory of
limit behaviour of extreme order statistics. Some new results due to the author will be
mentioned, the main of which is a criterion for almost sure stability of the maximal order
statistic of a sequence of independent, identically distributed random variables.

3. Some Statistical Results in Renewal Theory. T. N. BuARGAVA, Kent State
University. (By title)

The notations in this paper are that of Feller (An Introduction to Probability Theory and
Its Applications, 1, (1st ed.), Chapter 12). Maximum likelihood estimates of x and o® are
obtained in terms of the random variables N,; (¢ = 1, 2, ---, n), where N,; denotes the
number of occurrences of ¢ in the first 7 trials in the ¢th sample. It is found that these esti-
mates are unbiased and the expressions for their variances are obtained. It is shown that
with certain modifications the standard tests of significance for the mean and difference of
two means, and the analysis of variance tests can be applied to the renewal theory. Some
of these tests are explicitly derived.

4. Enumeration of Cyclic Paired-Comparison Designs. H. A. Davip, Virginia
Polytechnic Institute.

Suppose that n “objects’ 0, 1,2, --- , n — 1 are to be compared in pairs. The totality of
in (n — 1) paired comparisons can be divided into m = % (n — 1) cyeclic sets of n pairs if
n is odd and into 3n — 1 sets of n together with a set of 3n if n is even. A typical set is
s=0,s1,8+1---t,s+1---n—1,8+n—1, where s is a positive integer less than
in and s + ¢t has to be reduced modulo n when necessary. Cyclic paired-comparison de-
signs are made up of combinations of cyelic sets. A design of size (n, r) involves n objects
each of which is compared 7 times (r = 1, 2, --+ , n — 2). It is shown that, for n prime, the
number of distinet (non-isomorphic) designs of size (n, ) isequal to the number of arrange-
ments, remaining distinct under rotation, of 4r white and m — 3r black beadson a necklace.
The case where n is not prime is also treated.

5. Stochastic Give-and-Take. M. H. DEGroor and M. M. Rao, Carnegie
Institute of Technology. (Invited)

The following process, initially considered by C. C. Li, is studied.. Two players share a
fixed amount of some commodity and at the nth stage of the process they exchange random
proportions X, and Y, of their shares. If {(X», ¥Yz):n =1,2,---} is an independent and
identically distributed sequence of random pairs then the process is a Markov process
whose state space is the unit interval and whose state Rn.1 at the (n + 1)th stage is given
by the nonlinear relation R,y = (1 — Xa) Bn + Ya (1 — Ra). The asymptotic,
steady state distributions are obtained in the general case and a number of special distribu-
tions of (X, ¥») are considered. (The paper will appear in J. Mathematical Analysis and
Applications.) '

6. Double Limit and Run Control Charts: Exact Statistical Properties. J.
T1aco pE OLIVEIRA and S. B. LitTauER, Columbia University. (By title)

The authors develop a new approach to control chart usage under conditions of stability.
Two control charts for sample averages and their properties are studied in this paper. The
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chief tool for this study is the already used notion of mean action time as a substitute for
the power function which is not adaptable to the present criteria. The exact expression of
the mean action time is obtained. One of the control charts (with warning and action limits)
deals with the following rule for action: look for assignable causes when two successive
sample averages fall between the upper (lower) warning and action limits or when one
sample average falls outside the (larger) action limits. The second control chart uses the
following action rule: when one of the observed sample means falls outside the control
limits or a prescribed run of observed sample averages lies entirely above or entirely below
the grand mean of the sample average, look for assignable causes.

The effect of using estimates from a previous large sample is accounted for.

Tables and graphs for measuring the effectiveness of those control charts are being pre-
pared as well as a study of the economic choice of the control chart parameters.

7. On General Birth and Death Processes and Mission Reliability (Preliminary
report). RonaLp 8. Dick, International Electric Corporation, Paramus,
New Jersey.

Continuing the writer’s previous work on reliability models containing maintenance
time constraints and restoration time constraints, (Dick, R. S., “The Reliability of Re-
pairable Complex Systems—Part A: The Similar Machine Case’’ 6th MIL-E-CON Sym-
posium on Military Electronics, Washington, D. C., 1961), these concepts are generalized
from fixed time periods to random variables. Also the relationship of the models to Semi-
Markov Processes is shown. Extensions of the basic model to the case where there are partial
absorbing barriers in each state of the model is also included in the paper.

8. Single Sampling Inspection Plans Based on a Speciﬁed Acceptance Proba-
bility and Minimum Costs. ANDERs HawLp, University of Copenhagen.

Let K (p) = nks (p) + (N — n) (ka(p) P(p) + k. (p) Q(p)) denote the costs of a sampling
plan (n, ¢) for lots of size N and quality p. The sampling plans discussed in the present
paper are defined by specifying the acceptance probability for one quality level and mini-
mizing the costs for another quality level. Three special cases of particular interest are
discussed: (1) LTPD plans with minimum producers costs. (2) AQL plans with minimum
consumers costs. (3) IQL plans with minimum producers or consumers costs. The cost
function may always be reduced to one of the two standard forms: n 4+ (N — n) v1 @ (p1)
+ Néiorn + (N — n) v2P (p2) + Né: where p; and p; denote the two quality levels and
(v, 8) are corresponding cost constants. The general solution to the minimization problem
is given, a corresponding program for an electronic computer has been constructed, and
some tables are provided. An approximate solution has also been obtained by deriving limit
theorems and afterwards correcting the asymptotic formulas so that they become valid for
small N. Asymptotically sample size increases proportional to the logarithm of lot size.
An important new (asymptotic) result is the following: The sampling plan corresponding
to lot size N and cost constant v is found as the sampling plan for lot size Ny and cost con-
stant 1.

9. Confounding 3(2°-?) Designs of Resolution V. Perer W. M. Jonn, Uni-
versity of California, Davis.

The 3(20-2) fractional factorials occur in six basic designs. These correspond to con-
founding patterns given by the following sets of defining contrasts (together with I): 4,
BCD, ABCD; AB, ACD, BCD; AB, ACDE, BCDE; A, BCDE, ABCDE; AB, CDE, ABCDE,
ABC, ADE, BCDE. Any of the designs may be split into two blocks of twelve runs each or
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into one block of sixteen runs and one of eight runs. The first three designs can be blocked
into two blocks of eight runs and two blocks of four runs. The last three designs can be
divided into four blocks of six runs each.

10. Minimal Sufficient Statistics for the Group Divisible Partially Balanced In-
complete Block Design (GD-PBIB) With Interaction Under an Eisenhart
Model II. C. H. Karapia and Davip L. WEEks, Southern Methodist
University, Oklahoma State University.

In this paper, an Eisenhart Model II with interaction for a GD-PBIB design with p
replicates per cell is considered. Specifically the model Y;;x = p + 8: + 7; + B7)i; + eijn
is assumed, where ¢ = 1,2, --- ;b;5 = 1,2, -+ , t; k = ni; and n;; = 0 if treatment 5 does
not appear in block ¢, and n;; = 1, 2, --- | p if treatment j appears in block 7.

If Bi, 7i, (B7)i; and eijr are normally and independently distributed, then a minimal
sufficient (Vector-valued) statistic for the class of densities for this model is found, to-
gether with the distribution of each component in the minimal sufficient statistic. It is also
shown that the minimal sufficient statistic for this class of densities is not complete. Hence
the solution of the problem of finding minimum variance unbiased estimators of the variance
componehnts is not straightforward. If minimum variance unbiased etimators exist in-
dependent of the parameter, they must be explicit functions of the elements in the minimal
sufficient statistic found in this paper.

11. Use of Behavioristic Models in Analysing Special (Pertaining to Space)
Data—Part II. S. K. Karrti, Florida State University. (By title)

Part I of this paper has been delivered at the International Symposium on Classical and
Contagious Distributions at Montreal, Canada, August 15-20, 1963. Therein, a model for
the distribution of corn borers was developed and frequency functions for one plant per
plot, two plants per plot and four plants per plot were derived. The study being preliminary,
certain assumptions were made to simplify algebra. In Part II, frequency functions have
been obtained without the simplifying assumptions. Empirical frequencies are being ob-
tained for two more fields and the fits of the theoretical frequency functions are being
studied. Limiting forms have been obtained. Preliminary results indicate that the new
model gives substantial improvement over the old model, but all conclusions must wait
until all the results have been obtained.

12. Simultaneous Tests for Equality of Covariance Matrices Against Certain
Alternatives. P. R. Krisanaian, Wright-Patterson Air Force Base, Ohio.

Consider K multivariate normal populations with covariance matrices 21, ---, 2k .
In the present paper, some procedures are proposed to test the hypothesis H: Z; = ---
= Iy against the alternative hypotheses 4;, A; and A; where A; = Uf;j,l Ay, Ar =
US4, 4 =US 4ii and 4:; : Z; ¥ ;. They are based upon expressing the total
hypothesis as a finite intersection of several elementary hypotheses and testing these ele-
mentary hypotheses simultaneously. These procedures are generalizations of the ‘“Step-
Down Procedure’” proposed by J. Roy (these Annals 29 1177-1187) for testing the equality
of two covariance matrices. The procedure proposed in the present paper for testing H
against A, is restricted to the situatipns where the sample sizes are equal. In the univariate
case, the present f)rocedurés for testing H against A; and A, are respectively equivalent
to Hartley’s test (Biometrika 87 308-312) and Gnanadesikan’s test (these Annals 80 177-
184) for the equality of variances.
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13. Probability Distribution of the Radial Error. ANpRE G. LaurEnT, Wayne
State University.

Let the coordinates X, with covariance matrix X, of the points of impact M be normally
distributed N (0, =) around the origin. Then the probability of a hit within a circle of
radius r centered at the target, that is, the probability distribution of the radial error R is
PX'X =) =P [R=r7) =20 [(=1i/G + 1) @=2|7F/2)i* P, [(trace =) |2[7}/2],
where P; is a Legendre polynomial. Different expressions for the moments of R and the
distribution of the sample quadratic mean of R are also given.

14. Bayesian Inference for Contingency Tables. D. V. LinpLEy, University
College of Wales. (Invited)

A discussion of approximate methods of making Bayesian analyses (i.e. analyses using
prior distributions) with binomial samples leads to a generalization to multinomial samples
and contingency tables. The main result is that if 6; are the multinomial parameters and
a; a set of constants such that Y a; = 0 then D a; log 6; has a posterior distribution which
is approximately normal with mean »_a; log n; and variance Ea,-z ni' where n; is the ob-
served number in the class of parameter 6; . Extensions of this result enable contingency
tables to be analyzed using non-orthogonal analyses of variance. It is suggested that the
breakdown of the sums of squares in the analysis should not follow the conventional lines
of main effects, interactions, etc. but should correspond to the independence of the classi-
fications under different conditions. Comparisons with other methods of analysis are given.

15. A Ratio Limit Theorem for Cascade Processes. P. E. NeyY, Cornell Uni-
versity.

Given an initial particle of unit energy which after a time 7', splits into N particles of
energies X, , -+ , Xy respectively, where T, N, X, , --- , Xy are random variables. Assume
that P{X:+ -+ + Xy = 1} = 1. Let N (z, t) denote the number of particles of energy at
least z at time ¢, and p.(z, t) = P{N (z, t) = n}. Under certain regularity conditions on the
distributions of the above random variables it is shown that for 0 < = 1 and m < n we
have p.(z, t)/pa(z, t) — 0. This generalizes a result of Lopuszanski and Urbanik (Nuovo
Cimento, Ser. 10, 2, Suppl. 4, 1147-1167).

16. The Limit Distribution of a Binary Cascade Process (Preliminary report).
P. E. Ney, Cornell University. (By title)

The following conjecture of T. E. Harris is proved. Use the same notation as in the pre-
vious abstract. Assume that 7 has an exponential distribution with parameter A, that
P{N = 2} = 1, and that (X;, X,) have a symmetric d.f. Let u = E(—log X:) and ¢? =
var (—log X1). Let z; = exp{—2\ut — Kk[2\¢ (u? + o2)]}}, where & is a constant. Let &(-)
denote the Gaussian d.f. Theorem: N (z:, t)/N (0, t) — & (k) in probability.

17. Ordering of Probabilities of Rank Orders: Fine Structure (Preliminary
report). I. RicHARD SAvAGE and MivroN SoBEL, University of Minnesota.

Assume X = X, , Xn)and Y = (Y1, ---,Y,) are independent samples drawn
from the densities f(-) and g(-) respectively. Let Z = (Z;, -+ , Zn») be a random vector
of 0’s and 1’s such that Z; = 0 or 1 according as the 7th smallest of the combined sample of
m + n observations is an X or a Y. Let P(z) = Pr(Z = 2). Define: 22 =1 — 2z = (1 — 2;)
and z¢ = (2;!) where 2;* = 2y yny1—i . Assumptions: ST: f(x) = f(—z) and g(x) = f(x — 6);
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U:f(x) =z f(2') if 0 = z < z'; MLR: g(y/f(y) = g(z)/f(x) if y > =; N: f(-) and g(-) are
normal distributions with common variance 1 and means 0 and 6, respectively. Under ST and
/or N, we use the notations P (z) and P (z | 6) interchangeably. Theorem 1. If ST holds then
P(z) = P(z%) for all 6. See Ann. Math. Statist. 28 (1957) p. 975. Theorem 2. If ST holds then
P(z|6) = P(z*| —6) = P(z¢ | —0) for all 6. Theorem 3. If MLR holds and z and 2’ have a
common number of 0’s and 1’s such that >y (z;/ —2;) = 0fori =1, --+,m + n, then
P(z) = P(2') for all 8 > 0. Equality holds if and only if z = 2’ or f(-) = g(-). See Ann.
Math. Statist. 27 (1956) p. 597. Theorem 4. If N holds then P(1,07*2, 1) > P(0, 1, 07, 1, 0)
and if N holds then P(0r*1,1,1,0"*1) > P (07,1,0,0,1,07) for6 2 0and r = 1,2, - -- . Theorem
5. If N holds then P(2,1,0,0,1) > P(, 0,1, 1, 0) and P(0,1,1,0,2) > P(1,0,0,1, 2)
for any z and all 6 > 0. Theorem 6. If ST and U hold then P(0,0,1,1,0) > P(1,0,0, 0,1)
for all 6 > 0. Theorem 7. If ST and MLR hold then P(0, 0, 1, 1, 0, 2%*) > P(2,1,0,0,0,1)
for all @ > 0, provided the number of 1’s equals the number of 0’s in 2. In the following
z(abc)z’ means P(z) > P(z’) for all 8 > 0 under conditions abc. 00011 (MLR) 00101 (MLR)
01001 (N) 00110 (ST and U) 10001 (N) 01010 (MLR) 01100 (N) 10010 (MLR) 10100 (MLR)

11000.

18. A Method of Fitting the Regression Curve E(y) = o + 6z 4 Bp* B. K.
SuaH and C. G. Kuatri, M.S. University of Baroda; Gujarat University.
(By title) .

In fitting this curve, estimation of p plays an important role in such a nonlinear curve.
In a previous paper Shah and Khatri described the quadratic estimators and Hartley’s
modified estimators for p. As n increases the efficiencies of these estimates decreases in an
systematic order. The least squares estimate 7 can be expressed as # = Y 1" w; (*) yz/
SF ' we ¢) Yoor, (Ot we = 2 @w, = 0). Where w, (#) are polynomials of degree 3n-12
in #. In this paper w, (#) is replaced by functions w, + rv, . When n = 5, the u, and v, can
be chosen so that u, + rw.aw, (r;) for three different values of r; = 7, ro, and rs. The
estimate r is then equal to # for each of the three values. The efficiency is very high (over
99.9%,) throughout the entire range of p. For n > 5, the method of obtaining wu, and v, is
described in such a way that the efficiencies at p = 0 and at p = 1 are nearly the same.
Thus at n = 14, the overall efficiencies have been found to be over 93%, while in quadratic
and Hartley’s modified method they are found to be 939 at n = 8.

19. Further Investigation in Fitting the Regression Curve of the Type
E(y) = a + 6z + Bp* B. K. Suan and C. G. Kuarri, M.S. University

of Baroda; Gujarat University. (By title)

In this paper detailed study, for providing the initial estimates for the method of Shah
and Patel (1961) and to enable rapid checks on the assumed values of p, has been made. In
this paper, the estimate of p is considered under two alternative methods: (i) Patterson’s
(1958) method of estimating p by considering a ratio of two ‘“Quadratic functions of y’s”
which he calls the “Quadratic Estimates’’, (ii) Modified Hartley’s method suggested by
considering the internal regression of y,.1 on kS, + IS,.1,z and z2, as described by Khatri
and Shah (1959). It is interesting to note that the efficiencies in the case of quadratic esti-
mators are about 979, for r < 0.4, while in the case of Hartley’s modified method they are
found to be 99.9% for » > 0.5. The biases in both the methods are also considered. The
construction of a matrix in quadratic estimator is made such that the quadratic estimate of
p has minimum asymptotic variance when p takes some particular value, po say.
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20. The Distribution of Products of Independent Random Variables (Prelimi-
nary report). MELviN D. SpriNGER and WiLLiam E. THoMPsoN, General
Motors Corporation, Santa Barbara; University of New Mexico.

Fundamental methods for the derivation of p.d.f.’s of independent random variables
are developed, using a modification of the Mellin transform. This represents an extension to
n variables of a method presented by Epstein (Ann. Math. Statist., 19 (1948), 370-380). It
is shown that a minor extension of this procedure, allows the derivation of the p.d.f. of the
geometric means. The p.d.f.’s of products and geometric means of rectangular, Cauchy,
and normal random variables are then derived for specific cases including some which, to
the best knowledge of the authors, are hitherto unknown. The limiting forms of the p.d.f.’s,
as the number of factors increases without limit, are obtained. In particular, it is shown
that the p.d.f.’s tend to unusual but very simple forms. A suggested computation procedure
uses the method of contour integration to evaluate a general form of the Mellin inversion
integral which is applicable beyond the specific cases treated in this paper. The procedure
is especially convenient for numerical evaluation and tabulation by electronic digital
computers.

21. An Experimental Study of the Power of Goodness-of-Fit Tests. RicaarDp C.
TaeUBER, CLAIR J. BECKER, BEnJAMIN CrON, and BeverLy C. HassELL,
C-E-I-R, Inc.; United States Navy Underwater Sound Laboratory, New
London, Connecticut.

The problem giving rise to this study is the determination of the parent distribution of
various sets of acoustical data, and the sample size needed to give specified power to the
test used. 100 samples at each of several different sample sizes, from 20 to 300, were drawn
from a normal population. The Kolmogorov-Smirnov and chi-square tests were then used
to test the hypotheses that the sample data came from the normal, log-normal, uniform
and Rayleigh distributions in turn. Various specified values of the parameters involved
were used, as well as the maximum likelihood estimates (these giving that member of a
given distribution-family closest to the sample data). Graphs of the experimental power
function of the K.S. and x? tests versus sample size are given for the various hypothetical
assumptions. In addition, the x? test is compared under various groupings of class inter-
vals.

22. The Relation Between Pitman’s Asymptotic Relative Efficiency of Two
Tests and the Correlation Coefficient Between Their Test Statistics.
ConsTaNCE VAN EEDEN, University of Minnesota.

Let T be a test for H, based on n observations. Let T, be an asymptotically locally most
powerful test for Hy and let tn and ¢, be the test statistics for these two tests. In this paper
it is shown that, under certain regularity conditions, Pitman’s asymptotic relative efficiency
of the test T, with respect to the test T» equals the limit (for n — o) of the correlation
coefficient between ¢y and ¢, under H, .

23. Sequential Optimum Procedures for Unbiased Estimation of a Binomial
Parameter. M. T. Wasan, Queen’s University.
Letx,, %z, -+ %, , -+ be a sequence of independent random variables with common den-

sity function P(z = 1) = p, P(x =0) =1 — p,0 < p< 1. The non-randomized sequential
procedures §’s are considered for estimating p and the following two kinds of problems
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on choice of & are considered subject to suitable regularity conditions; (A) subject to
E,(Zs; — p)* < a (where a is a positive real number and Z; is an unbiased estimate of p),
choose § to minimize E,N; ; (B) choose é§ to minimize CE,N; + E,(Z; — p)? where C is a
positive real number as cost of an observation. In each case the minimization is to be done
uniformly in p if possible; otherwise the supremum over p of the risk in question is to be
minimized. The fixed sample size procedure is shown to be admissible and minimax for
problem (A) and (B). A procedure is constructed which asymptotically uniformly better
than the fixed sample size for the problem (A). Some other optimum procedures are con-
structed for problem (B).

24. Censored Least Squares Unbiased Linear Estimation for the Log Weibull
(Extreme Value) Distribution. Joun S. WaiTE, General Motors Research
Laboratories, Warren, Michigan.

Let T be a random variable having a two parameter Weibull distribution with param-
eters 8 and 0. Then Prob (T' = ¢t) = F(t) = 1 — exp (— (¢/0)#f). The distribution function
of £ = log T is then F(z) = 1 — exp (— exp (8(z — log 6))) and the reduced variable
Z = B(X — log 60) has a form of the extreme value distribution F (z) = 1 — exp (— exp z).
Setting A = log 6, B = 1/B gives the relation log T = X = A + BZ. Since the Weibull
distribution is a model for fatigue or wearout life, it is of interest to have estimators of
A and B (or 6 and B) for samples censored on the right. Using the generalized least squares
theorem of Lloyd (Biometrika 39 (1952)) coefficients A (I, J, N ),B (I, J,N),1sI=J=
N = 20) are computed such that the estimators A (J, N) = Zr-x Al,J,N)X({,N) and
B(J,N) = ZI=1 B(,J, N)X (I, N) are unbiased and have minimum variance in the class
of all linear estimators depending only on the first J order statistics X(1, N) < --+ =
X (J, N). This paper extends the results of Lieblein (NACA, TN 3053, 1954) from N = 6
to N = 20. Tables of the variances and covariances of the order statistics X (I, N), X (K, N)
are also included.

25. Limiting Distributions of Random Sums of Independent Random Variables.
HeLEN WITTENBERG, University of California, Berkeley.

Given a sequence {X;} of independent and identically distributed random variables and
a sequence {7x} of nonnegative integer-valued random variables, the limiting behavior of
S(rn) = >.1" Xi is investigated. The first case considered is of random variables {X4}
symmetric about zero and {7z} such that for some sequence ¢, — «©, 7,/c, —, 1. For such
variables the Kolmogorov distance—the greatest vertical distance between distribution
functions—between S(7,) and S(c.) tends to zero. When, instead, 7./c, —, & then S(7,)
and Sltc.] differ little. Moreover, if v is any random variable distributed as ¢ and inde-
pendent of {X;}, the distance between S (r,) and S[yc.] also tends to zero. For more general
summands S(r,) and S(c.) may differ widely even when 7./c. —, 1. However, for such
7. the distance between S (c.) and S (7.) suitably centered tends to zero. A class of variables
is defined which behaves as variables distributed symmetrically about zero, for the pur-
poses of this problem. Included in this class are all variables with the property that for
some sequence b(n), S(n)/b(n) converges in law to a proper stable law Y of index «. It is
shown that for such variables, if 7./c. —p & then £(S(n)/b(cs)) — L£(&/Y).

(Abstracts not connected with any meeting of the Institute.)
1. Non-Linear Regression Made Computationally Easy. ARTHUR ALBERT,
Arcon Corporation, Lexington, Massachusetts.

Let {X,}, (n = 1,2, -+ ) be a stochastic process of the form X, = F,(8) + V,, where
{Va} is zero mean process with bounded variances. The functional form of the mean value
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function F (0) is known, except for the real valued parameter, 8, which is to be estimated
from the observations X;, X, , -+ . We discuss sequences of estimates of the form: 6,
arbitrary, 0,11 = 0n + ka[Xn — F,,(On)] In partlcular, we deal w1th the case where k, de-
pends upon the past history of the process (kx = Fr(82)/ 20 F (6;)2) and another case
where the %, are deterministic, (kn = bn/D 7=1 b}, by = infy ]F' ()] ). Under reasonable
regularity conditions, we demonstrate that 6, — 6 w.p.1 and in the mean square. Investiga-
tions of the efficiency of these estimation procedures and of the case where 6 is a vector
parameter, are currently in progress.

2. Correlation Coefficient Between Ranges in Samples From a Bivariate Popu-
lation With Applications to Normal and Pareto Type 1 Populations (Pre-
liminary report). K. V. Marp1a, University of Rajasthan. (Introduced by
B. D. Tikkiwal)

Let (z;, y:), < =1, -+, n, be a random sample of size n from a bivariate continuous
population. Let X; = min (z;), X2 = max (2:), Y1 = min (y;), Y> = max (y:), By = X» —
and R, = Y, — Y, . Tippett (Biometrika 17 (1925) 364-387) gives formulae for the expec-
tations and variances of R; and R . In this paper, similar formula for E (R,R,) is derived
by help of the density function of (X1, X», Y1, ¥;) (Mardia, a paper under consideration
in Ann. Math. Statist.). The correlation between R; and R, can now be obtained. The form
of the correlation and its properties have been studied in details for the bivariate normal
and Pareto type 1 populations (Mardia, Ann. Math. Statist. 33 (1962) 1008-1015). In the
normal case, this correlation is found to be an even function of p where p is the population
correlation coefficient. In this case, the table of Cor (R;, R.) is under preparation for n =
2(1)20, 30, 60, 100, 200, 500, 1000 and p = .01(.01)1.

3. Exact Distribution of Order Statistics in Samples From a Multivariate
Population With Applications to Pareto Type 1 Population (Preliminary
report). K. V. Marpia, University of Rajasthan. (Introduced by B. D.
Tikkiwal)

Let (%1, -, T&r), 7 = 1, --+, n, be a random sample of size n from a k-variate con-
tinuous population. Let the ordered sample values of the ¢th variate be z;(1) < --- <
zi(n), s = 1, ---, k. In this paper, the exact density function of (x1(n1), ---, x(ns));
1=<ni=ni=1,--,k, is obtained by application of the multinomial theorem. It is
noted that the density of (x:(1), ---, zx(1)) in Pareto type 1 population (Mardia, Ann.
Math. Statist. 33 (1962) 1008-1015) is again of the Pareto type 1 form. The necessary and
the sufficient condition for preserving the form of the distribution is that the Prob (X; >
z1, -+, X& > @) of population should be of the form (g(z:, ---, #x))° The well known
identity, n* = D sa n®S(k, r) where S(k, r) is a Stirling number of the second kind, and
an expansion of (np + k — 1)®, p > 0, are obtained by considering some special cases of
the density function of (z:(1), -+, xx(1)).

4. Admissibility of Some Tests of Manova. M. N. GHosH, Institute of Agri-
cultural Research Statistics, New Delhi.

We consider the canonical form of the test of multivariate linear hypothesis, where we
have row-vectors Z(g) (¢ =1, -+ Q@ + m) and Y (u) (u = 1, --- n) with p-variate normal
distributlons N(b(g), =) and N (0, =) respectively and the hypothesis to be tested is b (¢} =
0(g = - Q). Several criteria have been proposed for the test of thls hy gothesis, which
are functlons of the roots 61, 02, -+ , 0, of the equation |Z — oY = | D1 Z(q)'Z(q) —
02 nay@)y@)| =0, eg., () 2 0= Tr (ZY-), (i) 6, (iii) 65, (w) IT @ + e
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Following the method of Stein for the admissibility of Hotelling’s T? (Adnn. Math. Statist.
27 616-623), it is shown that the test criteria based on the sum of roots and on the largest
root are admissible.

5. Hotelling’s Generalised 7 in the Multivariate Analysis of Variance. M. N.
GHosH, Institute of Agricultural Research Statistics, New Delhi.

In the canonical form of the tests of multivariate linear hypothesis, we have row-vectors
Z(q), (g=1,---Q) and y(u) (w = 1, --- n) with p-variate normal distributions N (b(q),
2) and N (0, 2) respectively and the hypothesis to be tested in b(¢g) = 0, (¢ = 1, --- Q).
Hotelling’s generalised T is 1/n times the sum of the roots of the determinantal equation
1Z — 0Y] = | Xga Z(9)'Z2(@) — 0 Laay@)y@)| = 0, ie., Th = (1/n) Tr (Z¥Y~1). The
distribution of TZ is shown to be a monotonic increasing function of each of the population
characteristic roots. The mean of T% for all p and variance for p = 3 and p = 4 arecalcu-
lated in the noncentral case and an unbiased estimate of a linear function of the sum of
population roots, which may be considered as a convenient measure of noncentrality is
obtained from this statistic. Simultaneous confidence intervals of all linear functions of
the means b;(q) are also obtained by using the T%-statistic in a more general form than by
Roy and Bose (Ann. Math. Statist. 24 513-536).



