ESTIMATION OF THE CROSS-SPECTRUM!
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0. Summary. Assuming that the wide sense stationary process being sampled
has an absolutely continuous spectrum, Parzen [5] has shown the consistency of
a general class of estimators for estimating the spectral density at a given fre-
quency. He has shown that the class of estimators he considers, contains as a
particular case estimators considered earlier by Grenander and Rosenblatt [2],
Barlett [1], Tukey [7], [8], Daniell, and Lomnicki and Zaremba [3].

In this paper we extend Parzen’s results to the case of a Stationary Gaussian
Vector process whose spectrum is not necessarily absolutely continuous and show
that this general class of estimators consistently estimate the co- and quadrature
spectral densities at all those frequencies where they exist.

It has been earlier shown by the author [4], using an entirely different approach
from the one presented in this paper, that for a normal Stationary process whose
spectrum besides the absolutely continuous part contains a step function with a
finite number of saltuses, the weighted periodogram estimator, which is a par-
ticular case of the general class of estimators considered by Parzen [5], is still a
consistent estimate of the spectral density at any point of continuity of the
spectrum. Thus this paper also substantially generalizes the earlier result of the
author, where he limits himself to a finite number of saltuses.

1. Introduction and preliminaries. In what follows we treat the continuous
parameter case. A parallel treatment for the discrete parameter case is evident.
Parts of these preliminaries are contained in Rosenblatt [6] where he assumes an
absolutely continuous spectrum.

Let

(1.1) X'(t) = (m(2), 2a(2), - - 2y(2)), —o <t< ®

be a p-dimensional wide sense Stationary process, where the mean value, without
loss of generality, is assumed to be identically zero. The process X () has the
Fourier representation

(12) x@) = [ ™ azo)

where Z'(\) = (21(M), 22(A), - - 2,(A)) is an orthogonal process. That is to say
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EdZ(\) =0,

dFu(N)  dFu(\) -+ dF,(N)

(1.3) dFu(N)  dFu(N) .-+ dF5,(N)

EdZ(\) dZ(w)’ = & s
dFm()\) szﬂ()‘) e dep()\)

and dZ(\) = dZ(—N\), where the bar above denotes complex conjugate, prime
denotes transpose and 8y, stands for the Kronecker 4.

Let
Ru(t) Ru(t) - Riy(t)
(14) Rep = BXG+ OX'(0) = R) = (B0l En® oo B0
Ral®) Bplt) - Rplt)

in view of stationarity of the process X(¢), where
Ry n(t) = Exi(7 + 8)Tn(7) = Exi(7)Tm(r — 1)

(1.5)
= Ezn(r — 8)2:i(7) = Rm(—1),

Now (1.2) implies that

(16) Bin() = [ 6™ dFin)), Lm=12 - p

(17) = [ im)

in the absolutely continuous case where dF;,»(A) = fi,m(A) dA.
In the absolutely continuous case one obtains the following representation for

fl.m()‘)y

Gin®) = o= [ Bim(®e™ at
(18) _
= o [ Rene™ dt = oD = fma( =)

since the process is real.
Let

(1-9) fl,m(>‘) = Ci,m + iql,m(k)’ l’ m = 1'7.27 Y

where ¢;,;; = 0,1, = 1,2, -+ p. (¢1,m(N)) is called the matrix of real co-spectra,
and (q:,»(M\)) is called the matrix of real quadrature-spectra.

Since f1,m(A) = fim(—N) = fm.i(—N), it follows that the matrix of co-spectra
is a symmetric p X p matrix and has p(p + 1)/2 distinet elements, and the
matrix of quadrature spectra is a skew-symmetric p X p matrix and has
p(p — 1)/2 distinct elements. They together account for the totality of p° param-
eters in the cross spectral matrix (fi,»(A)),l, m = 1,2, -+ p.
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From (1.8) and (1.9) one obtains

cl,m()\) = 4:i1l' e—“)‘(Rl,m(t), + Rm,l(t)) dt’

—00

(1.10) L -

= fo 008 IN(Rim(t) + Rua(8)) dt, Lm=1,2, - p,
and

Gn) = g [ N Binl) = Raa®)
Ml J—0

(1.11) B

= o [ SinABa®) — Bna®) &, Lm =12 p.

21l' 0 °
(1.10) and (1.11) are the spectral representations for the real co- and quadrature
spectra.
Let |

(1.12) a(\) = 27 (\) + a(n), 1=1,2 --p,

where 27 (\) and 2]()) are real processes being the real and imaginary parts of the
orthogonal process z;(\). One easily obtains from (1.3) and (1.12) that

Edzi(\) dzi() = 0, forall A, g, 1=1,2--p
Edef(\) def(u) = B (M) deb(u) = 300 dFu(n),  1=1,2,--p.
(1.13) Edzf (M) de(p) = Edai(N) deh(p) = 3rudCim(N), Lm=1,2,---p.
Edf(\) dep() = — (8y0/2) dorn(M),
E dzi(A) den(u) = (94/2) dorm(N)
where @;,,(\) is the co-spectrum and ¢;,»()\) is the quadrature spectrum.

2. The complex cross-periodogram. Let X'@) = @@), ), - 5(t)),
0 < t < T, be a realization (sample) of size T from the real, stationary, Gaussian
p-dimensional process under consideration.

Let
(21)  GLa(t) = RI.(t) + RAu(1),  Hin(t) = Rin() — Rua(t),

where
T—t

RI,(t) = (1/T) fo 5(j + Dan(i) dj,  0<t< T,
(22) .
RI(8) = (1/T) fo (i + Dm(f) &, 0 <t<T.

Let us define the complex cross-periodogram by
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(2.3) fT.m(X)=i ¢ Pwi(2) dt f " Pam(t) dt,  Lm =12, p.

Thus fia(A) = (1/2r) f I e ™MRia(t) dt, after a stralght forward simplifica-
tion. In a similar way, we obtain fi, ;(A) = (1/2,r)f RS (1) ™ dt.
It is easily seen that

(2.4) Jim(\) = cim(N) + igim(N),
where

(2.5) cim(\) = (1/4x) f_ TT ¢ PG (1) dt
and

(2.6) @im(N) = (1/4w) f_ TT ¢ HT () dt.

¢i.m(\) being the real part of the complex cross-penodogram, it is called the co-
periodogram, and gim()), the imaginary part, is called the quadrature periodo-
gram. Now z,(t) = [, e** dz;(n); therefore

0 T (u—\)

j; ey (t) dt = f [ N g (p) dt = we_.;.___.. dzi(p).
Hence
fim(\) = ﬁ, fo "~y (8) dt f ¢ (t) dt = 5 [ [

{exp [{T (w1 — N)] — 1} {exp [—4T (s — >\)] —1} —
' (s — Nz — N) dzi(p) d2m (1)

(2.7)

Let
(2.8) dei(m) = dat (m) + i dei(m), d2m(u2) = dem(us) + % dem(us).
Let '
g(p1, p2, N)
(29) = {exp BT(m — )] — 1Hexp [—5T (ke — N)] — 1}/(w — A) (2 — A)
= gr(p1, b2, N) + 29:(u1; p2, \),
where
gr(pa, w2, N) = {[cos F(ur — \) — 1][cos T(pz — \) — 1]
+ sin T'(p1 — N) sin T(pz — M}/ (1 — ) (u2 — N),

gr(p, payN) = {sin T(p — N)[cos T(uy — \) — 1]

— sin T'(uz — N)[cos T(su — N) — 11}/(ur — ) (p2 — N).

(2.10)
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Taking the real and imaginary parts of f7.(\) given by (2.7), we obtain
) = 2 [ oo b, Ve () o) + i) dei)]
21I'Tv 0 Y—o0

(2.11)

+ g, w2, NldeF () dzm(ue) — d2i(p) dem(pe)l},
and \
(2.12) gim(N) = 5;.171 [w Ln {gr (i , p2 , N2l () dem(p2) — def () dem(ps))

+ g, pz, NdeF (u) dem(pa) + d2i(m) dem(p2)l},
as the representations for the co- and quadrature periodograms respectively.

3. A class of estimators and their variances. Let Ao be a point of continuity of
the cross spectrum F;,»(\) of the Ith-and mth components of the process X (¢).
Let ¢i,m(Ao) and gi,m(No) be the co- and quadrature spectral densities at Ao . The
general class of estimates considered by Parzen [5] for estimating the spectral
density at a given frequency \o as applied to our case yields the following es-
timates for the co- and quadrature-spectral densities.

31 dn) = [ Eav= Mcka(d) b
and .
(32) ) = [ K = NgdaM B, bm =12,

where K-(\) and Kz()) are general spectral windows in the sense of Parzen [5].
We will firstly obtain the variance of the estimator ¢im(Xo) given by (3.1). Now

im0 = som [ [ ek ) deEen)
- deb) )] [ Kok = Mg, 1, N)
ot [ () i)
— debu) deB )] [ Ko%= N)guCon, s, N) 0N

iy [ a0 420

g [ [ WG, ) et i) )

(33)

+ Zrl‘q‘v[w Lo W (s, p2) def () dem(p2)

- 21,._1'71 ‘Lo .[_w W 5 we) dei(pm) dzm(pe),
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which is equal to I; + I, + I; — I,, say, where

TR, ) = [ Ko\ = M)galin, 12, N) b,
(34) -
Wit m) = [ KaOh = N)gaCon , 1, \) A

Taking the variance on both sides of (3.3), we obtain
Var [cin(No)] = Var [I] + Var [[] + Var [I5] + Var [I,]
(3.5) + 2 cov [I1, L] + 2 cov [I,, I5] — 2cov [I,, 1]
+ 2cov[lz, I5] — 2cov[l:, I)] — 2 cov [, Ij).

We will now demonstrate in detail the calculation of the variance of I;, under
the assumption of normality of the process X (¢). Now

Var [Il] = qu,z‘ Var [.[ .[ W;‘Bo(ﬂl ) "2) dzf("l) dzft("2)]

(3.6) = ‘1_;_11_2‘[: [: _[: _[: Wﬁ“(m,yz)W?(us, ™)

-cov [dz7 (u1) dem(ps), dzf (ps) dem(pa)l.

Now, it is well known that if Z,, Z, , Z; , and Z, have a joint normal distribution
with zero means then

(3.7) cov [ZiZ,, ZsZy] = cov [Zy, Zs] cov [Zs, Zs] + cov [Z1, Zi] cov [Zs, Zj].
Using (3.7) and (1.13) we obtain that
cov [de7 (w) dem(pz), Azt (us) dzm(ua)]
(3.8) = 381 AF u(p1)][30u5 .04 AF m,m(p12)]
+ [50u1.00 3C1,m(11) 1300305 AC1m (i2)].
Substituting (3.8) in (3.6) and noting that W (u1 , ue) = Wi (ua, u1), we obtain

Var (1] = oo [ [ P0G, ) FlAF () dlm i)

+ dCim(m1) dCrm(p2)].

Repeating a similar calculation for the rest of the terms on the right hand side
of (3.5) and combining them all, we finally obtain that

(3.9)

Var (500 = oo [ [ (078G, m)I* + 07, )1

AdF1,i(11) AF mm(p2) + dCrm(p1) dCrm(p2) — doym(p1) dorm(ua)}.

(3.10)
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In a similar way one obtains after a straight forward but laborious computation
that

Var [gfn00) = g [ [ (072G, )P + 72, )T

(3.11)
AdF1, (1) AF o (p2) + dorm(11) dorm(p2) — dCrm(p1) dCLm(uz)},
where
Wa (s, pe) = ‘[ K2\ — No)ga(u , pa, N) dN, ‘
(3.12) ®

WPy im) = [ KO = N)gaCon s 2, V)

Formulae (3.10) and (3.11) may be called the spectral rebresentations of the
variances of the estimators for the co- and quadrature-spectral densities re-
spectively.

4, Conswtency of the estimators. To establish the consistency of the estimators
cim(No) and gim(No) for estimating c;.m(Ao) and q1.»(No) at every point of con-
tinuity Ao of the spectra, we will in Step I ‘establish the asymptotic unbiasedness
of the estimators and in Step II show that the variances of the estimators tend
to zero as the sample size T' tends to .

Step I. Proof of the asymptotic unbiasedness of cim(No) and qim(Ao) at a point
of continuity Ny .

We will be establishing the asymptotic unbiasedness of ¢fn(Ao) and gim(o)
as estimates of ¢i,m{\o) and gi,m(Ao) respectively at a point of continuity Ao of
the spectrum by showing that ‘

(4.1) Limz,, E[f{;‘(’\O)] = fr.m(No).
We have

(42) 7200 = [ Kok = M)fEm(N) dh = o2 00) + igfiO0),
where \

{exp [@T(m - )\)] — 1} {exp [—zT(,;, NI = 1) *
. (w1 — N p2 — N dz1(p1) dzm(s2).

Taking expectations on both sides of (4.2) we obtain

(4.3)

(44) 5001 = [ KeOh = MBI dN
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Now
Elfim(N)]
-mLL
45) {exp BT (m — x)(]m—_1; 5?2) _[:-;Z)T(m =N =1 e b
- #T _: {exp BT (m — N)] — (:1} fx)sz[—iT(yl — V1= Y p

1 1 —cos T(us — N)
=7l G = V7 AF 1 m( ).
Now to prove (4.1) and for more general applications of the above nature we
need the following extension of Parzen’s lemma.

LemMa. Let K(w) be a function satisfying K(w) = K(—w), K(w) = 0,
J%e K(w) dw = 1 and further let the symmetric function K(w) be a monotonically
decreasing function of @ = 0. Let B, be a sequence of constants tending to infinity
asn — ». Let Ap(w) = BoK(Ba(w — w)). Then at a point of continuity wo of
the spectrum F(w) ‘ '

(46) limyoe J(An) = limass | Anla) dF(0) = f(a0).
Proor.
J(An) = B, K(Bn(w - 0’0)) dF(‘")

—00

f B, K(Ba(w — w))f(w) dw

lo—wgl<e

(4.7)

+ [ B.EBalo — w0) dF(w),
lo—wol =€
which equals I; + Iz, say. Put Ba(w — w) = ; then
I = f K (2)f(wo + 2/Ba) d.
) |z|<Bpne,
In view of the continuity of f(w) at wo we have
(4.8) . liMpow It = f(w0).

We will now show that I, tends to zero asm — . For

L= [ BuK(Buo — o) dE@) + [ BuK(Balo — an)) dF()

wo—¢€

< B,K(—B,¢) [: dF () + B K(Ba ¢) fu °°+e dF (w),
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and in view of the monotonicity and symmetry we have
(4.9) I, < B,K(Bye).

Now in view of [%, K(w) dw = 1 and the monotonicity we have [3* K(z) dz =
nK(n), and hence

(4.10) lim,., nK(n) = 0.

In view of (4.10) the right hand side of (4.9) goes to zero as n — « for any
given ¢ > 0. Hence

(4.11) litpae Ip = O,

combining (4.8) and (4.11) we obtain lim,., J(4.) = f(wy), which proves the
lemma.

In order to show the asymptotic unbiasedness, we have to prove now that the
right hand side of (4.5) tends to fi,»()A) at a point of continuity A of the spec-
trum. In view of the lemma we have only to show that the function K(w) =
7 (1 — cos w)/w’ satisfies the conditions of the lemma.

Clearly K(w) satisfies all the conditions except the monotonicity condition.
While K (w) is oscillatingly decreasing it is.easy to see that K(w) is dominated
by a Ki(w) which is monotonically decreasing and satisfies all the other conditions
imposed on K (w) by observing that K(w) = 7 (1 — cos w)/o’ £ ¢/(1 + &°) =
K;i(w), where ¢ is a constant. This completes the proof of the asymptotic un-
biasedness.

StEP I1. Consistency of cim(No) and qim(No) as estimates of the co- and quadra-
ture spectral densities at a point of continusty N of the spectrum.

We will only show the consistency of cim(Mo) and the consistency of gim(Ao)
follows in a similar manner. We will prove the consistency by showing that

(4.12) limz.,, Var [ng:n(ko)] =0,
at a point of continuity Ao and (4.12) together with the asymptotic unbiasedness
proved in Step I yields the consistency. We have from Section 3 that

Var [fn00] = oo [ [ 107G, m))* + (WG, )’}

1
(4.13) ' 8T
AdF (1) AF pm(p2) + dCrm(p1) dCLm(p2) — dorm(pm1) dorm(pa)}e

In order to show that the right hand side (4.13) goes to zero, it is enough to
show that for any w1, ue

limges (1/T*) (W3 (81, 12))° + (W1, m))*] = O.
It is easily seen that
(L/THIWE (1, 1)) 4+ (WP (w1, 1))"] = ¥r(ho)¥r(ha),

where

4:00) = (/T [ BrK(Ba(h = 2))or()
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and
er(N) = {exp [—iT(N — m)] — L{exp [T(A — w)] — /(A — m) (N — ue).

Considering two different cases u; = pp and p; % s, and assuming that By tends
to infinity more slowly than T in such a way that By/T — 0 as T — «, a straight
forward calculation leads us to

(4.14) limq-_,,, \br()\o) =0

at a point of continuity Ao. (4.14) then implies limz., ¥z(No) = 0, which to-
gether imply limz.,., Var [cim(X)] = 0, at a point of continuity Ao of the spectrum.
This completes the proof of consistency.
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