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Summary and introduction. While the analysis of variance test statistic # in
a balanced incomplete block design without randomization is a constant under
the Fisher model, i.e., a linear model without technical errors, and it has no
distribution at all, under the Neyman model, i.e., a model with technical errors,
its null-distribution is a non-central F-distribution whose non-centrality pa-
rameter being a quadratic form of unit-errors. This is carried out in Section 1.
The mean value and the variance of 6 with respect to the permutation distri-
bution due to the randomization are calculated in Section 2, and in Section 3,
the null-distribution of the F-statistic after the randomization is shown to be
approximated by the familiar central F-distribution under the Neyman model
assuming no interaction between treatments and experimental units, if the
following two conditions are satisfied:

(i) the variances of unit-errors within blocks are sufficiently uniform from
block to block, and

(ii) the number of blocks is sufficiently large.

Since the unit-errors are not directly observable, how one can group the
experimental units into blocks in such a way as the above Condition (i) would
be satisfied is another problem, which is left open in this paper.

R. A. Fisher [2] initiated the use of the so-called “randomization procedure”
in order to control the unit-errors in block designs. Mathematical treatments of
the Fisher randomization in randomized block and the Latin-square designs
were made by B. L. Welch [12], E. J. G. Pitman [11] and M. B. Wilk [14]. Under-
lying models in those works may be called the ‘“Fisher models”, i.e., containing
no technical errors. J. Neyman et al. [7] and M. B. Wilk [13] pointed out that
there are instances in which a model with technical errors is more adequate by
the very nature of the problem under consideration, and the present author calls
this sort of models the “Neyman models” for convenience. M. D. MecCarthy
[6] investigated the null-distribution of the analysis of variance test statistic in a
randomized block design under the Neyman model, and he came out with rather
pessimistic results. J. Ogawa [10] treated the same problem, and his result
turned out to be supporting the usual approximation by the familiar central
F-distribution.

The purpose of this article is the treatment of the same null-distribution
problem for a randomized balanced incomplete block design under the Neyman
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model. Since a randomized block design is a limiting case of a randomized
BIBD, this article should be regarded as a generalization of the earlier work.

1. The null-distribution of the F-statistic of a balanced incomplete block
design under the Neyman model before and after the randomization. We are
concerned with the analysis of variance of a BIBD with parameters v, b, 7, k
and . About the definition of BIBD and notations being used here, references
should be made to R. C. Bose [1] and A. T. James [3].

Let the incidence matrices of treatments and blocks be, respectively, ® =
& &l and @ = [l -m|, where

!

o = (g‘al' : ’?an); g‘af

1, if the fth unit receives the
ath treatment,

= 0, otherwise,
a = ]-7 "‘,U;f= 17 T, N,
and

g = (Ma1***Man), 7ay = 1, if the fth unit belongs to
the ath block,

= 0, otherwise,
a = 1, ...’b;f= ]_, cee M.

We have, of course, n» = vr = bk. Then a general additive Neyman model can
be expressed as

v b v
(1.1) Ty = + a;lg‘a.ﬁ'a + ‘;ﬂa‘fﬁa + a;g'afﬂ'aj + ez, f = 1, e, n.

In Equation (1.1), z; stands for the observation on the fth unit, v is the general
mean, 7o, a=1,--- v,and B.,a =1, --- , b, are treatment effects and block
effects which are subject to the restrictions

v b
(1.2) > 7a=0 and > B =0.

a=1 a=1
Also, ma; stands for the unit-error of the fth unit when it receives the ath treat-
ment (@ =1, ---,vand f =1, ---, n) and the unit errors are subjected to
the restrictions

1.3) vz, = 0, a=1 -,

where m, = (Ta1* - -Tan). Finally, in Equation (1.1), ey is the technical error of
the fth unit and €’ = (e;- - -¢,) is assumed to be distributed as N (0, ¢°I), where
I stands for the unit matrix of order n.

If there is no interaction between treatments and units, (1.1) becomes z; =
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v A Dnct basTa Tt S WatBa + ws + e, f =1, -+, m, or, in vector notation,
(1.4) X =71+ ®c+ B+ = + e,
where 1’ = (1---1),% = (r1-+*70), 8 = (i -Bs), and = (m ).
Assuming the Neyman model (1.4), the sampling distribution of the analysis
of variance test statistic F = (n — v — b + 1)s}/[(@ — 1)si] under the null-
hypothesis H, : = = 0, will be considered firstly without randomization and then
with randomization. The quantities s; and sz, the sums of squares due to treat-
ments (adjusted) and due to errors respectively, are given by

(1.5) s2 = (k/vr\)x' (T — (1/k)BT) (T — (1/k)TB)x,

and

(1.6) st =x[I— (1/k)B — (k/vrA) (T — (1/k)BT) (T — (1/k)TB)Ix,
where

1.7) T=o0, B=ww.

Let the permutation matrix corresponding to the permutation

_(1 2 ... k)
77 a(1) o(2) -+ o(k)

bg S, , ie., (1 21 k)S, = (¢(1)o(2)---0o(k)). Then it is easy to see that
Sy = 81 =8,

The experimental units are numbered lexicographically with respect to blocks
and the order of units within blocks, i.e., if the fth unit is the 7th unit in the
pth block, then f = (p — 1)k + <. Suppose a random assignment of treatments
to units is made in the pth block by means of a permutation o, , then, since it
is equivalent to the random assignment of units to treatments by means of the
inverse permutation o5, we obtain the following expressions.

» b
(18) zy=v+ o; Sa,(p-Dk+opl ()T T az_:lﬂafﬁ'a + 7+ e,

it f= (= Dk+5,

or, in vector notation,

1.9 x =+l + Ujdr + W3 + = + e,
where
Sy 0
Se,
(1.10) Us =

0 Say |
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Thus, under this model, the randomization causes the incidence matrix of
treatments @ to be a discrete random matrix taking on each value Uj® (& being
arbitrarily fixed) with probability (k!)°, and that is independent of the technical
error e in the sense of the probability.

If we denote the null-distribution of F before the randomization by
Py, (F = z| ®), then the null-distribution of F after the randomization is
given by

1) Pr@ = 2) = )" 3 Pn(F = z| Use),

where &, stands for the symmetric group of all permutations of degree k.
Let the incidence matrix of the design be N, then N = &'W. Since
(T — (1/k)BT)(T — (1/k)TB) = r(® — (1/k)¥N’) (@ — (1/k)Nw’)
and, under H,,
@ — (1/B)Nw)x = (@ — (1/k)Nw)e + (@ — (1/k)N')=,

we have

s = (k/vr\)e’ (T — (1/k)BT) (T — (1/k)TB)e
(1.12) + 2(k/vr\)e’ (T — (1/k)BT)(T — (1/k)TB)=
+ (k/vr\)=' (T — (1/k)BT) (T — (1/k)TB)=,
and
si= e[l — (1/k)B — (k/vrA) (T — (1/k)BT) (T — (1/k)TB)]e
(1.13) + 2¢'[I — (1/k)B — (k/vrA) (T — (1/k)BT)(T — (1/k)TB)}=
=[I — (1/k)B — (k/vrA) (T — (1/k)BT)(T — (1/k)TB)]=.

Since the matrices (k/vr\) (T — (1/k)BT) (T — (1/k)TB) and I — (1/k)B —
(k/vr\) (T — (1/k)BT)(T — (1/k)TB) are idempotent and orthogonal to
each other [3], the distributions before the randomization of s; and s are mutually
independent ([8], [9]).
The conditional distribution of x; = s}/0” is the non-central chi-square distri-
butlon with degrees of freedom (@ — 1) and non-centrallty parameter
= (26") " (k/vr\)= (T — (1/k)BT)(T — (1/k)TB)= = (k/20°w\)= T= [5].
Thus the distribution of xi before the randomization is given by

)\n ( i /2)(v—1)/2+u—1
exp (— 7\1)‘;#,11 YR

Similarly, the distribution of xz = si/o” before the randomization is given by

( Xg /2 ) (n—v—b+1) [24v—1

Y
exp (— "2)2 AT — 0 =B F /2 ¥
where s = (20)7%[1 — (1/E)B — (k/or) (T — (1/k)BT) (T — (1/k)TB)]x

] ©XP (—x1/2) d(x3/2).

; exp (—x2/2) d(x3/2),
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= (2¢") '='m — \; . Hence the conditional distribution of F under H, is given by

_ 2 Mg Tl(n —b)/2 + u + 4]
exp (—='n/20") ,,,gomvl T = D/2 + al Tn —» = b + /2 + ]

v — 1 (=1 [2+u—1
' <n —v—b+1 F)

-1 —[(n—b) [24n+v] v — 1
<l+n—v—b+1F> d(n—v—b+1F>’

and this can be rewritten as

I'l(n — b)/2] ( v — 1 F)(v—-l)/2—1
T[o— D2T@m —v—b+ 1)/2]\n —v— b+ 1

v — 1 —(n—b)/2 v — 1
'<1+ v—b+1F> d(n—v—b+1F)

2 (A/za v—1 -

(1.14) - exp (—A/20 )§ <1+m1«“)
A v [ v—1 g
,,:1;;1,1“0(1 )<n—v—b+1F>

. Tl — 1)/2I0[(n — v — b + 1)/2I0[(n — b)/2 + 1]
Il(n — b)/2IT[(v — 1)/2 + uT[(n — v — b+ 1)/2 + »]’

where
(1.15) A== and 0= (k/v\)A % Tx.

After the randomization, the quantity 6 in Equation (1.14) is a random
variable, and therefore the unconditional distribution of F can be obtained by
averaging the probability element given by (1.14) with respect to the permu-
tation distribution of § due to the randomization.

2. The mean value and the variance of § with respect to the permutation
distribution due to the randomization. We calculate the mean and the variance
of the quantity 6 given by (1.15) with respect to the permutation distribution
due to the randomization. We use the special numbering system of the experi-
mental units mentioned in the preceding section.

Let us write 7, = o{P if f = (p — 1)k + 4, and let

’ ’
ﬂ(p) — (ﬂ{p)ﬂi(’p). . .mgp)) and A, = ﬂ(p) ﬂ(p).
b k (?)
Then, A = Zp=1Ap,and Skia® =0,p=1,---,b.
Let
D, S,o-veh $2-Dk+1 0 $o (oD
D, 1,(0-Dk+2  $2,(p-Dk+2  °*° (P=1)k+2
® = | ", where @,= g"(_” e f” et g‘”.(” ) ,

78 -0kt $2.0-Dktk 0 $o(p=Dktk
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and
Ty = [|t5]]| = @

Now
2.1) &) = (Fk/N)ATe=Tx) = (&/v\) (A7 (k) ™)x' Zb @kU;TUda-

Since
= vl;,UbUéTwa = 2 Zb =2 80, TpeSo, ¥, 8, TpSe, = L, if p =g,
and

Zb Se,TpeSe, = (BD)"{ k—1)1°GiTpGr, if p # g,

it follows that

b
= Z U:;TUW = (k!)b Z =P 'z®
G117 0) p=1

+ ED7H & — 1D 2P GuT, G = (k1)°A.

g

Hence, we have
2.2) &(0) = k/vA.

Next, in order to obtain the variance of 6, we have to obtain an expansion for
&(x UsTUsm)".

@FU;TUgn)’ = (A + 2 =S, Ty S, xY)*

pHEq

= &4 28 2, 278, ToeSom® + (2, 7780, TeSom ™)’
= A" 4 24 3 27, TpeSon®

pFq

(»’'q’ (@ _(»)'q’ (@ '’ (@,_(0)' g’ (p)
+ 2 [ ?'S:, TpsSem @ ® 87, TpsSem @ + =P S7, TpSem V=?’S, TupSo,n ]

pHq

(n)' Q’ (9_(n)' g’ () (n'q’ (@ _(0)' g’ (
+ 2 =S, ToSem VxS, TprSem™” + 'S, TpeSemP=?’S, Ty, S, =]

DT

620 (@ _(n'q’ (p) (n'q’ (@_n'gq’
+ 72;, [=?’S,, TpiSe ' n’S, TrpSe,m® + 2P'S,, TpSe mP2™’S, T,,S, =]
4 r

(p) @’ (@ _(n'q’ (s)
+ 20 =78, TpSem ="', ThuS0o = .

DAgETSES

Terms in the above expansion which are linear with respect to some S,, vanish
when their expectations are considered. Hence

&(x U TUm)® = A°
23) 4 2 1878, ToSem )" + 8 ("8, TogSein V=S, T0sS0y= )]

= A"+ 23 8(="'S,, TpeSu =)™

pFq
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Since
ﬂ(P) ’S:qusrﬂ(q)

it follows that
(ﬂ(p)’S;quSTﬂ(q) )2

k
= > ¢
3=1

+ 2.
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pg_(p) _(q)
Z tis To()Tr(s)

i=1

pq_(p) _(q)
+ Z i Ta()Tr()
1#]

pq_(p) _(p) (a) _(q)

pg_(p)?_(a)?
7i Wa(3) Wa ()T () T1(5)

14 Mo (2) Wr(d)

+ Z tret

pgypg_(p) (p) (¢ ()
> it e Bwy

I#i]

+ 2 Z [tpqtpq

(p) _(p) _(a)2

(p)2_(a) _(g) g;PY
+ 155 L T ()T () T ()

Ta(2) Tr()T1(5)

|

1]

(24)

i#]

+ Z [tpq

i7]

paype_(p) (p) (q) (q)
+ Z (3750 T (o () Tr () e (1)

it

+ 2

)2 2
+ 2 [t Ty,

pq (p) (p)_(q) _(q)
Lje Wa ()Mo ()1 (i)Tr (i)

+ ¥}

pa_(») (p) (a) (q)

pg_(p)2 () _(q)
l@"ﬂ(w)"rd(l)"rf(t)"rf(:l)

1l7ro-(z)7r‘r(1)7r‘r(l) +tpq ]

]

1

pg_(p) (p) (¢)2
Ui Mo (D)Mo (1)Tr(5)

+ et

pe_(p) (p) _(2) _(q)
lm7rw(z)7ra(l)7rr(1)7rr(m) .

i lEm

Here we have used the fact that, since ¢ =

Now,

(p)2_(q)2
8(7"0(1)7"1(%)

(p) __(a)

& (B mithr hymit),

(p) _(p) __(q)

&(mr

(p)2_(q)

& ('"'Ar(t) Tr()Tr(5)

(p)

& (st Thmitly

(p)?_(q)2
& (7"0?1) W,%,)

@.5)

(p)2_(2)

& (mq (i) T (HTr ()

c(DTe(H)Tr ()T r(j)

Oorl, tf}’

t2e.

A/K) 8,4, ,

(/K (k — 1)"]A,4,,
(1/K* (k — 1)"]A,8,,
—1/k*(k — 1)]A,4,,
[—1/K" (b — 1)]A,4,,
(1/K*) Apd,

—1/K'(k — 1)]4,4,,

(q)

(q)

)

)
)

(q)

(q)?

(q2)

)

& (methmthmithmth) = (/K (b — 1)7]4,4,,
& (rethmthmithriyy) = /K (k — 1)°14,4,,
8 (rshmithmity) = [=1/K (k — 1)]a,4,,
8 (methmethaitymitn) = /K (k — 1)]A,4,
Thus we have
(2.6) 8 (= Tpm®)? = Vypehph,,
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where
t pq PU »g
BNt ey S e e D a
27) +Ztﬂt“+ 2 (g + 2 ]
i5£5#l 1A LAEm
k2(k — 5 [2 ;, tPE 8P + 2 Zt”“ 2 + :,4; (EBF t2F + 22 479)].

It can be assumed without loss of generality, in the fixed configuration, that, if
p # ¢, the units bearing the same number within the pth block and the qth
block do not recelve the same treatment. Thus, for p 5 ¢, trTp = 0, D%y = 27
= D ixi t7§ = Ay, the number of treatments common to the pth and gth blocks,
and 787} = t5tF} = 0, if 7 5 j. Therefore, we have

(i) For the first term of (2.7): D . ; t7F = Apq.

(i) For the second term of (2.7): D i t74% = 0, D 1eii 11428 = 0, and
DT D (IR A+ D thHb

i#] i jEL i 5l Em
= DR 4+ D @+ + >
175 1#(%,7) U#mz£(%,5)
Z AN 4 20 R ) — =+ e
1 lym
Z P + ) — ; % + F) + 7 + 1%

= DI = 2O ) + 3] = N = e,

£33 lym
because
D t% = 6% = 1, if the treatment in the 7th unit of the
l
pth block is also contained in the gth
block,
= 0, otherwise,
and similarly

D tPf = 882 = 1, if the treatment in the jth unit of the
l

gth block is also contained in the pth
block,
= 0, otherwise,
and hence D ;8% = ;62 = A .
(iii) For the third term of (2.7): e tFHPF = D ie; t7847¢ = 0, and
2 WH + ) = 2 OF + df) — o — i

T %5
= D757 4 828 — 267 =2, — 20y = O.
%]
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Consequently we obtain

(2.8) Ve = Moo/ k" + (oo — Mog) /K (b — 1)°.
Finally

(2.9) V(6) = 2(k/v\)* 1/ (k — 1))W,
where

b
210) W = A7[A/ (B — 1)) + {6 — 2)/ 6k — 1))} A — g;lAi],
with
(2.11) A= D NeBpA, and Ay = DAD.ALA,.

For a randomized (complete) block design, ie., k = v, r = b, A\ = b, it is
known that N\,, = k. Hence

W= a7 — 2; A3) = [ — 1)/610 — V/b),

where

V=(@/mb)"0-1" ; (&, — A/b)™
Therefore,
(2.12) V) =20—1)b"0U)—-1)""0 — V/b),

as shown in [4], [10], [11], [12] and {14].

3. Approximate null-distribution of the F-statistic of the randomized in-
complete block design under the Neyman model.

Since 0 = 6 = 1, we may fit a beta distribution
@3.1) {T[(n + )/2]/T (n/2)T (/2)} 0" (1 — 6)2/*'do

to the permutation distribution of 6 by equating the first two moments, i.e.,
choose » and v, such that

no_ k 2v1 vy _ 2£ _VV_ '
ntrve WA (o ve)( v + 2) vk — 1
This gives us
3.2) n= @—1)¢, = (m—v—>0-+ 1),
where
(8.3) ¢ =W on —k)/ r) — 2k/(or(k — 1)).

If, in particular, the variances of unit effects within blocks are uniform, i.e.,
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Ay, =0y,p=1,2 ---,b,and hence A = bA,, then, it turns out that
slErn St D 2 o]

Now, since Y p.qA2g = tr(N'N)* = tr (NN')® = or® + v (v — 1)N, and D ;.4 Mg
= 1'N'N1 = v, it follows that

W=1[r+Nk—1)+rk(k —2) — k(k — 1)]/ 0k — 1)).
Thus,
(3.5) ¢=W I oN—k)/ (r) —2k/@rk—1)) =1—2/0bFE—1)).

Therefore, if the variances of the unit effects within blocks are nearly uniform
and the number of blocks is sufficiently large, then ¢ ~ 1. In other words, in
such circumstances we may take the beta-distribution

(34) W=

Tl(n — b)/2] (v—1)/2—1 (n—v—b+1)[2—1
Me— DA —s—oFoa’ 7 “
as an approximation to the permutation dlstrlbutlon of 6 due to the randomi-

zation.
Taking the expectation of (1.14) with respect to (3.6), we have the approxi-
mate unconditional distribution of F-statistic as follows:

I‘[(n _ b)/2] ( v—1 F)(v—l)/2—1
Tlv—1/2I(n —v—b+1)/2)\n—v—0b+1
-1 —nniz ( v—1
<1+n—v—b+1F> dn—v—b+1F>’
which is the central F-distribution with degrees of freedom (¥ — 1,
n — v — b + 1) obtained under the familiar normal theory assumptions.

(3.6)

3.7)
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