NONPARAMETRIC CONFIDENCE INTERVALS FOR A
SHIFT PARAMETER!

By E. L. LEEMANN
University of California, Berkeley

Summary. Exact expressions and large-sample approximations are given
for the nonparametric confidence intervals for a shift parameter A, which are
obtained from the two-sample Wilcoxon test. These intervals are shown to have
the same asymptotic efficiency relative to the standard confidence intervals
for A as the Wilcoxon test has relative to Student’s {-test. As a consequence
of this result, a constant multiple of the length of the nonparametric intervals
is shown to be a consistent estimator of the quantity 1/[7(z) dz.

Let X1,--+, Xn and Yy, .-+, Y, be independent observations from dis-
tributions P[X; < z] = F(z) and P[Y; < y] = F(y — A) respectively, where
F is assumed to be continuous but otherwise unknown. Exact confidence in-
tervals for A can be based on nonparametric tests such as the Wilcoxon test.
Let U(A) be the number of differences ¥, — X; which exceed A, and suppose
that the two-sided symmetric level o test of the hypothesis H(A,) : A = A,
accepts H (A,) when

1) Co =2 U(A) Emn — C,.
If the ordered set of mn differences Y; — X is denoted by
D(l) <o < D(mn)

the confidence intervals obtained from (1) by solving for A, and replacing A,
by A are seen to be

@) Ar < A < Ay
where
3) Ay =D’ and Ay = D(""%.

For given sample sizes m and n, a constant C, for which (1) has exactly
probability 1 — « may not exist. For the large-sample problems to be considered
below it is enough that the constants C, = C.(m, n) are chosen in such a way
that the probability 1 — a(m, n) of (1) tends to the specified value 1 — « as
m and n tend to infinity.

For small and moderate values of m and n, the critical value C. can be read
from tables of the null distribution of the Wilcoxon statistic. For large m and
n, one has the following approximation.
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LemMma 1. The critical value C, is for large m and n equal to
“4) Co = mn/2 — Kaplmn(m + n) /121 + olmn (m + n)}

where K o, is the 100a/2 upper percentage point of the standard normal distribution.
Proor. Since A, = sup {A: UQA) > mn — (. we have /2 =
lim Pa[A < Af] = lim PA[U(A) > mn — C,] and the result now follows from
the fact that the Wilcoxon statistic U (0) for A = 0 has a normal limiting dis-
tribution with mean mn/2 and variance mn (m + n + 1)/12.
What is the efficiency of the intervals (2) relative to the standard intervals

(5) ¥ — X — Kop(/m + 1/0)'S < A < ¥ — X + Kop(l/m + 1/0)i8

where S” is the usual estimate of the variance ¢° of F? Suppose first that efficiency
is measured in terms of the probability of covering false values, say in terms
of the probability that the intervals cover the value A ++ rN™ %, where N = m + n.
Then it follows from the correspondence between confidence intervals and the
tests on which they are based, and the known efficiency properties of the Wil-
coxon test, that if the intervals defined by (2) and (3) are based on m = pN
and n = (1 — p)N observations, and the intervals (5) on m’ = pN' and n’ =
(1 — p)N’ observations, they will have the same limiting probability of covering
the values A + rN~*, provided

(6) N'/N — 126 ( f £(z) dx)2

as N — o, where f is the density of the distribution F. In this sense, (6) is the
asymptotic relative efficiency of the two sets of intervals.
Alternatively, efficiency might be measured in terms of the lengths of the
intervals. To carry out this comparison, we shall now prove the following result.
TeEOREM 1. If L = Ay — Ay s the length of the iniervals defined by (2) and
(3) and based on m = pN andn = (1 — p)N observations, then

) N'L = K.op/I30(1 — o) f £(2) da

in probability as N — .

To prove this result, we shall require the following lemmas.

Lemma 2. Let Ty, -+, Tun(N =1, 2, -+ +) be a sequence of sets of random
variables (not mecessarily identically or independently distributed). Suppose for
any fized a and b the number of T’s between a/N*® and b/N*® equals [k (b — a) +
RyINY where Ry tends to zero in probability uniformly for all a, b satis-
fying —A < a < b < A for any finite A. Let Uy be a sequence of random variables
(possibly depending on Twr, -+, Twx) which are bounded in probability, and
let Zy be a value such that exactly cN* -+ o(N”) of the T’s lie between Uy/N® and
Zx/NP. Then Zy — Uy — ¢/k in probability.

Proor. Suppose to the contrary that with probability exceeding e, the in-
equality Zy — Uy > (¢ + 6)/k holds for some positive 6 and e for arbitrarily
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large N. (The proof for the case Zy — Ux < (¢ — 8)/k is completely analogous).
Then with probability >e the number of 7T’s between Uy/N? and
[Uy + (¢ + 8)/k]/N® is at most ¢cN” + o(N7).

On the other hand, there exists A so large that with probability exceeding
1 — ¢/4 wehave —4 < Uy < Ux + (¢ + 6)/k < A for all sufficiently large
N. Given that this inequality holds, the probability is >1 — ¢/4 that the number
of T’s between Uy/N® and [Uy + (¢ + 8)/k]/N® exceeds [c + 8/2]N” for all
N sufficiently large. Hence the over-all probability that this number exceeds
(¢ + 6/2)N7” is greater than (1 — ¢/4)’ > 1 — ¢/2, which gives the desired
contradiction.

LeMMA 3. Let Wy be the number of differences Y, — X; satisfying aN <y, —
X; < BN} and let the distribution G of Y; — X have density g. Then

8) N Wy =p(1 —p)g(0)(® — a) + Ry
where Ry tends to zero uniformly for —A < a < b < 4.

Proor. Let I;, be equal to 1 if aV F <y, - X: < bN* and equal to zero
otherwise. Then

BINWal = p(1 — p) (0 — )[GONY) — G@N ]/ (b — a)N?
—p(1 = p) b — a)g(0),

and the convergence is uniform in —4 < ¢ < b < A. To prove the de-
sired result, it is enough to show that Var[ Wyl = maN [Var(lp) +
(n — 1)Cov (I1z, Iiz) + (m — 1)Cov (12, Is)] tends to zero uniformly for
a, b in any finite interval. Since Var (/3;) is uniformly bounded, it only remains
to show that the two covariances tend to zero uniformly. This follows, for
example, from

|Cov (In2, I1s)| < P[|Ys — Xi| < AN P and |V; — X3 < AN
+ PV, — X3| < AN =0
for the first covariance, and analogously for the othgr.
LemMa 4. As N — o, the random variable N* (,A’“ — A) has a mormal
Limiting distribution with mean —Kap/[120(1 — p)]* f f(x) dx and variance

1/120(1 — p)If f* (@) dal’.

Proor. Assuming without loss of generality that A = 0, it is seen as in the
proof of Lemma 1 that for any constant », P[N Ay > 0] = P[U(vN_*) > mn
— (4). The variables NHU@N™ By — tmn] have a normal limit distribution

with mean
limyow N mn{PY: — X1 > oN 7] — 1}

= lim p(1 — p)N*f[F(y — oN7?) — F(y)] dF(y) = —p(1 — p)v ffz(y) dy

and variance
Lm N %mm(m + n + 1)/12 = p(1 — p)/12.
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Using Lemma, 1, we therefore have
lim P[N*A, > o] = lim PIlUGN"Y) — imn > Kaplmn(m + n)/12]" + o(N?)

. <I><Ka/2 +ol120(1 — )P [ £(a) dx)

where @ is the standard normal cumulative distribution function. This implies
the desired result.

T z00F oF TaroreM 1. Take for the set Ty, -+, Twy of Lemma 2 the dif-
ferences Y; — X, and for Uy and Zy of Lemma 2 the statistics N A, and
N*Ay . Then

(i) the number of T’s between Ux/N* and Zy/N* is 2Koplo (1 — p)/12]'N*
+ o(N?), by Lemma 1;

(i) the number of T’s between aN*and bN Fis[p(1 — p)g(0) (b — a) + Ry]
-N*, with Ry tending to zero in probability uniformly for a, b in any finite
interval by Lemma 3;

(iii) Uy is bounded in probability by Lemma 4.

Hence Lemma 2 is applicable with 8 = %, v = 3, ¢ = 2Kaplp(1 — p)/ 12}
and k = p(1 — p)g(0). Since g(0) = [ f°(x) dx, this establishes the desired
result.

The length L' of the standard intervals (4) is given by L' = 2K.;.8/
[e(1 — p)NT}, and it therefore follows from Theorem 1 that the ratio of the
squares of the lengths L”?/L” tends in probability to the right hand side of (6).
Alternatively, if the intervals (2) are based on N and the intervals (5) on N !
observations, the ratio L'/L will tend in probability to one, provided (6) holds.
Thus the right hand side of (6) is a reasonable measure of efficiency also when
the comparison is made in terms of the lengths of the intervals.

It is interesting to compare the intervals (A, Ay) with the asymptotically
distribution-free intervals, say AT < A < A}, proposed in [1]. These were
centered at the median med (¥; — X;) of the mn differences ¥; — X; and had
length Kop/[12NTyp (1 — p)F where (Ty)! is any consistent estimator of
f f*(x) dax. It is seen from the results of Section 5 of [1] and from Lemma 4 and
Theorem 1 of the present paper that the joint limiting distribution of
(N* (A, — A), N*(Ay — A)) is the same as that of (N} (A% — A), N*(aF — 4)),
so that the two intervals have the same asymptotic behaviour. It is a conse-
quence of this fact and the results of [1] that the right hand side of (6) also meas-
ures the efficiency of the present intervals in terms of the measure of accuracy

W (A; A, Ay) = a(A — AL)® + b(Ay — A)?

in a sense made precise in Section 5 of [1].
We note finally that Theorem 1 proves

9) N (Ap — A)Bp(L — p)1/Kap

to be a consistent estimator of 1/[ f*(z) dz. Thus (9) may be taken as the
statistic (T'w)? required for (A% , A¥).
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The above results are easily extended to the one-sample problem. Let Z; , - - -,
Zx be independent observations from a symmetric distribution ¥ with median 6.
Let U’ (6) be the number of averages (Z; + Z;)/2 with ¢ < j which exceed 6,
and suppose that the two-sided symmetric level o test of the hypothesis
H' (6)) : 6 = 6, accepts H' (6,) when

(10) Ce < U'(6) @7) ~ C..

(This test is asymptotically equix;alent to the Wilcoxon one-sample test, which
could be used equally well throughout the argument.) If the ordered set of

(Z;T) averages (Z; + Z;)/2 (i < j) is denoted by E® < --. < E™ where

M = (N), then the confidence intervals obtained from (10) are seen to be

2
1) 6, <6< 6y
where |
(12) 0, = E°? and 6y = E¥T%,

For large N, one obtains in generalization of Lemma 1 the following approxi-

mation for C., .
Lemma 1. The critical value Cv, is for large N equal to

(13) Co=NW —1)/4 — Kap(N — 1) N/12)} 4+ o (N?)

where K o2 has the same meaning as in Lemma 1.

The proofs of Lemma 1’, and of Lemmas 3’ and 4" below will be omitted since
they are exactly parallel to those of the corresponding unprimed lemmas. The
efficiency results for the two-sample case also extend to the present problem,
with the efficiency again being given by formula (6). The efficiency comparison
in terms of length is based on the following.

TaeoreM 1. If L' = 0y — 0, is the length of the intervals defined by (12) and
(13), then N’L' — K.;/3![ f* (x) dx in probability as N — «.

The proof is completely analogous to that of Theorem 1, and is based on
Lemma 2 and the following two lemmas.

Lemma 3'. Let Wy be the number of pairs (Z; + Z;)/2 satisfying a/N* <
(Z; + Z;)/2 < b/N* and let the distribution G of (Zi + Z;)/2 have density g.
Then

(14) N7Wy =g0)(® — a)/2 + By

where Ry tends to zero uniformly for —4 < a < b < A.



1512 E. L. LEHMANN

LemMa 4". As N — =, the random variable N Y0, — 0) has a normal limiting
distribution with mean —K o5/ (12)%ff2 (x) dz and variance 1/12 (ff2 () dz)”
As a consequence of Theorem 1’, we note finally that for symmetric distribu-

tions F

(15) @BN) (6 — 0.)/Kap
is a consistent estimator of 1/ [ f*(z) dx.
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