ON MULTISTAGE ESTIMATION!

By J. R. BLum AND JupAH ROSENBLATT?

Unaversity of New Mexico

1. Introduction. Let § be a family of distribution functions and let 6(-) be a
real-valued functional defined on &. In this paper we shall be concerned for the
most part with the problem of finding a confidence interval of preassigned length
and confidence for 6 (F) based on a sample from F ¢ F. For simplicity of notation
we will assume that F consists of univariate distributions. It will be clear that
this restriction is not necessary.

Apparently Dantzig [3] was the first to point out that many such problems
cannot be solved in a single stage of estimation; i.e. it is impossible to prescribe
an integer n and give a confidence interval of preassigned length and confidence
based on a sample of size n. Bahadur and Savage [2] showed that if F is the class
of all distributions for which the mean exists, it is impossible to obtain a confi-
dence interval of prescribed length and confidence for the mean even with a
purely sequential scheme. Intuitively this follows from the fact that no matter
what data have been observed, there can exist a “small spike” close to + oo
which affects the mean, but is not likely to affect the data. Farrell [6] showed
that a purely sequential scheme is both necessary and sufficient for estimation
of the median within the class of distributions possessing a unique median. This
is plausible because to pin down the median, the sample median must be closely
surrounded by sufficiently many other observations. Though with probability
one this will occur, the necessary sample size is not determinable if it has not
yet occurred. Farrell’s results are actually considerably deeper, since he obtains
the order of magnitude of the minimum expected sample size as the density at
the median becomes small.

The earliest result of a positive nature is the paper by Stein [9] who gave a
two-stage sampling procedure for estimation of the mean of a normal distribution
with unknown variance. Graybill [7] gave sufficient conditions for two-stage
estimation in certain parametric cases, while Weiss [10] showed that a two-stage
scheme suffices for estimation of quantiles when & is the class of unimodal distri-
butions. Birnbaum and Healy [3] considered the problem of two-stage unbiased
point estimation with fixed variance. Abbott and Rosenblatt [1] gave sufficient
conditions for two-stage estimability with one observation on the first stage. A
number of other papers treat these and related problems, e.g. Matthes [8].

Unless otherwise specified we shall assume throughout that there is available
a sequence X;, X,, --- of independent random variables with common distri-
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bution function ¥ ¢ § and a consistent sequence {65} = {6, (Xy, -+, X.)} of
estimators for 6 (F). (Consistent estimators are readily obtained for most sta-
tistical problems by classical methods such as maximum likelihood.) Assume
also that 0 < @ < 1 and § > 0 are given.

DEeFINITION. An n-stage scheme is determined by a positive integer m;, a
positive integer-valued measurable function m; on B™ (Euclidean m;-dimensional

space), and for each 7 = 3, 4, - - - , n positive integer-valued measurable functions
m;,; on R’ for each 7 = 1,2, --- . The scheme consists of
the observation of ¥; = (X1, -+, X,,,) on stage 1,

the observation of Y, the next ms (Y1) of the random variable X, on stage 2,
the observation of Y, the next mg3,m;4m, (Y1, Y2) of the random variables
X on stage 3, and so on.

Inductively letting g; 1 (Y1, -+, ¥Y,;_5) be the random variable whose value
is the number of random variables X; observed on the first j — 1 stages, the jth
stage consists in observing Y, , the next m; ; _,v,,....v;_p Y1, -+, Y1) of the

X;,forj =3, -, n.

We consider two-stage estimation in Section 2 and n-stage estimation in
Section 3. The remainder of the paper is devoted to applications and examples.
No attempt is made here to determine schemes which are optimal in any sense.
Rather the emphasis is on constructive existence theorems. We feel that some
of the schemes suggested here may not be too inefficient at those F which would
normally demand a sample size far exceeding the first sample size (e.g., for which
m(F, o, 6) exceeds four times the first sample size) if one defines efficiency at a
given F to be

m(F’ «a, 6)/EF(N)

where N is the sample size and m (F, «, §) is, in a sense to be defined below, the
optimal sample size for the problem at F.

2. Two-stage estimation. For each positive integer & we shall denote by
F, the product distribution function on Euclidean k-space induced by F, and by
Py, the corresponding probability measure. Py is similarly defined.

Since {6, (X1, ---, X,)} is a consistent sequence it follows that for each
Feg, 6 > 0,and v e (0, 1), there exists a smallest positive integer m (F, v, §)
such that for all n = m(F, v, §) we have

Prflon(Xy, -+, Xo) —0F)| S8} 21— 1.

(We note that essentially if for each v, 8, supr.g m (F, v, 8) = o, [i.e. if the
consistency of {6, (X1, -+, X,)} is not uniform in #] then one cannot expect
fixed-precision estimation in one stage of sampling.)

Let Fmys = {FeF:m(F, v, 8) = m}. Note that Fu,ps C Fnpys for m = n
and Fo,y,5 = F.

TuroreM 1. Suppose there exists a decreasing sequence {N;} of Borel subsets of
R" such that
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(i) No = R* and lim;,, Pr,{N;} = O for every F ¢ F, and
(ii) there exists v € (0, a) and for each integer j a positive integer n; such that

ianthnJ-,y,s Pi‘k{Ni} > (1 —a)/1d =)

(NVote that we may assume n; to be strictly increasing, and shall do so.) Then there
exists a two-stage procedure with k observations in the first stage for constructing a
confidence interval for 0 (F), of length 25 and confidence 1 — a.

Proor. We shall prove the theorem by actually constructing a confidence
interval with the desired properties. Let X® = (Xi, ---, Xx) be observed in
the first stage of sampling. From (i) it follows that with probability one there
exists a positive integer-valued random variable J such that X ¢ N, for
i< J — 1and X® ¢ N, . Referring to (i) let the second sample size be n; and
let the confidence interval be

Ony (Xitas =y Xitng) = 0 Oy (Xog, =) Xiny) + 8.

Note that this interval has length 26. Also clearly 7, is a random variable
(i.e. measurable) and hence the set

{0"1 (Xk+1 y T Xk'l‘".l) = a} = Ul{on(Xk'H y T, Xk+”) é a, ny = n}
is measurable for each real number a. Thus 6.; (Xe41, -+, Xi4n;) I8 a random
variable. It remains to be shown that the interval has the proper confidence.
Now note that there exists a unique s such that F' ¢ F,,,,s and F £ Fey1,4,5 , and
a unique r such that n,_; < s < n.. Then F €%,,_, 4,5 and hence Pp{N, i} =

1 — @)/ (A — v). It thus follows from the definition of n; that Pg{n, = n,} ;
1 — @)/ (1 — v). Consequently

PF“{IQ"J(XIC““I’ T Xk+n1) - 0(F)l = 5}

Ms

Prp 100 Xigr,y -+, Xpqn) — 0(F)| £ 8|0y = n}Prfn, = n}

0

3
I

iPFn+k{lon(Xk+1’ ,Xk+n) - G(F)| = 5177«1 = n}PF'k{nJ = n}

n=n,

v

e > P18 (Kists -+ s Xewn) — 0(F)| < 8Pryfns = )

n=n,

2 (1= 2 Prns=nz0-1N0-a/0-7=1-0a
The second equality follows from the independence of (Xji41, -+, Xiss) and
ns, and the second inequality from the fact that F ¢ ., 5. The theorem is
proved.
A word or two about the intuitive idea behind the theorem might be in order.
It must be true, if a two-stage scheme is possible, that the necessity for a large
sample size be “reflected” in the behavior of the first sample—i.e. in the distri-
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bution of the first sample. Such a property is most easily phrased in terms of %
dimensional sets. We can then use the first sample to “pin down” an integer s
such that we are reasonably certain that F £ F,y1,,,5 . Once we know this we are
reasonably certain that 6 (F) can be precisely estimated with an additional s
observations. In practice the problem is thus reduced to characterising the
Fm,v,s and finding a sequence {N;} of sets which satisfy the hypotheses of the
theorem. In many parametric families, e.g. the normal family, and in some
larger classes, e.g. the class of unimodal distributions, such sequences are quite
apparent.

We finally mention that the converse of the reasoning above led to some of
the results of Section 3.

3. n-stage estimation. In this section we give sufficient conditions so that an
estimation problem can be solved in » stages, and show that in some situations
n stages may be required. The latter result was also proved by Kiefer and Weiss
in unpublished work using a different technique.

DerInITION. F is said to be an n-stage family if for each § > 0, @ ¢ (0, 1) there
exists an n stage scheme for estimating 6 () with an interval of length 26 and
confidence 1 — a. If F is an n-stage family but not an (n — 1)-stage family we
shall refer to it as a true n-stage famaly.

TueoreM 2. Suppose § = U,.F., where

(i) Fmis an (n — 1)-stage famaly for each m such that the final confidence interval
for 0(F) is based on the same consistent sequence {6, (X1, -+, X,)}.

(ii) There exists a decreasing sequence {N;} of Borel subsets of R* such that
No = R* and lim,,, Pr,{N;} = O for each F ¢ .

(iii) For each € > 0 and each integer j there exists an integer m;(e) such that

inf PpiN;} > 1 —e
FeUF;
i<mj(e)
Then F is an n-stage family requiring at most k observations on the first stage.

The proof of Theorem 2 differs only in minor details from that of Theorem 1
and will be omitted.

For each (n — 1)-stage family &,, of Theorem 2 and eachy ¢ (0, 1) let k (m, v)
be the minimal number of observations required on the first stage for the (n — 1)-
scheme. Then we have

TurorEM 3. Suppose in addition to the hypotheses of Theorem 2, each T, is a
true (n — 1)-stage family and that lim,.e k(m,y) = © for each v ¢ (0, 1). Then
F s a true n-stage famaly.

Proor. For if k is any first stage size and v ¢ (0, 1), there exists m such that
k(m,v) > k. Thus even if we know that F ¢ F,, , we would need an additional
n — 1 stages for m sufficiently large.

Theorem 3 enables us to construct true nm-stage families. We give one such
example:

Let F, be the uniform distribution on [0, 1] and let & be the family of uniform
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distributions on [6, § 4+ 1] with 6 > 0. Let {p.,n = 1,2, 3, ---} be a sequence
of numbers with 0 < p, < pny1 < 1 and lim, p, = 1. Define

§P = (F:F @) = paFo@ — m) + (1 — pa)R(@x — m), R e ®}.

Let 0 (F) be the mean of F. Clearly each  is a true one-stage family using the
sample mean as an estimator. Also since for fixed m, when 6 is large a significant
contribution to the mean is due to R (zx — m), we must make certain that one
or more observations in the sample come from R (z — m). To assure this it is
necessary that the sample size increase unboundedly with m. Now let §® =
U5, and let N; = [, »). Then it is easily verified that Theorem 3 applies
and $ is a true two-stage family. Now define

EF(") = Umg.;?(nn)
where
) = {F:F @) = paFo@ —m) + (1 — pa)G @ — m), G 5"}

where 5™ has been inductively defined as a true (n — 1)-stage family. Re-
peating the above arguments we see that ™ is a true n-stage family (requiring
but one observation on the first stage).

4. Quantiles of unimodal populations. Let & be the class of unimodal distri-
butions— (i.e., Pr is unimodal if there exists a given point x such that for each
two intervals I and I’ to the right [left] of z having the same length, if I is to
the right of [left of] I’ then Pr(I) < Px(I')). In this section we obtain fixed
length confidence intervals for quantiles in two stages.

Let 0 < p < 1. Then the p-quantile 6, (F) is unique for each F ¢ &, and it is
known, (see Cramér [4]), that {6} .}, the sequence of sample p-quantiles based
on Xy, +-+, X, is consistent for 6,(F). Let I; = [0,(F) — 6, 0,(F)] and I, =
[6,(F), 0,(F) -+ &]. Now for each v ¢ (0, 1) one can easily determine a sequence
{cw} of positive numbers with lim,.. ¢» = 0 such that

Fys C {F e F: min[Pr (L), Pr(ls)] < cu}.

Choose k so that 1 — max[p*, 1 — p)"] > (1 — a)/(1 — v) (so that with
high probability at least one of the first &k observations will be in (— «, 6, (F)]
and one in [6,(F), «)) and for each j define N; = {(@, -, ax):
maX,...x |t > j}. Clearly limj,,, Pr,{N;} = 0 for each F ¢%. To apply
Theorem 1 we assume F ¢ F,,,,; and consider the following four cases:

(i) 6,(F) < — j. Then Px{ (-, —jl} Z p,

(ii) 6,(F) = j. Then Pg{[j, »)} = 1 — p,

(iii) —j < 6,(F) < jand Pr(I;) < ¢m . Then from the unimodality and the
fact that F £ T,y 5,

Pr{ (=7, 0,(F)]} = (2§/08)cm [6,(F) = 7]
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and hence Py{ (—», —jl} = » — (2j/8)cn or
Pr{6,(F), )} = (2§/8)em 6, (F) = 2]

and hence P#{[j, ©)} = 1 — p — (2j/8)cm,
(iv) —j < 6,(F) < j and Pr(I;) < cm. Then similarly to (iii) either
Pr{(—w, =} 2 p — (2j/0)cm or Pe{lj, @)} 2 1 — p — (2/8)cm-

Since these four cases are exhaustive we conclude that for F € $ .5
PriN} z 1 — max[(p + (28/8)cn)", (1 — p + (26/8)cm)"}.

Since ¢, — 0 we see that Theorem 1 applies. This result was first obtained by
Weiss [10] using different techniques.

5. Translation-scale parameter families. Let Fy be a known nondegenerate
distribution function and define

§F={F:F(2) = Fo(@® — p)/0), — << ©,0>0}.

We shall show that Theorem 1 applies for fixed-precision estimation of x and o.
To do this let 63, and 63, be two distinet unique quantiles of F, and let 0%, and
6%, be the corresponding quantiles of F. Then ¢ = (0,, — 0,,)/(65, — 65,) and
u = 6, — o83, . Hence it is clear that fixed-precision confidence intervals for u
and o can be obtained from such intervals for 6,, and 6,, , (i.e., if for each § > 0
we can find a confidence interval of length 25 and confidence at least 1 — « for
6,, and 6,, , then we can also do so for x and o).

Let 63,.. be the corresponding sample quantile based on X;, ---, X, . The
sequence {03,..} is consistent for 6,, (see e.g. Cramér, [4]). Then it is clear that
for each v ¢ (0, 1) one can easily determine a sequence {¢.} (depending on p;
and Fy) with lim,,., 0,n = © such that

Fruys{F eFia > an}.

Now let p be the maximal discrete mass of F and choose k such that 1 — p* >
1 —a)/(1 —v). As ¢ > » we see that at least 1 — p of the mass F drifts

to 0.
Asbeforelet N; = { (z1, -+ + , %x) : MaX4y,... & [T.| > j} and we see that Theorem

1 applies once again.

6. Stationary Gaussian Markov processes. Such processes depend on three
parameters u, o, a, with —0 < u < ©,¢ > 0and @ ¢ (—1, 1), and may be
represented in the form

Xo=01—-) X aVeu+u n=0,=x1 -
i=g
where the sequence {Y,, ,n = 0, =1, - - -} consists of independent normal random

variables with zero means and unit variances. We shall show that we may
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estimate the parameters u, o, « in two stages. Rather than going into details we
note that it is sufficient to obtain high probability upper bounds on ¢ and o’.
To obtain such bounds observe that X; is N (x, ¢*) and hence (see Abbott and
Rosenblatt, [1]) for given v; £ (0, 1) there is a function f; (positive at nonzero
values of its argument) such that P{¢® < f;(X1)} = 1 — v; . Similarly X; — X;
is N (0, 26°[1 — o’]) and hence for given v, € (0, 1) there is a function f» (positive
at nonzero values of its argument) such that

P{f(Xi — X3) <21 —a)} 21— 7.
Consequently
Pl fi(X), o S 1 — (X1 — Xo)/26(X0)} 2 1 — 71 — 72
which establishes the desired result, since with probability one X; = 0.
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