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1. Introduction. Mitra [5] has derived the Pitman limiting power [10] of the
frequency chi-square test. He considers the case in which it is hypothesized that
the cell probabilities are specified functions of unknown parameters which are
to be estimated from the sample. For completeness and because it is needed for
subsequent proofs, his theorem is presented without proof. In the usual situation
of making tests for categorical data tables of two or more dimensions, where the
hypotheses to be tested are of the forms presented by Roy and Mitra [12] and
Diamond, Mitra and Roy [3], the hypothesis is that the cell probabilities are
specified functions of unknown parameters which are to be estimated from the
sample and which are subject to specified functional conditions. In Section 3 of
this paper a theorem covering this latter case is presented without proof. The
proof which is exactly analogous to that for Mitra’s theorem covering the simpler
case is presented elsewhere by Mitra [6], Ogawa [7] and Diamond [2].

Another type of test, analogous to those of normal analysis of variance, might
be considered. One assumes that the cell probabilities are specified functions of
unknown parameters. This assumption, together with the initial sampling
distribution, form the “model”. The hypothesis to be tested is that the param-
eters satisfy specified functional relationships. In Section 4 two theorems are
proved. The first, a necessary preliminary, covers the situation in which the
hypothesis is that some of the unknown parameters have specified values. The
second theorem in Section 4 covers the situation in which the hypothesis is that
the parameters satisfy specified functional relationships. In both theorems, the
limiting distribution is shown to be a non-central chi-square with certain degrees
of freedom and a specific non-centrality parameter in the non-null case.

2. Mitra’s theorem in frequency chi-square [5]. Suppose we have R = D 4y 7;
functions p;j(eu, @, - a) E=1,2,---,¢;5=1,2,---,r,)of s <R — ¢
parameters oy , @2, * - - , o such that for all points of a nondegenerate interval A
in the s-dimensional space of the «;’s the p,; satisfy the following conditions:

(3,) Z;Llp’ii(al, Qg,y "0y Ols) = lfors = 17 2) Tty G

() pijlas, oz, --+, @) > ¢ > 0 for all 7,

(¢) Every pi; has continuous derivatives dpi;/da; and 8°pij/daudeu ,

(d) The R X s matrix {dp;;/dou} is of rank s.

(It is assumed that the index pairs (7, j) indicating the rows of the above matrix
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or of any such matrix defined subsequently, are arranged in lexicographic or-
der.)

Forn = 1,2, ---, ad. inf., let (N{”, N5, ---, N{) be a sequence of row
vectors such that for7 = 1,2, -+ , ¢, and every n, (i) N{™ is a natural number,
@) N > NE, (i) if N, = D4 N{™, then N{”/N, = Q; independent
of n.

Let @0 = (af, @3, -+, a2) be an inner point of A (the “true” parameter
point) and let ¢;; (¢ =1,2,---,¢;5 = 1,2, ---, 1) be a given set of numbers
such that

2.1) er_;cij=o for ¢=1,2 --+,4q.
Put

22) Pl = pij (ol , 2, -+, o)
and )

(2.3) Digm = Di; + ci; N7

n=mny,m+ 1, -+ ,ad. inf, let {v;p} ¢G=1,2,---,¢7=1,2,---,7) be
a sequence of R-dimensional random variables such that

Let no be a positive integer such that for n = no, pijn > 0 for all 7, 5. For

q

(24) Prob. {v;s} = H [N@gn)! Iix Vijn !:I II (pij)"i"
= =

=1

if v;;» are any set of non-negative integers (some of which might be zero) and
S — (n) .
Zvijn =N", 1=12,--,¢
j=1

=0, otherwise.

Consider the system of equations

q T’: .. — - s ..
(2.5) ZZM'%=O, E=1,2--,s
i=1 j=1 Dii dox

Mitra [5] proves

TaEOREM 2.1.

(i) The system of equations (2.5) have exactly ome system of solutions &, =
(du, , Gn, , =+ » Gen) Such that &, converges in probability to ey asn — .

(i) The value of X obtained by inserting o = &in tn

a T3

2 _ (vijn - NnQipij(al y 02y ", as))2
X v;' a; NaQipis(or, o, - -+, o)

(2.6)

is, in the limit as n — o, distributed in a non-central x’-distribution ([4],
[9]), with R — q — s degrees of freedom and a non-centrality parameter) A =
3[I — B(B'B)'B']5, where
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SR X 1) = { (Qi/piy)eid,
and
‘ B[R X s) = {(Qi/p!;)} (9pis/0ew)d},
where the notation ( ) indicates the derivative is evaluated at ay . (This notation is
used throughout the paper.)

3. The limiting power function of the chi-square contingency test. Mitra’s
theorem develops the limiting power function for tests of hypotheses of the form
(31) Hﬁ:pii = pii(a17a2y e 10‘8)7 (Z = 1727 7q;j = 172) e 7”)
against alternatives of the form
(32) Ho:pijn = pij(ed, as, -+, af) + ciN7'

where the o; are to be estimated from a sample of V,, observations.
In making a contingency test we are concerned with hypotheses of the form

(33) H0:p5i=pij(alya2""7as)) (i=1,2,"‘,9;j=1,2,"',7“5),
subject t0 fm(as, az, -, &) =0, (m=1,2,--+,t < s),
against alternatives of the form
(34) Hoipin = pij(ai, o5, -+, a2) + ciN7’
subject to fm(al, a3, --+, ad) =0

where the a;, are to be estimated from a sample of N, observations.

Suppose that in addition to the conditions and definitions of Section 2 the
t < s functions fn (a1, @2, *+, @), (m = 1,2, ---, ) of the s parameters

o, oz, * -+, o, are such that for all points of A the f, satisfy the following

conditions:
(e) Every f. has continuous derivatives df./da; and 8°f,./dcsda; ,
(f) The ¢t X s matrix {9f,/dax} is of rank ¢.
Consider the system of equations

a

vz]n - anpw 61)@]
Te——— k=1,2)"'),
(3'5) zz—; ]z—; Diji + mZ=:1 )\’”" §
fm= 0)m = 1,2,"' 7t
In a manner exactly analogous to that given by Mitra [5] for Theorem 2.1 we
can prove (see [2], [6], [7])

TrEOREM 3.1.
(i) The system of equatzons (3 5) have exactly one system of solutions &, =
(G, , Goy, =y Gen)y & = (A, Ra, -+, Ns) such that &, converges in probability

toag asn — .
(ii) The value of x° obtained by inserting ax = éxn tn (2.8) s, in the limit as



CATEGORICAL DATA CHI-SQUARE TESTS 1435

n — o, distributed in a non-central x’-distribution with R — q — s + t degrees of
freedom and a non-centrality parameter A = 8'[I — C (C'C)'C'15 where

8(R X 1) = {(Qi/pis)iei}
and
C(R X (s — 1)) = { (Q/pi;)* 9D/ dowy)d}
where pi; s pi; expressed in terms of the s — t oy, that are independent under fn, = 0

(m=1,2,---,t) and o, are the s — ¢ independent oy, .

4. The limiting power function of chi-square tests analogous to normal
analysis of variance tests. Suppose it is given as a part of the “model” that
Pi; = pii(al’ Q2,y """, as); (7/ = 1’ 2’ e ,Q3J = 17 2’ e 7“)’Wemafythen
test a hypothesis of the form
4.1) Hyfmi(on, 00, -+, a) =0, m=12-,t<s
against an alternative of the form
(4.2) Hoifm(al, 03, -+, ) = dm,N»*® where not all .., = 0.

In order to develop the limiting power function of this type of test we must
first consider the simpler special case where we are testing the hypothesis

(4.3) HO:akl = akl ) kl = 1) 27 Tty ! <s
against the alternative
4.4) H, :agl = a, + dklN? where not all dg, = 0.

Suppose that the conditions of Sections 2 and 3 hold. Let & be the unique con-
sistent solution of equations (2.5) and let x* be the corresponding test statistic
formed by inserting oy = & in (2.6).

Let @ be the unique consistent solution of the equations

q

<k Vign — NaQipi;  0pi; d Aoy,
(4.5) i=ti=1 Dis day + zg;‘ﬁ LY ’
b=1,2---,8 04 = G, kr=1,2,--- 1,

and let x% be the corresponding test statistic formed by inserting a; = a in
(2.6). (Note that dax,/dax = 1 or 0 according as ky = k or ky 5 k and hence
(4.5) may be reduced to s — ¢ equations in asi1, aupe, ***, &),

‘We shall prove ‘

TaroreM 4.1. xi = x% — x* is, tn the limit, independent of X in probability and
distributed in a non-central x’-distribution with t degrees of freedom and a non-
centrality parameter A = d'B{[I — B, (B3B;) "'B3]Bid where d(t X 1) = {dx,},

BI(R X t) = {(Qi/pgf)%(apii/aakl)()}’ ko = 17 27 cee,t

and
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B:(R X (s —8) = { Qi/p?) 0pss/deuy)ol, he=1t+1,¢+2 -+,
Proor. We put
Yiin = [iin — NaQpi; @)/ [N.Qpi; (@)1
Yiin = Win — NaQips; @)/ [N2Qipi; (@)]1*
Tin = [im — NaQipl)/IN2Qup?
Yoo B X 1) = {gim}, YR X 1) = (i), EXw® X 1) = {2ija}.
Ogawa [7] has shown that in the limit the equations (2.5) may be written

be-o iS22

s o p” dax dam_Jo
R 3 (0ign — NaQipl)Q l:apii:'
“RE NG, Lk T BB
In matrix form this becomes B'B (¢ — a) = N;éB'x(n) where
= [B; : B;] R.

RXs t s—t

Similarly, in the limit, the equations (4.5) may be written

zt: (ar, — apy) Z Z < [ap”:l [3{)_.1:2]0

Fi=1 i=1 j=1 pu dar,
7 9 0 5} 5
+.3 (e —at) G 2] [0 ]
k2= == Y Loaw,_to Loam, Lo

3 (vijn — NaQip%)Q: [ 0pi; B
—1,;1;;1 Nthpr)J 00ty K m2—t+1,t+2’...,s,

and in matrix notation B;Bl (@a— o)) 4+ B:By(ern — af) = N;%Béx(n) where

= (a1,0, ", 0), dl = (o1, @, ", o) and “2 = (a1, at+2, S, Q).
Asa solutlonof equatlons (2.5) we have, in the limit, & — ap = N, *(B’ B)-IB Xn)
and as a solution of equations (4.5) we have, in the limit, & — &) =

Ni(B:B:) 'Bixmy — (B3B:) 'BiBi(a — of). Mltra [6] shows that Yoy — X
—N.B(&@ — @)] =, 0, or ymy — [I — B(B'B) "B’z —, 0. Similarly yf»
— [xmw — NiBi(a — o) — N2By(& — @3)] —, 0, or y(ny — [I — By(B;By) ™ By]-
(X(n) + Bld) —p 0.

We can find a matrix K such that J = BK where

J=1: LR and K=|:€ g]a_t,

s—t
8

where T and S are non-singular, and such that JiJo = 0 (Ogawa [8]). Then
J: = BiT + B.Q, J. = B;S and B;B;T + B;B;Q = 0. Since K is non-singular
we may find its inverse
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_ T! 0
K'= [_S—l QT—l S——l]s_t .
t

s—t

Then B = JK™, B, = ;T — J,S7'QT " and B; = J,S™". Thus, in the limit,
Yoo = I = JK* K TIK )K" T X
=I-JOD T
= — LQJ) 7T — J(eJ2) " Talxe ,
and
Yoo = I — IS (ST LSS Lllxw + (1T — J.S7TIQT™)d],
I — J.(J:J) " Tl + (WT™ — J.87'QT)d],
[ — J(JoJ2) " Tolxe + T d.
Let W = M'x(,, where
M = [I::Mlegr M; | R,

¢ 8—t R—q—s

such that M is orthogonal and where P(R X ¢) = {6ap’l}, G =1, 2, -, '
j=1,2---,7), 1=1,2---,¢) and 8; is the Kronecker symbol, M;M; =

J ()7, MM = L(JaJ2) 7T

Mitra [5] shows that x, is asymptotically normal with mean 0 and variance-
covariance matrix I — PP’. It follows that wy, ws, -+, w, equal zero with
probability one and wgi1, Wete, - -+, wr are asymptotically independent with
zero means and unit standard deviations. Thus xuy = Myw; + Mow, + M;w;
where W; = (Wg1, ", wq-H); W:,z = (Wetet1, **°, wa's)’ W; = (Wgtet1,
ceey, wR)'

Then, in the limit,

Yoo = I — M;M; — M,M;) (Myw; + Mew, + Maws),
= Myw; + Mow, + Myw; — Myw; — Mew.,
= M;w;,
and
Yooy = @ — M,M;) (Myw; + Mows + Myws) + LT d,
= Myw; + Myw, + Myw; — Mow, + J, T d,
= Myw; + Myw; + J,T ' d.
Therefore, since X* = Ym¥wm and xx = Y(m¥im),
X — WiMsMsw; —, 0 or x° — Wiwz —, 0,

and
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X — [(WiMiMiw, + wiMiJ, T d + d'T7'JiMw,
+ wiMiMyw; + wiMG, T d + d' T 7' JiMew; + 4T 11, T d] —, 0.

But JiMs = (JuJ0) (1)) M, = (JiJu)*MIM; = 0 and JiM, = JiJ, (JiJ) 7 =
(J1J1)*, where the square root of a symmetric positive definite matrix is defined
as in Ogawa [8].

Then x% — [wiwy + 2d' T Qi) wy + AT ILT'd + wiws] —, O.
Thus, in the limit,

Xo=x% —x = wiwy + 2d'T" — JiJ)*ws + dT T d
= [wi + )T dTws + )T d)
= 7'z (say) where 2’ = (21, - -, 2¢).

Since x* — wiws —, 0 while x; does not involve ws , it is seen that xj is asymp-
totically independent of x* in probability whether H, or H, is true.

It is seen that z is asymptotically normal with mean vector (JiJ:)*T™ d and
variance covariance matrix I. But under Hy, d = 0. Thus, under Ho, xj is, in
the limit, distributed as a central chi-square variate with ¢ degrees of freedom,
and under H, as a non-central chi-square variate with ¢ degrees of freedom and a
non-centrality parameter A = d'T"7 (J1J;) T d. But

T ()T = T7'(T'B; + Q'B;) (B:T + B,Q)T™*
= (B: + T7'Q'B:) (B, + B.QT™)
= BiB: + BiB.QT" + T'Q'B;B, + T'Q'B;B.QT™
= BiB; + BiBQT ™ + T 'Q'B;B; — T 'Q'BiB,
= B{B; + B{B,QT™" = B{B, — B{B,(B;B;) 'B;B; .

Therefore, A = d’Bj[I — B, (B;B,) "B;]B; d.

Returning to the hypothesis that functions of the parameters are equal to zero,
we shall prove,

THEOREM 4.2. Suppose that the conditions of Sections 2 and 3 hold and suppose
it s given as a part of the model that ps; = pij(on, *++ , as).

Let & be the unique consistent solution of equations (2.5) and let x” be the corre-
sponding test statistic obtained by inserting o = éx tn (2.6).

Let & be the unique consistent solution of equations (3.5) and let x5 be the corre-
sponding test statistic obtained by inserting ar, = ér i (2.6).

Then xi = x5 — ', the test statistic for testing the hypothesis Ho:fmy (01, *++ , &)
=0form = 1,2, -+, < s against the alternative, Hy:fm, (a3, -++, a3) =
dm,N7* where not all d,,, = 0, is, in the limit, independent of x* in probability and
distributed in a non-central x'-distribution with ¢ degrees of freedom and a non-
centrality parameter

A = d'F;'Bj[I — C(C'C)'C'|BFtd
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where d and B, are as tn Theorem 4.1, C is as in Theorem 3.1 and Fy(t X t) =
{ (afml/aakl)o};ml ) kl y = 1, 27 ) ¢

Note that we assume, without loss of generality, that ax, (ks = 1, ---, ?)
denote the ¢t parameters made dependent under Ho and az, (ks =t + 1, -+, s)
denote the s — ¢ parameters remaining independent.

Proor. Denote by

F = [Fli F2]t
8 8—1

the matrix (afml/aak)o where F; = (afml/aakl)o and F, = (Qfml/aakz)o . Since
rank (F) = t, we may assume without loss of generality that |F1] # (. Define

frmy (@) = am, forme = ¢+ 1, -+, s 50 that f (¢) wherem =1, --- , s are con-
tinuously differentiable and the jacobian of the transformatlon from o =
(o1, -+, a) to (fi(a), -+, f:(a)) at & is given by |Fy| 7

By a Well known theorem on the inversion of a transformation (Courant
[1], p. 152) it is seen that, in a neighborhood A of a, the system of equations

Bm = fm (a) form = 1, , 8 has a umque inverse ax = gr(Br, ***, Bg) for
k=1, , 8, and if ﬁm = fm(al , -+, &), then in a neighborhood B of g, =
@, -, Bs) the inverse functions g, possess continuous first and second order

derivatives and the first order derivatives are given by
(30/9Bm) = (0Bm/da)™ fork,m =1,---,s

Put pij(as, - 5 &) = pij(¢ (@), **+, ¢8)) = ¢ij(Br, -+-, Bs). Then, by
Theorem (2.1), the equations

Z Z [(vwn - NnanzJ)/Qw] (aq@,/aﬁm) =0 for m=1,

1=l j=1
have a unique solution § such that § — B in probability as n — o and Mitra
[6] shows that & = g(§) is asymptotically a solution of the equations (2.5).
By Theorem (3.1), the equations

q

i Vijn — Nnan':,] an aﬁml
—_— . = O m = 1 . 8
22 » B T 2:‘1 Mo 55 = 0, R

have a unique solution
g = [0 Bolt,

s—t

where 8; = (Bi1, -+ -, Bs), such that g —10 ’:85'] in probability asn — o and
Mitra [6] shows that @ = g(§) is asymptotically a solution of the equations

(3.5).
Thus it is seen that the problem of testing the hypothesis Ho:fm,(e) = 0
formally reduces to that of testing Ho:Bm, = 0 for my = 1, ---, &. Where B =

@, -+, B is now the “true” parameter point with respect to the new frame
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of reference 1, - -+, B; . Define
G = [G1:G4]R,

P
where
Gi(R X t) = {(Qi/q5:)* (9:i/9Bm,)o}, Where my =1, -+,
and
G:(R X (s—1)) = {(Q/9?)} (39:i/0Bm,)s}, Where mg =141, -+ s.

Then, by Theorem 4.1, we have that x§ = x% — x’is, in the limit, independent of

x’ in probability and distributed in a non-central x*-distribution with ¢ degrees

of freedom and a non-centrality parameter A = d'Gi[I — G,(G:G,) G3]G; d.
Let

B = [B1 2B2]R

t s—t
where B, and B; are defined as in Theorem 4.1. It is seen that
B=G(66m/aa]g)o for ]C,m= 1,"',8
or

[B::Bs] = [G1:G,]- (%:»0 <%%>0_| = [G1:Gy)- I:Fl F2:|_

Bl
dax, Jo \dax, /o

F' —F{'F
[G1:G:] = [31332]'[ (; Il 2]

Inverting, we get

or G, = B,Fi’ and G, = B, — B,F{'F, . However, from a theorem on jacobians
due to Roy ([11], page 166),

o~ {8 (- (6 G- (e
P/ \daw,/o 0%/ \Oax,/o 1%/ \daw, /o) \dax, /o \dox,/o
= B, — B, F{'F,
= G,.
Therefore, the non-centrality parameter may be expressed as
A = d'F{7'Bi[I — C(C'C)™'C'IB,F7" d.
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