AN ASYMPTOTIC EXPANSION FOR THE DISTRIBUTION OF
THE LINEAR DISCRIMINANT FUNCTION!

By MasasHr OxkamoTo

Osaka University, Japan

0. Summary. The distribution of the linear discriminant function W, Ander-
son’s classification statistic (1951), is investigated by several authors: Bowker
(1960), Bowker and Sitgreaves (1961), Sitgreaves (1952, 1961), etc. Since the
exact distribution is too complicated to be used numerically, as indicated by Sit-
greaves (1961), we present here an asymptotic expansion of the distribution
with respect to three numbers N;, N, and n representing degrees of freedom.
This is a generalization of the result of Bowker and Sitgreaves who deal with a
special case where Ny = Ny = N and n = 2N — 2.

1. Introduction. Let X;(z = 1, ... , N; + N, 4+ 1) and S be random p-vectors
and a random p X p - matrix, respectively, distributed independently,
X;(6 =1, ---, Ni) according to a normal distribution II; : N (u®, =); X:(i =
Ni+1,---, Ny + N.) according to I, : N(u®, £); Xy,1n,11 according to
either II; or I, ; and finally nS according to W (n, £), a Wishart distribution with
n degrees of freedom and variance matrix X. When we put

(1.1) W = Xnytwps1 — —(X(l) X(z))]ls_l (X(D - X(z))
where
_ Ny _ Ni+Ng
(1.2) X® = (1/N,) Z:Xi and X® = (1/N,) Z X,
1= 1=N 1

W is a generalization of the linear discriminant function W, Anderson’s classi-
fication statistic, which corresponds to the special case

S = —— {Z (X X(I))(X,' _ x(l))’
(13) N+ N, — 2

N1+Ng _
+ 2 (xi—X‘”)(xi—x‘z’)'}.

i=Ny+1

Now it is well known that if the Mahalonobis distance D* between two popu-
lations II; and II, , defined by

(1.4) D= (u® — @)= (u® — @),

is not zero, then as Ny, N, and n tend to infinity X — u u® and
S — X in probability and hence the limiting distribution of W is N GD? D*) or

(1) X(2)
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N (—3D? D”) according as Xy, 4,41 comes from II; or from II, ; that is, if for
any real constant ¢ we denote by

(1.5) Pi(c; D) = P{W < iD* + ¢D | II}}

the probability that W < 1D? 4+ ¢D when Xy, 45,41 comes from IT; and simi-
larly

(1'6) P2(C,D) =PT{W< _%D2+CDIH2}7

then both P;(c; D) and P;(c; D) tend to ®(c), edf of N (0, 1).

The purpose of this paper is to evaluate P;(c; D) and P:(c; D) in an asymp-
totic expansion with respect to N7*, Nz' and n~". The formulae are derived by
the ‘Studentization” method of Hartley (1938) and of Welch (1947), which
has been shown by Ito (1956, 1960) and Siotani (1957) to be useful also for
some multivariate problems. An analogous result is given by the present author
(1961) for the quadratic discriminant function which appears in discriminating
two normal populations with common mean vector and different variance
matrices.

2. The main result. We shall first show that P:(c; D) can be derived from
P, 1 (C, D) .

Lemma 1. Let PY (c; D) be the expression obtained by interchanging Ny and N
i Pi(c; D), then

2.1) Py(c; D) = 1 — Pf(—¢; D).

Proor. Since we obtain —W by interchanging X and X® in W defined in
(1.1), we have P,{—W < iD*+ ¢D | II,} = P§ (c; D), which together with (1.6)
implies (2.1).

Now the main theorem of this paper is

TaEOREM. If D > 0, then

(2:2) Pyi(c; D) = [1 + L(d; D) + Q(d; D)]®(c) + Os,
where d stands for the differential operator d/de, ®(c) for the cdf of N (0, 1) and

@3) L@ D) = ¥ L@ D),
@) QW; D) = HL@; DY + 3 Q4@ D),

Li(d; D) = (2N.D*)7'[d* + p (@ + Dd)],
@5)  L.(d; D) = (2N.D)7[(d® — Dd)’ + p(d® — Dd)],
Li(d; D) = (4n)7[@2d" — Dd)* + 2(p + 1) 3d* — Dd)],
Qu(d; D) = (4N1D*)7'[2d'(d* + Dd) + p(d + Dd)’,
Qu(d; D) = (4N3:D)7'2(d" — Dd)* + p(d* — Dd)’,
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Q2 (d; D) = (2N:N,D*)7'[2d*(d* — Dd) + pd'],
Qu:(d; D) = (2NmD*)7'[4d*(2d* — Dd) + 2(5p + 7)d* — D'd’
+ @+ p) 34" + Dd)],
(26) Qx(d; D) = @NmD?)'[2(d* — Dd) 2d* — Dd)* + 2(5p + 7)d*
— 48p + 4)Dd® + (3p + 4)Dd’
+ (" + p) 3" — Dd)],
Qx(d; D) = (12n*)7'[2(2d* — Dd)*(7d®> — 2Dd) + 9(15p + 13)d*
— 24(4p + 3)Dd + 3 (5p + 3)Dd* + 6(6p° + 13p
+ 9)d* — 6(p + 1)°Dd]
and finally O; stands for the term of the third order with respect to (N1 LN, .
We shall defer the proof to the following sections and state now two corol-

laries, the first of which gives the linear terms in another form®:
CoroLLARY 1. Let ¢ (c) be the density of N (0, 1), then

Pi(c; D) = ®(c) + {2N:D)[8¢c — ¢* + p(D — ¢)]
2.7) + @N.D*)7[2D 4 3¢ — ¢(D + ¢)’ — p(D + )]
+ @n)7[2(D + 3¢) — ¢(D + 2¢)" — 2p(D + 3c) ]} (c) + 0,

Proor. We have only to substitute the identities
@8) @) =), d®()=—cple),

' o) = (€ — o), d() = Be— o)
into the term L (d; D)® (c) of the theorem.

In many situations the diserimination is performed in the following way:
We regard an observed value of Xy, 4»,41 a8 coming from II; or II, according as
the observed value of W is positive or negative. For this procedure the error
probabilities of two kinds are given by

COROLLARY 2.

—o(-DYju 2 o

(29) b b b b b
22 12 13 23 33
m-i_NlNz N1n+N2n+F+03’

ban bu b2 bos b bas
2oy ou 240
Tttt e T e T W T T

2 When we put Ny = N2 = N and n = 2N — 2, Formula (2.7) agrees with Theorem 3
of Bowker and Sitgreaves (1961) up to terms of order N~! provided that the coefficients
as; (j = 1, 2) in the latter are changed in sign. The term of the second order is not yet
checked.
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where
a = @D)7'(ds + 3pds), a= (2D")7'[ds — (p — 4)da),
as = }(p — 1)ds,

bu = DY) 7ds + 6(» + 2)do + (p + 2) (9p + 16)ds + 20p(p + 2)dg],
b = 8D*)7'[ds — 2(p — 10)ds + (p — 6) (p — 16)ds

+4(p — 4) (p — 6)di],
b = (D) ds + 2(p + 8)ds — 3(p" — 10p — 16)ds — 12p(p — 6)da],
bis = DY) (p — 1)[ds + 3(p + 4)ds + 6(p + 4)da],
b = (4D") 7 (p — Dlds — (p — 8)ds — 2(p — 4)dal,
b = 2(p — 1)[(p + 1)ds + 4(p — 12)dj]
and db are constants defined by
(2.11) dy = (d"/dc")®(c) | om—ns2 G =24,6,8).

Proor. Since from (1.5), P{W < 0|IL} = P;(—D/2; D), the theorem and
(2.9) imply

ai = N:Li(d; D)®(c) | e=np2,

bij = NN{(1 — 38:5)Li(d; D)L;(d; D) + Qi (d; D)@ () | o=1pe2
where N stands for n. Now we have a recurrence formula

(2.13) A @) = — @ — 1)dT® (@) — cd®(c)

by operating d”* on the second relation of (2.8); and hence, by putting ¢ =
-D / 27

(2.14) Ddy = 2dy™ + 2@ — 1)do (=1,2--,7).

(2.12)

Substituting (2.5) and (2.6) into the right-hand side of (2.12) and letting D,
which appear in the coefficients there, vanish by repeated application of (2.14),
we obtain the expressions of the a/s and b;/’s presented in the lemma, which
proves (2.9). The dual equality (2.10) follows from (2.9) and Lemma 1.

At the end of this paper we present Table 1 giving values of coefficients a;
and b,; appearing in (2.9) and (2.10) for selected values of p and D: p = 1, 2,
3,5,7,10,20,50; D = 1, 2, 3,4, 6, 8, as well as Table 2 giving the first three
terms ® (—D/2), 2 a;/N; and > bij/ (N:N;) when Ny = N = 100 and n =
198. When N; = N, = N and n = 2N — 2 Table 2 is applicable for other
values of N than 100 by using the fact that the first and the second order terms
are approximately proportionate to N ' and N2, respectively. (The author
wishes to thank Mr. N. Nakajima for his assistance in preparing the tables.)
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TABLE 2
First three terms of the error probability (N1 = Nz = 100, n = 198)
D 1 2 3 4 6 8
Principal term .30854 .15866 .06681 .02275 .0%1350 .03167
D
& —=
Termof |p = 1 .0%4401 .0%6049 .0%4857 .0%2700 | .0%3324 .0°1338
the first 2 .022645 .021821 .021192 .0%6101 | .0%*7051 .052774
order 3 .0%4850 .023037 .021899 .0%9503 | .0°1078 .054208
5 .029260 .025469 .023312 .021631 | .0%°1823 .087079
7 .01367 .027901 .024724 022311 | .0%2568 .0%9949
10 .02028 .01155 .0%6844 .023331 | .0%3686 .041426
20 .04233 .02371 .01391 .0%6733 | .0%7413 .0%2861
50 .1085 .06019 .03510 .01694 .0%1859 .0%7166
Term of |p = 1| —.05151 | —.05151 | —.0%455 .08337 .06249 .07217
the sec- 2| —.0%83 | —.04294 | —.0%201 | —.0%766 .0%320 .07841
ond or- 3| —.0%538 | —.0%72 | —.0%346 | —.0%11 .05139 .06211
der 5| —.0821 | —.0%113 | —.0%78 | —.0%460 .0%655 .0%659
7] —.0%803 | —.0%168 | —.0%403 .0200 04157 .05136
10 | —.0%193 | —.0%251 .04101 .04906 .04370 .05291
20 | —.0%017 | —.0%521 .0%517 .0%619 .0%173 .04122
50 | —.0631 ~.0%130 .0%516 .0%491 .0%118 .04790

3. Derivation of the asymptotic expansion. To obtain the asymptotic ex-
pansion of Pi(c; D) we first consider the characteristic function

@3.1) ¥ (t) = Blexp [@D™ (W — D*/2)] | L}

of the random variable D™ (W — D/2) when Xy, x,+1 comes from II; . From a
well-known property of the conditional probability we have

3.2) ¢(t) = EXV XV s{Elexp [D™ (W — D/2)] | X?, X?, §; 0]}

Since the distribution of W is invariant under any linear transformation per-
formed on X;(¢ =1, 2,---, N1 + N, 4+ 1) and S, we may suppose

(3.3) v =0, u® =y, = =1I (identity)

without any loss of generality, where wo denotes a p-vector with the first com-
ponent D and the others 0. From the definition of W its conditional distribution
given (X®, X®, 8) is (one-dimensional) N (4, 6°), where

b= &YX, 8) = ~3 &Y + X)'STRY - %),

34) i =46 (Xm, x(z), S) = (X(l) _ X(m)ls_z (X(l) _ 1_((2)).
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Therefore, if we put

8:5) ¥ (X, X, 8) = exp [i#D™' (i — 3D°) — D74,
then
(3.6) Y(t) = EXV X sy (X0, &2, S).

Since the function ¥ is analytic about the point (X®, X®, S) = (0, w, I)
specified by (3.3) it holds that

9 9
oust auf®
D

b (S — o) 2 :l\I'(v“), @, E) |,

1 £j=1 adij

N P _ 2 -
UERRD,S) = ow| S i+ B (5 )

(3.7

v (1 v (2 1 2 T g
where X, X, uf®, uf® and po; are components of the vectors XV X® W@,

u® and wo, respectively, o;; are elements of the symmetric matrix X which is
regarded as a function of ;¢ Sj=1,---, p), & is Kronecker’s symbol
and the notation | means the value at the point (3.3). If we put

3% = (0 ic1n, kb = 1,2,0 = 9 ,
o
(38) s
3 = (9i)imton > 05 = 95 = 5(1 + 8:;) Fy (i =9,
ij

then (3.7) is written in a matrix form as
¥ (XD, X2, S) = exp BR3P 4 (XD — yy)/o®
(3.9) 7
+tr (S — D (u®, u®, =) lo-
Substituting (3.9) into (3.6) and using the associative law
(3.10) E(AY) = (EA)YT,

where A stands for the factor involving exp in (3.9), which may be justified by
extending the theory of asymptotic expansions (see, for instance, Jeffreys (1962),
pp. 14-16) to the multi-dimensional case, we obtain

(3.11) v = 0¥ (®, v*, ) b,

where © is a differential operator defined formally by

3.12) © = EXV X sexp KPP + X? — w)'9® + tr (S — I)a].
Now the function ¥ in (3.11) is determined by

(3.13) ¥ (u®, @, £) = exp [iD  (u — 3D*) — $#'D 7S,
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where

b= B®, % ) = —3” + )0 - ),

0,2 = & (v(l) (2) 2) = ( @ (2))’ —2( @ _ (2))

which follow from (3.5) and (3.4), respectively. On the other hand X®, X®
and nS follow independently N (0, Ni'I), N (w, Nz'I) and W (n, I), respec-
tively; and hence, using the formula of the moment generating function of each
distribution, we have

_ I ~wram @@ _n

(3.15) © = exp I:ZN e 4+ — N 79 — tr (9) §log

Substituting the expansion —log |I — A| = tr (A) + % tr (A®) + L tr (A%) +
, we have

(3.14)

1—24a
n

0 = expl: ZIVI a0’ @ + 6(2)'3(2) + tr (%) + 3%,2” @) + ]

1

=1ty

a(l)'a(l) + 2 6(2)’6(2) + tr (a )
X o a(l)' 112 (2)7 A(2)72 1 1) 7 a(1) a(2)/ A(2)
(3.16) +8N2[ ] + [a T + 4:N1Nza ™9

1
2Nin

1
to

4+ — W tr (9% + o a“)’a‘” tr (%)

{3ltr ()P + £tr (3°)} + O
or

O = 1+ 50 X 87 + 5o T 107 + - T o

Z [3(2)3(2)]2 1 Z [0£1)0§2)12

a(l)a(l) 2
21 I+ NN

8N2
Z (0P8, + Z [9579,.]*

8N 8N3
(3.17)

1
+ 7;5[%2 af‘sagu + %E arsastatr] + 037
each subscript 7, s, ¢ and « running over the range 1, 2, --- , p.

Now we have to turn from the c.f. ¢ (t) to the edf P;(c; D). It is shown in
Section 5 that from (3.11), (3.13) and (3.17) we have the expression

(3.18) v = 2 a(=it)e™” + 0s.
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The Fourier transform
(319) f e“z dq;é:; — ( 2t)v —t2/2

(cf., for example, Cramér (1946), p. 225) then gives
(3.20) Pi(c; D) = 2 a®P () + 0s = [2_ a, d1®(c) + 05 .
By comparing (3.18) and (3.20) it is seen that by usmg 6 = —1t instead of ¢

the expressions become simpler; i.e., to each term 6" P12 of the c.f. corresponds a
term d'® (c) of the cdf. We put

(3'21) A = A(U(l); 9(2), 2) = —-D_10u + %D_2020'2 + %DO
and rewrite (3.11) as
(3.22) () = O |y.

In Sections 5 we shall calculate the terms of (3.22), and hence of P;(c; D),
arising from the operation of each term of (3.17) on e”.

4. Lemmas.
LemMa 2. Let = = (04;) be a non-singular symmetric matrix. We regard two
matrices ' = (¢) and £ = (03’) as functions of ors (r < s) and denote by

subscript rs the result obtained by operating 8,, = 4 (1 + 6,5)9/0s , then
(a_ij)n = _l( ir sy _'_ 0’“ TJ)’

@.1) )
(0_21)” = __(0_1,7' 7 + 0' 0_2 + 0'" 83 + o_zs 7 .
If we denote the value at = = I or o;; = 8;; by the symbol |o , then
(O'ij)rs '0 = ’_%(51‘1681' + 51’357'1');
4.2) g
(0'2 )rs IO = - (Birasj + 5,’35”').

Proor. As in Anderson (1958), p. 348, by differentiating the identity Ex ™ =
I we have (), + =(=7"),, = 0; and hence

4.3) EDp = =22

Let E,; be the matrix with all elements 0 except the (r, s) element which is 1,
then (). = (E, + E,)/2. Substituting this into (4.3) we have the first
equation of (4.1). Substituting it into

(Uéj)rs = (Zk: o'lk ]u)rs = ; [(O'ik)rso'kj + o'ik (o'kj)“]!

we have the second equation of (4.1). (4.2) follows from (4.1) at once.
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Lemma 3. Let subscript rs, rs denote the differential coefficient by 9% , then

(6 )rare = %[(oi’a" + ") e" + (:,” i) + (r, s)] ,

(4.4) (o_;i)rs'n — |:(o_ir0_sr _|_ o_isa_rr)o_gj + o_ir(o_sro_;f

]

+ %oy’ + o o" + o3°Y) + (:’ ';) =+ (r, 8)] )

where the symbol (;’ ‘2) represents an expression obtained by interchanging ¢ and

7 together with r and s in the whole expression (in square bracket) appearing in the
left of the symbol and (r, s) analogously. Moreover

(o'ij)rs.rs , ¢ = %(aifr + 51’]‘3 + 251‘]’1‘3),

4.5) .
(08" )rsrs | 0 = & (Bisr + Bijs + 20u4s),
where dys..., tn the sequel ©s 1 when r = s = -+ = v and 0 otherwise.
LemMa 4.
46) (@ )roulo = 302 )rmtu |0 = F Grredou + S1rudor + Srudru + S10udre),
@) (™) rorrs,tu o = %(U;l)rs.rs,tu [o
= —3[010st + 0100 + 2 (O1rew + O16tu) + 601rsrul,
(Uu)n,st,zr | 0= i—(ﬂ';l)n,st,tr | 0
(4.8) = —61 + b1 + 01r + (8105¢ + 6160 + S168r5)
+ 21 + 10t + 616r) + 12010,
(Ull)rs,rs.tu,tu I 0= %(U;I)rs,rs,m,tu I 0
= [01r (8ot + 8su) + 015 (6re + 6ru) + 616 (6ru + ou)
4.9) +01u (8t + 851) + 2 (1t + S1ru + G100 + O15u)

+2 (611'5“1& + Blssrtu + 5115r3u + 511&61‘“)
+2 (Blrtasu + Blmast + Blstam + 613u6rt)
+6(51r8t + 611‘314 + Blrtu + 613!14) + 40511‘3!11]-

The proofs of Lemmas 3 and 4 are omitted. Details are given in the author’s
seminar report (1962).

5. Calculation of each term in the asymptotic expansion. If it is shown that
(3.1) ¥(t) = [1 + L(8; D) + Q(6; D)™ + O,
where 6 = —it and the functional forms of L and @ are given by (2.3) through
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(2.6), then we have (2.2) in view of the correspondence of c.f. and cdf described
in the last paragraph of Section 3. Since the calculation is straightforward we
shall only sketch it, leaving details again to [10].

5.1. The principal term. From (3.17) and (3.22) the principal term in ¢ (¢) is

A , 0 = 603/2

€ )

since (3.14) gives
(5.2) p=00, w,I) = tuw = 3D’,
) 0'2= &2(07 9071) = v(l)y‘):Dz’

and hence A |, = 6°/2 from (3.21).
5.2. The linear terms. First the term of order N7 in ¢ (¢) is
»
(5.3) (21\71)‘121 08 | .
Since differentiation is concerned with only ™ it makes the calculation simpler
to put 4 = w and = = I before differentiation and put y® = 0 after. Then
(3.14) is written as

p=00E" w,D = =3+ 0 @& - w),
=W w, D = @ — w @ - w.
If we denote the result of 8 and [9"]° by subseript r and r, 7, respectively, then

(5.5) P = (A2 + 4,.)e.

(5.4)

Therefore (5.3) is written as
. D
(5.6) 2N, [Z} Al o+ ; Ay 0] e”* = L,(6; D)e"  (say).

Differentiation of (3.21) yields
A, = —=D79(@), + 3D7°6°(6"), = D70u” + DT (u” — por),
6-7) A,, = D70 + D%,
and hence
(58) A.|o= —D0°up = —D 6%,  A..|o = D6 + D6).
Thus we have
(5.9) L (6; D) = (2N:D*)7'[6* + p(6° + De)].
Similarly the term of order N3* is Ly (8; D)e”"’* where
(5.10) L;(8; D) = (2N.D*)7'[(6° — D6)* + p(6° — D0)].
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For the later reference we state the result
(5.11) A.|o= D6 — DO)6,, A..|0= D6 — Do),

which corresponds to (5.8).
The last linear term in ¥ (t) is of order n™"; that is,

i
(5.12) w0k |0 = Ls(0; D)™ (say).
7,8=1
This time we put u® = 0 and u® = o before differentiation and put = = I
after. Then (3.14) becomes

(5.13) p=100 uw, x) = %vsz_lvo = %D‘zo'u)
. 0'2 = &2(0> W, Z) = v()z—zvo = Dza';l’
where we put = = (¢”/) and £° = (03’). Using the notation in Section 4, we
have

D

v
1A£s|0+ Z Ars,rslo]-

Ty8= 7,8=1

(5.14) L;(6; D) = n“[
From (3.21) and (5.13) follows
Ay = —31DO(6")rs + 36°(63")rs,
Arsrs = =3D0(0)risrs + 30" (@2 )rore
which implies in view of (4.2) and (4.5) that
Awlo= —%(26° — DO)oy,,
Avsrs | 0 = 1(36° — DO) (81, + 615 + 201rs).
Substituting this into (5.14), we obtain
(5.17)  Ls(0; D) = (4n)7'[(26° — D6)* + 2(p + 1) (36* — D9)].

Combining these results, we have the linear terms of ¢ (¢) in the form
[28 Li(0; D)Je™".

5.3. The quadratic terms. Having settled the linear terms, we shall now turn
to the second order terms. First the term of order N1” is

(5.15)

(5.16)

v
(5.18) BNH™ D [0R0P e | o = Qi (8; D)™,
r,8=1

where we have to determine @y, . Further differentiation of (5.5) gives

[ail)aﬁl)fe" = [(A?' + AT'T) (Ag + As,s) + 4:ArAaAr,8

(5.19) \ )
+ 2Ar.s + Z(ArAr,s,x + AaAr,r.s) + Ar,r,s,s]e .

Since (5.7) implies that 4, for r % s as well as every derivative of 4 of more
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than second order are zero, it holds that

» D 2 D
> 199t = {[21 (47 + A,,,)] + D 444,. + 2A$,,)} et

rio=1 =
If we put
Qu(0; D) = BN, (@A, +24%) [0
= (4NIDY7'26*(6* + Do) + p(6* + Do)
which follows from (5.8), then we have
(5.21) Q11 (6; D) = 3[L:(8; D)I" + Qu(6; D)
with L, defined in (5.9). Thus the term of order N1 is written as
(5.22) (3(L1(6; D)I* + Qu(8; D)}e”".
Similarly the term of order N3” is
(5.23) {(3[L2 (6; D)I* + Qu(0; D)}

with L, and Qs defined in (5.10) and (2.6), respectively.
The cross term of order (NiN:)™' can be written as

(5.20)

P
(524)  @NN2)7 2 188098 [o = (L1 (6; D)La(65 D) + Qu (65 D).
It remains to determine Qi . As with (5.20) it holds that

P
Ql?(a; D) = (4N1N2)_1 Z (4ATA8AT,8 + 2A£,s) |0
(5.25) i

= (2N.N.D*)7[26*(6° — D6) + po']
by substltutlng A, |oand 4, |, given in (5.8) and (5.11), respectively, and also

A, |0 = —D7°6%,, which is easily Verlﬁed
Similarly the term of order (V. m) s

y4
(526) @Nm)™ > [0Paufe [0 = [L1(0; D)La(8; D) + Qu(6; D)™

We shall determine Qi; . Adopting the notation which we have already used
repeatedly, we have

[3$1)33z ZeA = [(Az + Ar,r) (Azt + Ast,st) + 4ArAstAr,st

(5.27) . )
+ 2Ar,st -+ Z(ArAr,st,st -+ AstAr,r,u) + Ar,r,ct,st]e )
so that
D
Qu(8; D) = @Nm)™ 2. [44,Audre + 2470
(528) rs,t=1

+ 2ArAr,st,st + 2AsIAr,r,st + Ar,r,at,st] I 0.
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Differentiating (3.21) and using (4.2) and (4.5), we obtain the values of four
quantities A, ., Arstiet, Arrse a0d A, e, at the point specified in (3.3),
which determine the functional form of @3 as shown in (2.6).

Analogous method gives

(5.29) [L2(6; D) Ls (6; D) + Qus(8; D)Je™”
as the term of order (Nn)~", where L,, L; and Qs are given in (5.10), (5.14)

and (2.6), respectively.
Last, the term of order n" is

—2 1 L 2 22 4 < ] A
= 0500, + = rsOst01r
(5.30) " l:zr.s,tz,u—l ot 37.:4:;1 Brsduider (6 |0

= {31Ls (8; D)IF + Qu(6; D)}
Qg3 is obtained as follows. From two relations
Oreditue” = [(Ar + Arors) (Alu + An) + 44ndudren
+ 24700 + 24l F Awdrorein) + Aroso,nle’,

and 4
arsastatreA = (ArsAstAtr + ArsAst,tr + AstAtr,rs + AtrArs,st + Ars,st.tr)eA

it follows that

D
Q33(0: D) = (27%2)_1 Z (4ArsAtuArs,tu + ZAzs,tu

7,8, ¢, u=1

(5.31) + 4AtuArs,rs,tu + Ars,rs,tu,tu) I 0
i
+ 4(3%2)—1 Z (ArsAsAtr + 3Atr-Ars,8t + Ars,st,tr) '0

7,8,t=1

Since 4, as well as A, have already been computed and since the values of
four quantities Ays,eu, Ars,rs,tus Ars,st,er A0 Ay re,eu,ea at the point (3.3) are
given by Lemma 4, we can write Qg in the form shown in (2.6).

Combining these results, we can represent the second order terms in the
formula

3 . .
{%[; Li(®; D):I + 2 lQiz‘(O; D)} e

1<j=

which completes the calculation.
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