SAMPLE SIZE REQUIRED FOR ESTIMATING THE VARIANCE WITHIN d UNITS OF THE TRUE VALUE¹

By Franklin A. Graybill and Terrence L. Connell

Colorado State University

1. Introduction. The problem of estimating the variance (σ^2) of a normal density arises in many experimental situations. J. A. Greenwood and M. M. Sandomire [3] have presented a means of obtaining the sample size required to estimate the variance of a normal density within a given per cent of its true value. An investigator may prefer instead to estimate the variance within a given number of units. This paper will provide a two step sampling procedure to solve that problem.

Assume a preliminary sample of size m; z_1 , z_2 , \cdots , z_m , is taken from a normal density with variance σ^2 . The unbiased estimator of the variance s_m^2 is computed by the formula $s_m^2 = (m-1)^{-1} \sum_{i=1}^{m} (z_i - \bar{z})^2$, and d and $1 - \alpha$ are specified in advance. It is desired to determine n, on the basis of the preliminary sample, such that

(1.1)
$$P[|s_{n+1}^2 - \sigma^2| < d] > 1 - \alpha$$

where s_{n+1}^2 is equal to $(1/n) \sum_{i=1}^{n+1} (y_i - \bar{y})^2$ and where y_1, y_2, \dots, y_{n+1} is a random sample of size n+1, from a normal density with variance σ^2 .

Table I in Section 3 provides the sample size n + 1, such that (1.1) is true, for $1 - \alpha = .90$, .95, .99; m = 5, 10, 15, 20, 50, 100, 200, 500, 1000. The only other known method for solving this problem is given in [1], which requires the use of Tchebycheff's inequality. It can be shown that the method presented in this paper provides a significantly smaller second sample size than does [1]. For some comparisons with [1], see Table III.

2. Solution. Equation (1.1) may be written as

$$P[|s_{n+1}^2 - \sigma^2| < d] = E_n \{ P[(1-a) < v < (1+a) | n] \}$$

$$= \int_1^\infty g(n) \int_{1-a}^{1+a} f_1(v | n) dv dn$$

where E_n is expectation with respect to n; $a = d/\sigma^2$; $v = s_{n+1}^2/\sigma^2$; $g(\cdot)$ is the density of n, and $f_1(\cdot \mid n)$ is the density of a chi-square variable divided by n, its degrees of freedom. We shall restrict n such that $n \ge 1$. By definition

$$f_1(v \mid n) = [(n/2)^{(n/2)}/\Gamma(n/2)]v^{(n/2-1)}e^{-(n/2)v}, \qquad 0 < v < \infty$$

= 0 , -\infty < v \leq 0.

Received 22 July 1963.

¹ This research was supported by the Air Force Office of Scientific Research.

Given that

$$f_2(v \mid n) = [(n-1)^{\frac{1}{2}}/2\pi^{\frac{1}{2}}] \exp[-(n-1)^{\frac{1}{2}}|v-1|/\pi^{\frac{1}{2}}], -\infty < v < \infty$$

it has been shown by Connell and Graybill [2] that

$$\int_{1-a}^{1+a} f_1(v \mid n) \ dv > \int_{1-a}^{1+a} f_2(v \mid n) \ dv = 1 - \exp \left[-(n-1)^{\frac{1}{2}} a/\pi^{\frac{1}{2}}\right].$$

If a were known, we might set n equal to $1 + [\pi \log^2 \alpha]/a^2$, since in that case we would have

$$P[|s_{n+1}^2 - \sigma^2| < d] > E_n \int_{1-a}^{1+a} f_2(v \mid n) \ dv = E_n(1-\alpha) = 1 - \alpha.$$

Because a is assumed unknown let

(2.1)
$$n = 1 + [\pi \log^2 \alpha] k^2 s_m^4 / d^2$$

where k is some constant, independent of a, such that

(2.2)
$$E_n \int_{1-a}^{1+a} f_2(v \mid n) \ dv = 1 - \alpha.$$

The density of s_m^4 , and consequently of n, is a known function of σ^2 . Also, the expectation of $1 - \exp[-(n-1)^{\frac{1}{2}}a/\pi^{\frac{1}{2}}]$ for n given in (2.1), clearly does not involve σ^2 .

The value of k in (2.1) such that (2.2) is true is

$$k = (m-1)[(1/\alpha)^{2/(m-1)}-1]/2 \log (1/\alpha).$$

Thus, if the sample size

$$(2.3) n+1 = (\pi/4)[(1/\alpha)^{2/(m-1)}-1]^2(m-1)^2s_m^4/d^2+2$$

is used for the second step sample, the inequality in (1.1) is satisfied. The expected second sample size in (2.3) is

$$E_n(n+1) = (\pi/4)[(1/\alpha)^{2/(m-1)}-1]^2(m^2-1)\sigma^4/d^2+2.$$

3. Sample size tables. The second sample size n+1 in (2.3) insures that (1.1) is true. To find n+1, compute s_m^4/d^2 , where s_m^2 is available from the preliminary sample of the procedure and d is the desired allowable deviation from the true variance, multiply by the entry in Table I which corresponds to the appropriate $1-\alpha$ level and m (the size of the preliminary sample), and add 2.

Table II gives n+1 for some particular values of s_m^4/d^2 , $1-\alpha$, and m.

Table III shows some comparisons between the sample size given in (2.3) and the sample size obtained in [1]. The quantities tabled are

$$h(m, \alpha) = (n-1)/(n'-1)$$
$$= (\pi/8)\alpha(m-3)(m-5)[(1/\alpha)^{2/(m-1)}-1]^2; \quad m \ge 6$$

	TABLE I	
Entries are	$(\pi/4)[(1/\alpha)^{2/(m-1)}-1]^2(m-1)$	$1)^{2}$

$1-\alpha$	m=5	10	15	20	50	100	200	500	1000
.90 .95 .99	58.75 151.50 1017.88	56.92	43.92	38.97	31.90	17.45 29.96 73.17	29.06	28.53	16.73 28.36 67.24

TABLE II

Sample size n + 1 such that $P[|s_{n+1}^2 - \sigma^2| < d] > 1 - \alpha$

s_m^4/d^2	$1-\alpha=.90$.90	.90	.95	.95	.95	.99	.99	.99
	m = 10	100	1000	10	100	1000	10	100	1000
				···	····				
.25	10	7	7	17	10	10	5 3	21	19
.5	17	11	11	31	17	17	104	39	36
1.0	31	20	19	5 9	32	31	205	76	70
2.0	5 9	37	36	116	62	5 9	407	149	137
5.0	144	90	86	287	152	144	1013	368	339
10.0	256	177	170	572	302	286	2024	734	67

TABLE III

Comparison of sample size: n + 1 given in (2.3), n' given in [1] $h(m, \alpha) = (n - 1)/(n' - 1) = E(n - 1)/E(n' - 1)$

m	$1-\alpha=.90$. 95	.99
10	.613	.615	.437
100	.820	.704	.344
1000	.832	.705	.334

where n+1 is given in (2.3) and n' is the sample size given in [1]. It is noted that $h(m, \alpha) = E(n-1)/E(n'-1)$. It can be demonstrated that

$$h(m, \alpha) < h(m, \alpha_0) < \lim_{m \to \infty} h(m, \alpha_0) = 2\pi e^{-2} \cong .85$$

where $\alpha_0 = [(m-5)/(m-1)]^{(m-1)/2}$. With minor modifications, the results of this paper can be used to estimate the mean of the gamma distribution.

REFERENCES

- BIRNBAUM, A. and HEALY, W. C., JR. (1960). Estimates with prescribed variance based on two-stage sampling. Ann. Math. Statist. 31 662-676.
- [2] CONNELL, T. L. and GRAYBILL, F. A. A Tchebycheff type inequality for chi-square. Submitted for publication.
- [3] GREENWOOD, J. S. and SANDOMIRE, M. M. (1950). Sample size required for estimating the standard deviation as a per cent of its true value. J. Amer. Statist. Assoc. 45 257-260.