THE ENUMERATION OF ELECTION RETURNS BY NUMBER
OF LEAD POSITIONS

By JouN RIORDAN

Bell Telephone Laboratories

0. Summary. In an election return with two candidates A and B, if «, is the
number of votes for A in the first r counted, B, the similar number for B, then
r is a c-lead position for 4 if o, > B, + ¢ — 1. With final vote (n, m)(n for A4,
m for B), what is the number /;(n, m; ¢) of returns with j c-lead positions? Or,
what is the enumerator l,.(z; ¢) = Y lj(n, m; ¢)z’ of election returns by num-

ber of lead positions?
For ¢ = 0, 1, £2, - -- it is shown that all enumerators may be expressed

in terms of l,,(x; 0) and l,»(z; 1), which are given explicit expression.

1. Introduction. In an election return with candidates A and B, if o, is the
number of votes for A among the first 7 votes, 8, the similar number for B, then
r is a c¢-lead position for 4 if @, > B, + ¢ — 1. For given ¢, every return with
final vote n for A, m for B, has a count of c-lead positions. What is the number
lx(n, m; ¢) of returns with k c-leads? Or, what is the enumerator

(1) bim(z;¢) = 20 U(n, m; ¢)a*

of returns by number of lead positions? Partial answers appear in Lajos

Takécs [3].
The first election return problem, posed by J. Bertrand [1] in 1887, asked only
for the number I, ,(n, m; 0); Bertrand’s answer was

_fn+m _ n+m\_ _n+l—mfn+m
(2) “"m—( m ) (m—l)_-—n—-—l-—l_( m ) nzm.

Note that anm = @nma + Coeim -
Here it is shown that

n—1
(3) Lam(%50) = Gmoyn + 2 bi(n, m)a*(z + 2°), n < m,
i=0

m—2

> bmai(m — 1, n 4 Dz " (z + a?)
7=0

+ aﬂ.m—lxn+m_l + anmxn+m n g m
) )
with b]-(n, m) = Z;;:o Ak Am—1—k,n—1—j and
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n—2
Lim(2; 1) = Gmn + Gmpaz + 2 bj(m+ 1,1 — D21 +2), n=<m,
=0
© ’

D> bma—i(m, )z (1 4 2) + Gy ™™, n > m.
7=0

These two enumerators serve as a basis for all others, as will be shown.

2. Recurrence relations. For given ¢, recurrence relations for the enumerators
are found by considering the effect of the last vote cast. The final vote is a lead
position only if n > m -+ ¢ — 1; hence

5) lam(z;¢) = l,.,,,:_l(x; ¢) + lia,m(z, c), n<m-+c—1,
= Zly,ma(z; ¢) + xloy m(z, ), n>m++c— 1
Boundary conditions are: )
lom(z;¢) = 1, m=20,1,---,
(6) luo(z;¢) =1, n=01--,¢c—1,
= g"t, n=cc+1,---.

Recurrences (5) and the boundary conditions (6) determine the enumerators
completely.

Recurrences for changes in ¢ are found by considering the effect of the first
vote cast. If this vote is for A, the first position is a lead position only if 2 > ¢,
and the remaining votes are enumerated by l,_;,»(z; ¢ — 1). If the first vote is
for B the first position is a lead position only if 0 < ¢, and the remaining votes
are enumerated by ., n—(x; ¢ + 1). Hence

lim(z;¢) = ligm(z;e — 1) + Lyma(z, ¢ + 1), c=23, -
lam(25 1) = b1, m(2; 0) + lym(2; 2)
lim(2; 0) = 2oy, m(x; —1) + by ma(z; 1)

lam(z; —€) = 2l g, m(z; —¢ — 1) + 2lpma(x; —c+ 1), ¢c=1,2,---.

It is clear that all enumerators may be expressed in terms of any consecutive pair.
Thus

(7)

bim(252) = by,mia(2; 1) — 2l ma(2;0)
Lim(253) = bimu1(2; 2) — lot,mia (25 1)
= loms2(23 1) = botymia (25 1) = @hoos,maa(35 0)
and in general
(8) bim(2;2 + ¢) = Le(—=f)lnmie1(251) — aLes(—f)lnt,mresa(z; 0)

with fl, w(z; ¢) = Lo, mu(x; c) and
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L@ =5 (" N=lwt .

L,(z) is the “largest rook polynomial” (ef., [2], p. 183).
For negative ¢, first
Tlam(z; —1) = loy1,m(2;0) — loya,ma(z; 1)
Plan(; =2) = lasam(@; —1) = 2s1,moa(3; 0)
= luse,m(2; 0) — 2np1,me1(25 0) — luye,ma(; 1).

Further iterations lead to
(9) 2 Mum(z; —¢ — 1) = Lo(—2"F)luse,m(2;0) — Lea( —2"F)lnje,ma(2;51)
with Fl,.(x; ¢) = l_1,ma(x; ¢).

3. Weak leads. The case ¢ = 0 (a, = B,) is often referred to as that of weak
leads, a convenient designation for this section. The enumerators are completely
determined by recurrences (5) and boundary conditions (6) for ¢ = 0, but their
structure is found most readily by beginning with the tie returns: n = m. These
may be classified according to first occurrences of ties. If the first tie is (k, k),
k=12, ---,n, the remaining votes are enumerated by l,— »(x; 0); if the
first vote is for A, the votes up to the tie are enumerated by z* (every position
is a lead position), while if it is for B, the enumerator is . The total number of
returns with first tie at (k, k), and first vote for A is ar—1x—1 = cx_1, with
¢ a Catalan number (this is a well known result which follows from the fact
that the last vote must be for B, and from Equation (2)). By symmetry there
are an equal number of returns with first vote for B. Hence, if lp(z; 0) = 1

(10) bn(z; 0) = 2 aa(z + 2)lpas(z; 0), n=12,--
k=1

In particular, omitting arguments

Iy = co(z + 2l = & + 2°

by = co(z + 2D)ly + ci(z + 2l = z + 2° + 22° + 22*

s = co(x + 2l + ar(z + 2y + ex(z + 2%l = 22

+22° + 32° + 32! + 52° + 5%,
These suggest writing
(11) Lin(2;0) = (z + 2*)ga(2?), n=12--.
with g.(z) a polynomial in z of degree n — 1l:gi(z) = 1, ge(x) = 1 + 2z,
gs(z) = 2 + 3z + 52°.
Substituting (11) in (10) shows that

n—1

gn(xQ) = ,;Ck—l(x + x%)gn—k(xz)

(12)
+ (e +2") (@ + 27, n=23, .
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In particular, ¢;(z) = 1, and
(") = (2 + (") + 1 — o + 2 = o) + 1+ 2 + 2ln() — 1]
or
92(z) =zgu(z) +1+2=1+422
and
g2:(z) + gi(x) = 2(1 + z) = (1 + 2).
Next
1(@) = (@ + D) + @+ DaE) + all — 3+ 2 — 2 + o)
or, separating even and odd powers of =,
g5(z") = 2go(2”) + Z'q1(2”) + (1 4 2" + 2*) + 2lga(2®) + g1(2”) — ea(1 + )]
so that
g3(z) = 2g2(z) + 2'p(2) + (1 + & + )
and
g5(z) + g2(2) + en(2) = (1 + = + 2°).
It is clear that the equation
(13) cgn(z) + cgna(x) + -+ + coagi(2) = ca(l + -+ + 2"
implies, separating even and odd powers of z in Equation (12),
(14) gn1(z) = coxgn(z) + a17’gaa(x)
+ o0+ enar’i(z) +oea(l + -0 - + 27).

Hence both equations are true if the fact that (14) holds up to n + 1 and (13)
up to » implies that (13) holds up to n + 1. This implication is perhaps clearest
in the next instance of the development above: n = 4; thus, omitting arguments

gs = 2gs + 22 + 2’y + (1 + z + 2* + 2?)
gs = zgs + x2g1 + (1 4+ = + .’122)

cg2 = caxgr + (1 + ), Csgr = C3.

Then, using (13) for n = 3, 2, 1, and summing columns as arranged above
gs + g3 + o2 + Can
=(t+atata)(l+z+a+2") =al+z+2"+2")

since ¢, = 2724 €ica1—j . The argument is general and (13) holds in general.
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Now introduce the generating functions

15)  g@my) = 3 a)

(16) c(z) = ‘Z;c,‘x" =1 — (1 —42)/2c =1 — ze(x)]™
Then by (13)

(17) (1 — ye(x)g(z, y) = c(z) — c(zy)

while by (14)

(18) (1 — 91 — zye(zy)lg(x, y) = ze(x) — zye(zy).

From either of (17) or (18), it follows, using ¢(z) (1 — zé(z)) = 1, that
(19) (1 —y)g(z,y) =1 — c(zy) + ze(z)c(zy).

Equating coefficients of =" in (19) gives

(20) (1 = y)ga(y)

= —Cay" + Clns + Cilagy + -+ Chlnaik + o+ Comcy”
Then if ga(y) = D to gmy" it follows from (20) that
nn—1 = Cn
(21) gn,n—1
Onk — Gnjk—1 = CiCn—i—k » k=0,1---,n—2

Iterations of the second of Equations (21) lead to
k

(22) gk = Zocjcn—l—j ’ k=0,1,---,n— 1.
=

Note that (22) holds for k¥ = n — 1 by the relation (used above):
Cn = 2150 ¢ien_1—; . Note also that

k n—1

(23) Gnk + Jn,n—2—k = Zc]'cn—l—j + Z Cp—1—jC = Cq
=0 j=k+1

or

(23a) 2ga(x) + 2" ga(z™) = ca(l + 2+ -+ + 27).

Another form for g,. has been found by my friend and colleague, S. O. Rice;
it is ‘
(24) 2¢uk = Ca + [(2k + 2 — n)(n — k) (k + 2)/n(n 4 1)]ce41€n—1— -

It may be proved by (22), but proof is omitted.
Turn now to the enumerator l,_; ,(z; 0) ; from

lnn(x; 0) = xln—l,n(x; 0) + xln+1.n(x; 0)
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and
lum(; 0) = lo1,m(z, 0) + ln,ma(z; 0), n < m,
it is clear that Equation (10) implies
(25) lﬂ—l,n(x; 0) = ;Ck—lln—k.n—k(x; 0), n = 1) 2) e
(26) Tlay1a(z;0) = kEc,,_lx”‘z,._,,,,._k(x; 0), n=12 -
=1

with ln(z; 0) = 1. Then, by (25), (11) and (13)

ln—1,n(z; 0)
(27) n—1

= l;ck_lyn_k(xz)(x +2) + o = Ca(l + 2+ -+ + 227
while by (26) and (14)
n—1
Tl ma(z, 0) = I; 12" gni(2®) (z + 2°) + eoa™

(28) = (@ + D)a(a?) — iz + -+ + 22
= lun(2;0) — Zlo1,(x;0)

with the last line a verification.
With these results, the way is open to the determination of the enumerators

for all » and m. Note first that the recurrence @¢,» = @n,m— + an_1,» and Equation
(2) imply
Cn = Gnn = Gn,n—1
= Gnfn2 T Guin1 = Gun2 + Guoinz,
= Gnn-3 + 200122 = Gnns + 20n_1,n—3 + 20n_2.043,

leading to the conjecture, easily proved by induction,
(29) Cn = g Qi n1—k k=1,2,.
It is interesting to notice that this is an inverse relation to
nnte = g:o (—1) (’c ;"7) i, K=1[k/2], k=1,2,---.

For n < m, first notice that a,» and l,»(z; 0) have recurrences of the same
form namely

Gpm = On_1,m + Gn,m—1

lam(x; 0) = lpg,m(x;0) + L ma(zx; 0)
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the latter by (5). Hence it may be expected that l,»(x; 0) may be expressed in
terms of the numbers @, , the form being fixed by the boundary conditions,
supplied by ln—;,=(z; 0) as given by (27), modified appropriately by (28). The
modification needed develops naturally by examination of the first few cases.
Thus as already noticed in (6), lpn(x;0) = 1, and it is easy to see that, omitting

arguments

bm=m—14+ 2+ 2* = @Gnag + Gmao(z + 2°),

Then, using (27) and (29),

(1l +z+ 2+ 2+ 2%

ap + an(z + ) + (an + aw) (2® + 2)

lg + ha .

a2 + an + (an + ax)(z + 2°) + (a2 + an)(z* + 2*)
as + an(z + %) + (a0 + an)(@® + ')

by =

Il

l24=

and if

l2,m—l

l2,m

Um22 + Anz1(T + 2°) + (@mso + Amso)(@® + z*)
loma + bim

Umt2 + Am1a( + 2°) + (@mro + Cmso) (° + 2)
Oms + bo(2, m)(x + 2°) + by(2, m)(2® + z*)

where b;(n, m) is the expression defined following Equation (3).
The general result, given by Equation (3), now follows by induction, writing

m—2 j

lm-l,m = Om-1,ma + (x + x2) Zo x2jlcz()a,-kam_1_k,m_2_j
= -

Now, since

m—2

= @ma,ma + (x + 2°) J;oxz"'b,-(m —1,m).

n—2

l,m = ln,n+1 - ln-l,n+l = Qnn — Qn,n—1 + Zo [bj(n7 n + 1)
=

and

m > 1.

—bi(n — 1,n + D" (x + &) + baa(n, n + 1)z 2z + %)

b,(n,n-i—l)—b,('n—l,n—!—l)=b,(’n,n), .7:0)17

b,,_l('n, n + 1)

Cn

a new expression for /,, appears, namely

n—2

(11a) lun(z, 0) = Zob,-(n, )2 (z + 2°) + ™ Nz + 2°).
=

,n—2
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This implies g,; = bj(n, n),j = 0, 1, -+, % — 2, gan1 = Ca and using the
first of these and (23)

bj(n, n) = Cp — n—2—j(n’ n)

(30) = ng On2j i (Qnt,jt1 — Gn1k,j+1)

= Z On9—jiOnk,; = bnsj(n — 1,n + 1).

Thus a third expression for I,, is

n—2

(11b) L. (z;0) = ,Z; boojin —1,n + l)xzj(x + 2%) + ™ Nz + ).
For concreteness, the first two interesting values of these expressions are,
omitting arguments,
Iy = (x + 2°)[az + (an + au)z’ + caz']
= (z + 2°)[ax + an + auz’ + ciz']
Iy = (z + 2)[ass + (a2 + an)e® + (an + 200 + 2an)z* + ca’]
= (& + 2)[(aw + 205 + 2a10) + (aa + aa)2’ + ez’ + ca’].

Equation (11b) is particularly apt in determining l,.(z; 0) for n = m. As
already noted in Equation (6), lo(z; 0) = z" and it is easy to see that
Iy = z" + nz"™" = 2" + auz™™. Then, using (11b) and ¢; = ax = an

I = an(z + 2°) + aua’ + ant’
by = zlp + 2y
= an(2’* + %) + (au + 1)z’ + (a2 + an)?’
= an(z’ + 7°) + anz' + Az’
and by induction
Lo = (2" + 2") + @uz™™ + auz™
In the same way
ls = (Gno + Gn10) (2" + 2") + au(z” + 2™™) + €™ + @™

Note that @, + @na0 = (2, n + 1), @ = bo(2, n + 1). The general result
given in the second of Equations (3) is obtained by induction, using (11b) in the
form

n—2 . ' .
Lin(2;0) = Do bus;(n — 1, n + 12 + 2°) + anaad™ " + A"
=0

Another form for I,.(z; 0), n = m has been found independently by Ora Engel-
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berg (private communication) and in present terms is as follows

m—2

Lin(2;0) = D ¢ci(n, m)z" ™ (z + 2°) + cmu(n, m)z"*™" + gpnz™t™

7=0

with ¢;(n, m) = D ioCm1—t@n_msks - The identities appearing on comparison
of the two forms are

ci(n,m) = bmoj(m — 1,n 4+ 1), ji=0,1,---,m—2
cm—l(n’ m) = QAn,m—1 .
They are readily proved, but proof is omitted.

4. Strict leads. This is the case ¢ = 1. There are many similarities to weak
leads, which permit greater brevity in the development. First, by an argument
similar to that for Equation (10),

(31) Lin(2; 1) = gl:ck_l(l + 2% Dl r(z; 1)

with lw(x; 1) = 1. The first few values are
h(z;1) =14z
ba(z;1) = (1 +2)(2 + 2%
ls(z;1) = (1 + 2)(5 + 32° + 22%).

The numbers in these are familiar; for any n, they are the g.. of the preceding
section written in reverse order. If

(32) Ln(251) = (1 + 7)ga(2’; 1)
then
(33) gn(z; 1) = 2"7ga(27).

Indeed substitution of (32) in (31) gives
ga(a®3 1) = Xaa(1 + @ gai(a’5 1) + a1 + 27 + )7
and use of (33) in this gives (12).
Next (31), like (10), may be partitioned into

Laa(z; 1) = l;ck—lln—k,n—k(x; 1)
(34) N
lnna(251) = 2 ™ o ma(; 1)
k=1
but now I, »—1(x; 1) has a common numerical factor:

(35) ln,n—l(x; 1) = C,._l(x —+ x2 + - 4+ x2"_1).
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Proof is by the first of the following two recurrences (derived by using (33)
in (13) and (14)):

n—1

> aatgni(z, 1) = ca(l + -+ + 2™

k=0

grn(z; 1) = :Z_::ckg,._k(x; 1) +ca(1 + -+ + 27).
For n = m, first hn(z; 1) = 1 and Lu(z;1) = m + z = am + z. Then
Le(z;1) = @z + anx + an(2® + 2°)
ba(z; 1) = la(x; 1) + ha(z; 1)
= @z + ant + an(2’ + 2°)
and if
bn(2;1) = @Gm2 + amT + amo(z” + 2°)
bomu(z; 1) = bm(z; 1) + b mia(z; 1)
= Gmi12 + Gmi1% + Gmiro(2’ + 2°).
In the same way 4
Ln(2;1) = Gms + @ms? + Gma(2* + 2°) + (@m0 + Gmoyo) (z* + 2°)
bn(231) = Gms + Gma + Gma(2 + 2°) + (@ + Gnoaa) (2" + 2°)
+ (@m0 + 2Gm-1,0 + 2@m2,)(2° + z7)

2
= Qm + @ms + Zob,-(m I 1, 3)z%(a + 2°).
i=

Mathematical induction and
lom(2;1) = Gmm + Gmymat + ,:;—:b,-(m +1,m — 1)z¥@ + 2°)
proves the first half of (4).
Forn > m, first l,o (x;1 ) = 2" and
la(z;1) = 2" + 2"+ (n — D™
=2" 4+ @py " + a,._l,lx"+l, n > 1.
Next
ln(z; 1) = (a0 + @) (2 + 2°) + an(2® + 2*) + ama’
lp(x;1) = alyy(x; 1) + xly(x; 1)
= (asn + ax)2’(1 + z) + a2’ (1 + z) + e’
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and if

ln2(x; 1) = (an—l.O + an—2,0)xn_2(l + x) + a,._l,lx"(l + x) + a,._l,gx"H
then
lis12(2;2) = (@m0 + Gn1,0)2" (1 + 2) + @z (1 + z) + Guz™™®
=b0(2,n+ Dz" (1 + z) + b(2, n + D" (1 + z) + apz™*.
Writing
n—1
ln+1.n(x; 1) = Z bn—l—i(n) n + l)xl+2j(1 + x) + annx2n+l
i=0
the second half of (4) follows by mathematical induction.
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