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Summary. A multivariate competition process (M.C.P.) is a stationary, con-
tinuous time Markov process whose state space is the lattice points of the posi-
tive orthant in N-dimensional space and whose transition probability matrix
only allows jumps to certain nearest neighbors. As such it is the natural general-
ization of birth and death processes. In this paper we extend the results of Reuter
[15] to obtain sufficient conditions for a M.C.P. to be regular, positive recurrent,
absorbed with certainty, and to have finite mean absorption time. Some explicit
examples are given and references to various applications indicated.

1. Introduction. A M.C.P. is a standard, stationary, continuous time Markov
process’ with state space B = {(41, - ,%n)i01, - -, = 0, 1, ---}, where
N = 2, and transition probability functions® {p.;(t):3, je E, t = 0} for which
pi;(0) = g¢i; . Furthermore, for ¢ = (41, - -, in)

gi; = s(2) J= (i1, )
=Ak("') j=(7"1)'”7ik-—177"k+17ik+1)""i”)
=Mk(i) j=(il,'°',7:k—l,'ik"'lyik+17°")1:N)

='Ykl(i) .7= (7:17"' ) ""k—l’ W — 1’ 7:76+17”'7 il—ly i+ 1’ Z'l+1’

)

=0 other j,
where k, I = 1,---, N; k # I; and s(d) = —{ i1 e (d) + we(d)] +
D Miskerya(i)}). We shall assume that u(i) = () = 0 when # = 0

and that M\¢(7), ux(7), and v::(7) are nonnegative. Also we assume that DY NG

and D71 u;(7) are positive when the state 7 is nonabsorbing with the exception
that D) u;(s) = 0 when 7 is the origin. The elements A«(¢) allow a birth of
one in the kth coordinate, u:(7) a death of one in the kth coordinate, and (%)
a mutation of one from the kth to the lth coordinate. Clearly, a M.C.P. is con-
servative and its states are stable. Following Reuter [14] we call {p.;(¢) la Q-proc-
ess and {¢;;} the Q-matrix.

Received 16 August 1963.-

1 Research sponsored by Office of Naval Research contract Nonr-401(48).

2 See Chung [1] for a definition of a standard Markov process and other terminology asso-
ciated with Markov processes.

3 This definition extends Reuter’s [15] definition of a competition process in two dimen-
sions to one in N dimensions. For the case N = 2, see [2] for an integral representation of
{pii(®)}.
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In general, there will be many processes possessing the same Q-matrix. If the
Q-matrix uniquely determines the process, we call the Q-matrix and the asso-
ciated process regular. Probabilistically the regularity condition is equivalent
to either the process taking only a finite number of jumps in finite time or that
almost all sample functions are step functions (ef., Chung [1], p. 237). In many
practical applications the only data given for the problem will be a Q-matrix.
Hence it is important to have a condition for regularity of the Q-matrix stated
in terms of the infinitesimal parameters g;; .

If regularity of the Q-matrix can be established, one can then ask questions
about the recurrence, transience, and absorption properties of the process.
This is the type of program we shall attempt to carry out for M.C.P.’s. The
results of this paper represent an extension of the work of Reuter [15]. In fact
most of the results for these more general processes make use of his methods.
In Section 2 a sufficient condition for regularity of a M.C.P. is given. Section 3
is devoted to a sufficient condition for irreducible M.C.P.’s to be positive recur-
rent. M.C.P.’s with absorbing states are introduced in Section 4 and a sufficient
condition for absorption with probability one is given. Section 5 gives a suffi-
cient condition for the mean absorption time to be finite. Actually the condi-
tions obtained in Sections 2-5 apply to a slightly more general class of processes.
Finally, in Section 6 we give a number of specific examples of M.C.P.’s, indicate
a few qualitative properties of the processes, and give some references to appli-
cations of M.C.P.’s.

2. Regularity. For conservative Q-matrices Reuter ([14], Theorem 7) has ob-
tained the following necessary and sufficient condition for regularity :
LemMma 1 (Reuter). Let Q be conservative, and consider the set of equations

(1) (>\ + qv.)Sz = ZazE,a#i qiaSa .

Each of the following conditions is necessary and sufficient in order that there be
only one Q-process.

(a) For some X > 0, (1) has no bounded solution other than &, = 0 (all i ¢ E)

(b) For some N > 0, (1) has no bounded non-negative solution other than
£, =0(allve E).

To verify (a) or (b) for a specific M.C.P. is in general a very difficult matter.
However, it is possible to obtain a sufficient condition for regularity by appeal-
ing to a simple probabilistic notion. The idea of the proof is to “bound” in an
appropriate sense our M.C.P. by one-dimensional birth and death processes.
For birth and death processes a simple necessary and sufficient condition for
regularity has been obtained by Karlin and McGregor [4]. Since a process can
only fail to be regular by ‘“going to infinity in finite time,” if we can “bound”
our M.C.P. by a regular birth and death process which is moving “toward
infinity’’ at a faster rate than the M.C.P., this will yield a sufficient condition
for regularity of the M.C.P.

Before proceeding to the theorem, we shall need to introduce certain defini-
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tions and results from the theory of birth and death processes. (For a tompre-
hensive discussion of birth and death processes see the two papers by Karlin
and MecGregor [4] and [5].) A birth and death process is a one-dimensional
analog of a M.C.P. The state space is the nonnegative integers and the Q-matrix
is of the form
gij = 8 (G =1
= pi (G=7-1)
=0 (other 7),

where ¢ = 0,1, --- 58, = —(Ai + pi); i, wi > 0fors=1,2,--- ;and po = 0.
For s > 0 let Q;(—s) be the solution of the set of equations

Qo(—s) =1
(2) sQo(—s) = s0Qo(—8) + No@Qi(—s)

sQi(—s) = sQi(—8) + NQina(—s) + pilia(—s) (2 1).

Notice that the set of equations (2) is exactly that of (1) for A = sand & = 1.
We define a new sequence = = {m;} in terms of the {A;} and {u.} by

o = ].
mi= (Mo Nica)/(pa -+ * ) (rz1).

The following lemma attributed to Stieltjes by Karlin and McGregor was
proved in [4], p. 504.

LemMA 2. A necessary and sufficient condition for the sequence {Q.(—s)} to be
unbounded as a function of n is that the series

(3)

0

(4) 3" (1/Awmn) 2o wi s divergent.
1=0

n=0

Thus combining Lemmas 1 and 2 we see that (4) is necessary and sufficient
for a conservative (up = 0) birth and death process to be regular.

Next we return to the M.C.P. and define a sequence of finite subsets of £
and two sequences of constants. Let A denote the set of absorbing states
1¢E (¢;) =0).Fork =0,1, --- welet ’

N
E, = {z = (i, --,in):ieE—A and ) 4 = k};
‘ =
N
(5) N\ = MaXi.s, {Zl M(i)} ; and
i=

sk = Min; g, {,é #j(i)}-
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If E; is empty, Ax and u; are not defined. With this preparation we can proceed
to

THEOREM 1. Let Iy denote the smallest integer I for which E; is nonempty. Then
a suffictent condition for regularity of the M.C.P. is that

0 k
(6) > (1/Aow) Z o; diverge, where
k=1g 1=l

agp = 1 and Olg4i = (>‘lo .o )\10.,_,'_1)/(;1,10.,_1 .. F‘lo+i) forz = 1.
Proor. Let s > 0 and let P(—s) = {P:(—s)} be any nonnegative, nonvan-
ishing solution of the equation

(7) ‘ QP(—s) = sP(—s),

where Q = {q.;}. Writing out this equation for 7 = (41, -+ , i) we obtain

s+ 2_.; NG + wi(D] + ,-,221 va(i) L Pi(—s)

F#~l
N N
(8) = Z; NPy e ijr,eip (—8) + Zl Bi(DP iy e ijmt iy (—8)

J= J=

N

+ 'IEI yjz(’i)P(;"...,.'1-_1,....',.;.1'...','N)( —S).
], =
J#l

Let Qi (—s) = maXi.gna {P:(—s)}. If E; is empty, Qi (—s) = 0 since P;(—s)
= 0 when 7 ¢ A by virtue of (7). If we let (k) ¢ E;, UA denote the state for which
Qi (—s) = Piw(—s), the following inequality follows from (8).

s+ ,Z:=1 Mi(E(k)) 4 wi(i(k))] + j; va(i(k)$ QE(—s)
flore

= ]Z:l N (k))QEn(—s) + ,;1 pi(1(k))Qia(—s) +;§1 vin(i(k))Qk (—s).

=l

(9)

Combining terms and rearranging (9) yields
2 NGEE)QE(—s) — QF(—9)]
(10) ~ _
= g;ﬂj(i(k))[Qf(—S) — Qia(—9)] + sQi(—s).

Since P(—s) is not identically zero, there exists an integer ko which is the smallest
k such that Qf(—s) > 0. This implies that i(k,) £ A and by assumption
S¥ ni(G(ko)) and ¥ ui(i(ko)) are positive. Clearly, ko = . By assump-

tion P(—s) [and therefore Qi (—s)] is nonnegative. Thus from (10) we can easily
show inductively that @Qf(—s) — Qi—i(—s) > 0 and (k)2 A for k = k.
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Hence using the definition of A, and u; we obtain from (10) the inequality

(11)  NIQE(—s) — QF(—8)] = mlQE(—s) — Qia(—5)] + sQi (—s)

fork = ko .
Let the polynomials {Q:(—s)} satisfy the equations
Qko—l( _3) =0

Qko(_s) = Q;:o(_s)
sQe(—s) = — (e + me)Q(—38) + NQeyr(—s) + wea(—s) (k = ko).

We now wish to show inductively that

(i) Qi(—s) Z Q(—s) (k= k); and

(ii) Q¥ (—s) — Qia(—s) = Qu(—s) — Qea(—s) (k2 ko).
For k = ko, the inequalities (i) and (ii) are trivially ¢rue. Assume (i) and (ii)
are true for £k = K. Then

AeQr41(—s) = (s + Ae)Qx(—s) + uxl@x(—35) — Qx-1(—s)]
S (s + M)Qx(—s) + uxlQx(—s) — Qx—a(—s)]
= MQxa(—s),

where the last inequality is obtained from (11). This shows (i) is true
for k = K + 1. On the other hand,

A[Qx11(—s) — Qx(—8)] = uxlQ@x(—3) — Qxa(—5)] + sQx(—s)
uxl@x(—s) — Qx1(—s)] + sQx(—s)
)‘K[Q:+l( —s) — Q:(—S)]

A1

I\

which proves (ii).

Using (i) and Lemma 2 it is easy to show that (6) is a sufficient condition for
{P;(—s)} to be unbounded as a function of 7. Thus appealing to Lemma 1 we
see that (6) is a sufficient condition for regularity of the M.C.P.

ReMARKs. Notice that the parameters {v;;(#)} do not appear in the regularity
condition, (6). Hence in applications we need not be concerned with the form
of these mutation parameters as far as regularity is concerned. Furthermore, if
the proof of this theorem is carefully examined, it is clear that we could in fact
introduce additional transitions from the state 7 ¢ E, toany other state j ¢ E, U 4
without changing the result. Thus (6) will serve as a regularity condition for a
class of processes much larger than simply M.C.P.’s.

3. Positive recurrence. In this section we shall only consider regular irre-
ducible M.C.P. Our objective will be to obtain a sufficient condition for the
process to be positive recurrent (i.e., recurrent with finite mean recurrence time).

The proof of the theorem giving a sufficient condition for positive recurrence
follows the method of Reuter ([15], p. 424). In obtaining his result Reuter first
proves the following general lemma.
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Lemma 3 (Reuter). Suppose the Q-matrix is regular and irreducible. If there
exists a state I and a finite sequence {u; : 1 & E} such that

(a') Ui % 07

() Diesqiu; +1 =0  (i=1), and

() Liemqisu; (3 = 1), is finite,
then the process is positive recurrent.

Using this result we obtain

TaEOREM 2. A sufficient condition for a regular, irreducible M.C.P. to be positive
recurrence ts that

(12) EO a; converge, where
=
the sequence {o;} is defined in Theorem 1 in terms of the {\:} and {uc} of (5).
Proor. We shall apply Lemma 3 for I = (0, ---, 0). Condition (c¢) will
clearly be satisfied for a finite sequence {u;}, since only a finite number of the
{qr;} are non-zero. Let u; = U for 7 ¢ E . If {u;} is to satisfy condition (6),
we must have

(13) ]; Ni(D)[Ukn — Ul + 1 = ; wi(D)[Ux — Ui (e I).

Furthermore, if we can choose the U, increasing, inequality (13) will be im-
plied by

MlUisr — Ul + 1 £ wilUi — Uil (k2 1).

Following Reuter we let Ui,y — Ux = Vi, let Vi, = 0 be arbitrary, and define
Vi(k = 1) recursively by MV + 1

#ka—l (]C g 1), SO that
Vi = (N/a){Vo — (1/X0) (o1 + 02 + + -+ + ou)} (kz=1).

Since D ii1or < © by hypothesis, V, can be chosen sufficiently large so that
V=0 (k = 1). Now if we choose U, = 0, the sequence {V,} will determine a
sequence { Uy} satisfying the conditions of Lemma 3.

REMARKS. Again as in Theorem 2 the mutation parameters {y;;(¢)} do not
play a role in the condition for positive recurrence. Hence the same remarks that
follow Theorem 1 could also be made in this case. It is also interesting to observe
that the sufficient condition (12) is also a necessary and sufficient condition for
the regular birth and death process with parameters {\:} and {u} to be positive

recurrent (cf. [5]).

4. Absorption with certainty. We now consider regular M.C.P.’s possessing a
nonempty set of absorbing states A. We denote the set of nonabsorbing states
E — A by the letter D. The number p;; for 7 € D and j € A is the probability that
the process starting in state 7 will ultimately be absorbed in state j. Thus «; =
D iea pij for ¢ € D is the probability of the process being absorbed in set A having
started in state 7. We know that either a; < 1 forallie D or a; = 1forallie D
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(cf., Kendall and Reuter, [11]). Our objective is to find a sufficient condition for
a; = 1forallze D.

Again we follow Reuter’s method. We shall apply

Lemma 4 (Reuter, [15]). Suppose the Q-matriz is regular. If there exists a se-
quence {u; :t € B} such that

(a) u; 20 (ZSE),

(b) the {u;} are unbounded as a function of %, and

(¢) Djerqiju; = 0 for all i e E, then

chz pij =1 forallieE.

Using Lemma 4 we obtain

THEOREM 3. For a regular M.C.P. assume there exists a nonnegative integer ly
such that E, is empty for | < ly and E; is nonempty for | = ly. Then a sufficient
condition for the process to be nondissipative (a; = 1 for ¢ € D) s that

(14) 2 1/Njo; diverge,
I=tg
where {\;} and {u;} are defined in (5).

Proor. We shall construct a sequence {u;} satisfying (a)-(c¢) of Lemma 4.
Let u; = U, for 7 ¢ Ex U A. Observe that (c¢) will be satisfied for any sequence
{u;} when 7 ¢ A. Hence we need only be concerned about (¢) for 7 e D. Condi-
tion (¢) for ¢ ¢ Ej requires that

N N N
[Zl A(E) + Zl wi(3) + ;l wz(i):l U
- - Tit
N N N
2 2; M@ Ui + Z; 1i(2) Upr + ';1 v (Z) Us (k = b).
- = T

If we let Uy, = 0, U;, = 1, and define U, recursively by

we(Ur — Ur1) = Me(Upyr — Up) (k> b),
then
k—1
Ui=1+ m.,Lj 1/\o; (k> ).
1=t

Thus if (14) holds, then the sequence {u;} satisfies Lemma 4.

REMARK. Again the mutation parameters {v;;(7)} play no role. Observe also
that condition (14) is a necessary and sufficient condition for the regular birth
and death process with parameters {A;} and {u:}(j = l) to be absorbed with
certainty in the state [, cf. ([5], p. 380).

5. Finite mean absorption time. In this section we consider regular M.C.P.’s
possessing a nonempty set of absorbing states A and being nondissipative in the
sense that a; = 1 for all ¢ D. Let r; be the mean time to absorption in 4, the
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process having started at 7 & D. Our objective in this section is to find a sufficient
condition for r; < o for all ¢ D.

We shall apply the criterion

Lemma 5 (Reuter, [15]). Suppose the Q-matriz is regular. If there exists a finite
sequence {u;} such that

(a) w; = 0, and

(b) 2jerqisu; +1 =0 (ie D),
then a; = 1l and 7, = u; < .

Lemma 4 yields directly

THEOREM 4. For a regular, nondissipative M.C.P. assume there exists a nonnega-
tive integer ly such that E; is empty for | < ly and E; is nonempty for 1 = ly. Then
a sufficient condition for the process to possess ; < = for all i € D is that

(15) D g converge.
i=tp

Proor. The construction of a sequence {u;} satisfying Lemma 5 is carried out
as in Theorem 2 and will not be repeated here.

ReMARK. Again the {v;:(7)} play no role. Also the condition (15) is a necessary
and sufficient condition for the regular nondissipative birth and death process
with parameters {\;} and {u;}(j = L) to possess a finite mean absorption time,
cf. ([5), p. 380).

6. Examples. We conclude this paper by giving some examples of M.C.P.’s.
These examples include a number of processes which occur in physical and
biological models. In Table 1 are listed irreducible M.C.P.’s. Table 2 deals with
processes having a nonempty set of absorbing states. For all of the processes
listed the mutation parameters {v;;(¢)} are arbitrary, as they play no role in the
sufficient conditions of our theorems. All processes in Tables 1 and 2 are regular.

TaBLE 1
Irreducible multivariate competition processes
Process Birth Rates Death Rates A k20| pp. k=0 o k>0 Recurrence
Label
A [ NG@E) = ND > 0| pi@E) = ud A w' (k= 1) (A\/u')* positive recurrent
(z; > 0) 0 (k= 0) for A < 4’; in-
=0 conclusive for A
@i =0) Z
B Ai(@) = ND > 0| ui(@) = 1;u A kp' \/u)® positive recurrent
w? > 0) k!
C ;i (2) ui(t) = t;u® k + BN ku' 2\_' k (k+ B8 — 1)i | positive recurrent
= (15 + BAWD (u > 0) " k! for M’ < u’; in-
B, A > 0) conclusive for A
. = u
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Throughout Tables 1 and 2 we let

N . N .
DI R
ij=1 J=1

N = maxig;<n AP}, and ' = minig;en {4},

Processes 4, D, and G represent extensions of the birth and death processes
which arise in single server queues (cf., Karlin and MecGregor [7]). Processes
B, E, and H are generalizations of the telephone trunking problem (cf. [7]).
Finally, processes C, F, and I are extensions of linear growth, birth and death
processes (cf., Karlin and McGregor [6]).

The number of applications of M.C.P.’s seems large. We shall mention a few
of these. Karlin and McGregor have applied M.C.P.’s to problems in genetics
in which the coordinates of the process represent numbers of various alleles
(ef., [8]). Jackson has used M.C.P.’s to model a network of queue; (jobshop) in
which the coordinates of the process represent the length of the queues at the
various work centers (cf., [3]). Neyman, Park, and Scott have studied competi-
tion among various species (cf., [13]). Kendall has applied M.C.P.’s to problems
in epidemics in which the coordinates represent suspectible, infected, and re-
moved persons (cf:, [9]) and to the study of the growth of populations subject to
mutation (cf. [10]).
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