THE TWENTY-SEVEN PER CENT RULE!
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1. Summary. A method is described for computing the asymptotic variance
of the maximum likelihood correlation estimator s, which uses the number of
observations in symmetrically placed corner regions, ignoring a middle section.
It is shown that the optimum location of the regions varies with the true value
of the correlation. Tables and figures are presented showing the optimal locations
and the efficiency of the estimation procedure for various locations under two
conditions: one, where cost depends on total sample size and two, where cost
depends on the number of observations in the corner regions. In the second
case, the method discussed is shown to be able to attain any given precision more
cheaply than estimation by the product moment correlation coefficient.

2. Introduction. It is well known that the correlation of two normally dis-
tributed variables may be estimated from the number of cases falling in the
corners above or below the median of one variable y, and outside the limits
Z = p, &= ho on the other variable (see Figure 1). There is an appropriate
maximum likelihood estimation procedure which will be described in Section 2.
It is also well known that when p = 0, the asymptotic variance of p, the estimator,
is at a minimum for any given sample size n when h = .6121, [1], leaving .2702
of the population in the regions past u, &= ho. This is one basis for the widely
accepted ‘“twenty-seven per cent rule”’, that observations lying in the upper and
lower 27% on one of the two continuous variables should be used in four-fold
correlation estimation.

A fact not so well recognized is that the variance of the estimator p is a func-
tion both of h (or A = (2r)~* [% exp (—12%) dz) and of p, the true correlation
between = and y. Comsequently, it is wrong to accept on faith that the h (or \)
value that minimizes the variance of 3 when p is 0 will do so when it is not. It is
important to recognize, too, that the variance of p at points other than the
m]mmlzmg value of h or A (for a given p) may not differ from the value at the
minimum by a great amount. It is therefore of practical importance to know
the shape of the functions Var () rather than just where their minima are.
Firstly, it may turn out that a round value of A such as .10, .20, or .25 will give
a result very little different from a value like .2702, the minimizing value of \ for
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Fi1g. 1. Graph showing the locations of theoretical proportions (P;) and empirical fre-
quencies (n;) in a center region (shaded) and four corner regions.

p = 0. Secondly, a knowledge of the variance function allows us to inspect the
situation where the number of cases to be looked at on both variables is fixed,
but the sample size of which they represent some fraction is free to vary. As it
turns out-the best A values in situations where cost depends on cases looked at on
both variables, and not on sample size, are considerably less than .2702, especially
for small values of p.

In this paper we (i) describe a method of finding the asymptotic value Var ()
for a range of values of p and A, (ii) present a table of values of Var (5) for
p = 0.00 (0.10) 0.90 and for A = 0.05 (0.05) 0.50, with more detailed informa-
tion in the region of the optimal A, (iii) present information on the relative effi-
ciency of the maximum likelihood estimator 5 as a function of p and A (in rela-
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tion to the product moment correlation coefficient), and (iv) discuss efficiency
in two cases: (a) where cost depends on total sample size and (b) where cost
depends on the number of bivariate observations made, rather than total sample
size.

The practical value of the tables presented depends on the appropriateness of
applying asymptotic values to empirical situations. We do not know how large n
has to be before it is reasonable to take the asymptotic variance of 5 as the varl-
ance of estimates made in practice.

The argument also supposes that the values 4 or A are known population values.
In practice we have to estimate them from samples and their variability would
add to the variance of g, a fact not taken into account in the tables. However, the
recommendation in this paper that, in the second cost situation, the A value
used be decreased from .2702 would seem to gain further strength from the fact
that the larger samples used in so doing would stabilize the estimates of 4 and A.

3. The asymptotic variance of the estimator. The maximum likelihood pro-
cedure and the expression for the asymptotic variance of the estimator have
been described by Mosteller [4].

Let z and y be two standardized normal variables with the joint density
function '

(& + y* — 2p0ay)
f(z,y) = pz),exp{ 74y pxy}

1
2 — 20 —

Let h define five regions, as in Figure 1—four corner regions and a central region—
supporting the five probabilities:

n=[[feneay m=[[ ey

n=[ [ ienaay p=[ [iepaay

Ps=1—p1 — P2 — ps — Pa.

Now, let n; denote the number of observations falling in the region for which
the probability of an observation is p: . Then the joint probability distribution
of the four values %, , ns, n3 and n,, the number of observations in each of the
four corner regions, is

(1) g(nl,m’n-'i)'n‘) = (n!/I;In") IIIP?‘,

where n = Z?,l n; . The maximum likelihood estimate of p comes simply from
(1). Taking logarithms gives log g = log ¢ + 11 n: log p: where ¢ is the multi-
nomial coefficient in (1). Differentiation with respect to p gives
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4
(2) d(log g)/dp = Zln;zis/ ; (since ps = 1 — 2\ for all p)

where p; is defined as p; = dp;/dp. Then as Mosteller [4] shows, setting the right-
hand side of (2) equal to zero and solving for p to get the maximum likelihood
estimate p leads to the condition that (n; + n3)/(n, + 12 + ns + ng) = pi/A.
It is generally possible to find a value of p for which the equality holds, and that
value is the estimate. A practical procedure is to consult tables of the normal

bivariate surface.
The estimator p is shown by Mosteller [4] to have an asymptotically normal

distribution with

N—m) n(A — p)

3 Vv m( )

(3) ar () = 2nAp3 2n VA

where, we recall (see Figure 1), A = p; + ps = (21r)"* [% exp (—%2%) dz. In

order to evaluate the p1(A — 1) /)\pl part of expression (3) for the variance of
p, we need first to find an expression for p; .
We have

n =fom[f(x,y)dxdy .

e 1 _xz_l_yz_szy} ‘
_~£ -[. 21r(l—p’)*exP{ 1—p 4 dy

and p: = dpi/dp.
It is convenient to make a change of variables by defining o and g as follows:
o= (z — py)/(1 — p*)}, B = y. Then, substituting, the expression for p1 becomes

(4) - 2_1rfo '/;h—-pﬁ)/(l—pz)’ exp {—% (a2 + ﬁz)} dor dB.
Define &(z) = (2r) ™ [, exp (—3f’) dt. Then, from (4)

n=a ] oo (-39) {1 - (=)}

=3 @) o (‘%ﬂ2> 2 ((1 pf)*) a.

From (5), we have

%1‘=(2—1r)—*£oexp<-*%ﬁz) (_2;_)} . exp{—%((_f:_‘lf)})z}
{ {Egh——ng’ +( f p2)¥} a.

We now make a further change of variable by definingu = (8 — ph)/(1 — p*)*.

(5)
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Then
dpl _ 1 _l 2 © _1 2
dp 2 €xp ( 2 h) L»h/(l-p’)l exp ( Qu)
oh+ul =) ) oy _29}
{irt el b = #h = (1 — 4}
_ oxp (=3 [* (_1 ) .
2 — 2 Loiaom TP\ T2 du
_ exp (—34") exp (—p'h*/2(1 — p"))
20(1 — PO .

Finally, we have,
6) dpy _ exp (—1'/2(1 — ¢"))

dp 2x(1 — )}

Equation (6) provides a manageable expression for dp,/dp or 7, and allows
ready evaluation of the expression for Var (3). We have computed the variance
of p as a function of A (and, therefore, #) for a range of values of p from 0 to .90
in steps of .10. The method of computation is described in Section 7.

4. The shape of the variance functions. Values of 2n Var (p) are set out in
Table 1 for values of p from 0 to .90 in steps of .10, and for selected values of A
between .05 and .50.

TABLE 1
Table of values of pr(\ — p1)/Api

Correlation (p)
0 1 2 3 4 5 .6 i 8 9

.05 7.385 7.300 7.061 6.711 6.246 5.719 5.186 4.669 n.a. n.a.
.10 5.101 5.031 4.831 4.509 4.081 3.574 3.022 2.482 2.048 n.a.
.15 4.33¢4 4.269 4.079 3.774 3.367 2.877 2.333 1.773 1.252 .620
.20 4.008 3.945 3.762 3.466 3.068 2.589 2.053 1.495 .964 527
.25 3.889 3.827 3.646 3.352 2.957 2.479 1.941 1.379 .838  .391
.26 3.881 3.820 3.638 3.344 2.948 2.469 1.930

.27 3.879 3.818 3.637 3.342 2.946 2.466 1.925

.28 3.881 3.820 3.638 3.343 2.946 2.465 1.922 1.352

.29 3.888 3.826 3.644 3.348 2.950 2.467 1.922 1.350

.30 3.808 3.836 3.6564 3.357 2.958 2.473 1.926 1.349 .790 .320

.31 1.352 .788

.32 1.357 .788

.33 790 .302
.34 793 .299
.35 4.007 3.945 3.759 3.456 3.048 2.550 1.985 1.386 .799 298
.36 .299
.37 .299

.40 4.209 4.145 3.954 3.643 3.221 2.704 2.114 1.483 .857  .311
.45 4.512 4.446 4.248 3.925 3.485 2.94 2.322 1.649 970  .360
.50 4.935 4.866 4.660 4.322 3.861 3.290 2.628 1.903 1.157 .461
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F1a. 2. Graph showing the minimizing value of A (proportion in each tail) for true cor-
relation values (p) up to .98.
Fia. 3. The variance of 5 as a function of A for selected values of p.

Figure 2 shows the values of A which minimize Var () for values of p up to
.98. It is noteworthy that the value of A for which Var (5) is a minimum is close
to .27 for values from 0 to .6. After that point the optimal A increases as p in-
creases, becoming .35 for a p of .90. Figure 3 shows 2n Var () as a function of A
for various values of p. It is to be noted that the variance function is rather flat
for all values of p over the range A = .50 to A = .15. This means that the optimal
value of A is not markedly superior to smaller or larger values.

6. Relative efficiency. Table 2 presents data on the efficiency of 5 (inverse
relative efficiency) as an estimator in comparison with the product moment co-
efficient, r. The entries in Table 2 are the values py(A — p;)/2\p,* divided by
(1 — p%)% It will be noted that relative efficiency decreases as p increases.

6. Efficiency for two cost situations. If the cost involved in making the
estimate depends on n, the total sample size, the appropriate efficiency informa-
tion is that given in Table 2. In many situations, e.g., educational, observations
on one variable may be readily available (on file for example), and observations
on the other may be costly to make. If information on the continuous selecting
variable z is readily available and if the cost depends on the number of observa-
tions to be made on the second variable, y, the appropriate table is Table 3.
Table 3 was computed to take account of the fact that Var (3) depends not on
> i1 n:, the number of observations made on both variables z and y, but on n,
the total sample, including n; , the number of cases for which information about y
is ignored. Table 3 presents efficiency as a function of ) i—; n; assuming Dot
= 2n\. That is to say the variance of 5 when Zé-a n; observations are made is
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TABLE 2
Inverse relative efficiency of p

Correlation (p)
0 1 2 3 4 .5 .6 N 8 9

.05 3.693 3.724 3.831 4.052 4.426 5.084 6.331 8.975 n.a. n.a.
10 2.551  2.567 2.621 2.723 2.892 3.177 3.689 4.771 7.901 n.a.
.15 2,167 2.178  2.213  2.279 2.386 2.557 2.848 3.408 4.830 8.587
.20 2.004 2.013 2.041 2.093 2.174 2.301 2.506 2.874 3.719 7.299
.25 1.945 1.953 1.978 2.024 2.095 2.204 2.369 2.651 3.233 5.416
.30 1.949 1.957 1.982 2.027 2.096 2.198 2.351 2.593 3.048 4.432
.35 2.004 2.013 2.039 2.087 2.160 2.267 2.423 2.664 3.083 4.127
.40  2.1056 2.115 2.145 2.200 2.282 2.404 2.581 2.851 3.306 4.307
.45  2.256 2.268 2.3056 2.370 2.469 2.617 2.834 3.170 3.742 4.986
.50  2.468 2.483 2.528 2.610 2.736 2.924 3.208 3.658 4.464 6.385

TABLE 3

Inverse relative efficiency of 5 where cost depends upon > i-1 ni, and where n is
estimated as D i1 ni/2\

)\ Correlation (p)
0 1 2 3 4 S5 .6 i .8 9

.05 . .369 .372 .383 .405 .443 .508 .633 .898 n.a. n.a.
.10 .510 .513 .524 .545 .578 .635 .738 .954 1.580 n.a.
.15 -650 .653 .664 .684 .716 767 .854 1.022 1.449 2.576
.20 .802 .805 .816 .837 .870 .920 1.002 1.150 1.488 2.920
.25 .973 977 .989 1.012 1.048 1.102 1.185 1.326 1.617 2.708
.30 1.169 1.174 1.189 1.216 1.258 1.319 1.411 1.556 1.829 2.659
.35 1.403 1.409 1.427 1.461 1.512 1.587 1.696 1.865 2.158 2.889
.40 1.684 1.692 1.716 1.760 1.826 1.923 2.065 2.281 2.645 3.446
.45 2.030 2.041 2.075 2.133 2.222 2.355 2.551 2.853 3.368 4.487
.50 2.468 2.483 2.528 2.610 2.736 2.924 3.208 3.658 4.464 6.385

Note: Figures in this table are given by 2\ Var [5]/Var [r].

compared with the variance of r with the same number of observations. In the
case of r this is the sample size, since an observation is made on both variables
in all cases.

It is of considerable interest that where cost depends on )i, n:, not n, it is
possible for low values of p to attain any given level of precision at less cost than
with the product moment correlation coefficient (which involves looking at all n
cases). Table 3 suggests that the optimum A values are very small for low values
of p, but increase with p. Table 3 shows that in an educational testing situation
where item-test correlations are being estimated, and where the value of
> 41 msis fixed, at say 100, the best sample size is 1000 or more (i.e., X = .10
or less) for values of p = .7 or less. The variance of the estimated p is less than
with 100 observations selected from a sample of 185 where the 100 observations

would correspond to a A of .27.
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Table 3 also shows that the variance of the estimator 3 computed on 100 cases
out of a sample of 1000 is about half the variance of » computed on 100 cases for
values of p up to and including .5. One needs to be wary in taking Table 3 too
literally, since with very small A values it is likely that irregularities in the bi-
variate surface would be magnified. When considerations of robustness are
brought in, probably the best procedure would be to select values of A in the
region .5 to .10.

7. Method of computation. The computations were carried out on an IBM
1620 computer. The value of the expression for the variance of the estimator,
Var (3), was computed for values of A ranging between .05 and .50 in steps of
.01 for each value of p separately.

A number of approximation procedures were used in obtaining the values of
the terms needed to evaluate the expression.

(1) The value of h was computed by Hastings’, [2], approximation formula
sheet: 67, Part II.

(2) The value of p; was computed by interpolating between the tabled values
of the bivariate normal surface given by Owens [5].

(3) Exponential values and logarithms were obtained by standard FORTRAN
Subroutines. )

It should be noted that as p increases toward 1, p; increases toward A, and the
difference is very small for high values of p and k. For this reason the table of
values of Var (p) is likely to be inaccurate for high values of p. Since the point
of this report is to bring out general features, however, the inaccuracies should
not be serious in their effects, and, in particular, should not affect the general
shape of the curves showing Var (3) as a function of A. It is this general shape
which is central to the point made in this paper.
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