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1. Summary. The test procedures, invariant under certain groups of trans-
formations [4], for testing a set of multivariate linear hypotheses in the linear
normal model depend on the characteristic roots of a random matrix. The power
function of such a test depends on the characteristic roots of a corresponding
population matrix as parameters; these roots may be regarded as measures of
deviation from the hypothesis tested. In this paper sufficient conditions on the
procedure for the power function to be a monotonically increasing function of
each of the parameters are obtained. The likelihood-ratio test [1], Lawley-
Hotelling trace test [1], and Roy’s maximum root test [6] satisfy these conditions.
The monotonicity of the power function of Roy’s test has been shown by Roy
and Mikhail [5] using a geometrical method.

2. Introduction. Consider a p X n random matrix X whose columns are
independently distributed according to p-variate normal distributions with the
common covariance matrix X and expectations given by

& = OA,

where A is a known m X n matrix of rank r and @ is a p X m matrix of unknown
parameters. It is assumed that » < min(m,n — p). In this model consider the
problem of testing the hypothesis

% : @C = 0(p X s),

where C is a known m X s matrix of rank s (=r) such that @C is es-
timable, against all alternatives. This problem can be transformed to the
following canonical form [1], [6]: Let X* = Xf(pXs), Xs(p X (n—r)),
X3(p X (r—s))] be a random matrix whose column vectors are independ-
ently distributed according to p-variate normal distributions with the common
covariance matrix X and expectations given by

X =A(pXs), &3=0pX(n—r)), & ="I(pX(r—s)).

The hypothesis 3C, is equivalent to the hypothesis: A = 0(p X s). The matrices
of sums of products due to the hypothesis and due to error are given by
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Sy = XiX!’ and S, = XiX3', respectively. The problem is invariant under
transformations BX;F;, BX;F,, and BX;F; + G, where B is nonsingular and
F,, F; and F; are orthogonal matrices. In this paper we shall consider the test
procedures which are invariant under these transformations. These invariant
test procedures depend only on ¢; = ¢2 = --- = ¢,, the characteristic roots of
SiS;7, and the power function of any such test depends only on the parameters
6,---,0,, where 6 = --- = 6, are the possibly nonzero characteristic roots
of AA’S7, and ¢t = min (p, s).

Some invariant procedures are:

(i) The likelihood-ratio test [1] whose acceptance region is [[? (1 + ¢:) <
A1, a constant.

(ii) Lawley-Hotelling trace test [1] whose acceptance region is D216 S N,
a constant. .

(ii1) Roy’s maximum root test [6] whose acceptance region is ¢; = N3, a
constant.

3. Tests of multivariate linear hypothesis. The following theorem is the basic
result of this paper.

TuroreM 1. Let the random vectors X; , Xz, -+« , Xs and the matriz 'Y be mutually
independent, the distribution of x; being N (k. , ), =1, -+ ,s. If a set w in
the sample space is convex and symmetric in each X; given the other x;’s and Y, then
Prob (w) decreases with respect to each k:(=0).

This theorem is proved using the following result due to Anderson [2]:

TuroreM 2. Let E be a convex set in the n-dimensional Euclidean space, sym-
metric about the origin. For x(n X 1), let f(x) = 0 be a function such that (i)
f(x) = f(—x), (i) {x|f(x) = u} = K, s convex for every u(0 < u < ),
and (iii) [xf(x) dx < . Then

(31) [ 1+ hyyaxz [ (x+y) ax
for every vector y and for 0 = k =< 1.

Proor oF TaEorREM 1. Define fi(x;) to be the density of N(0, =;) at x..
Then f; satisfies the conditions (i) to (iii) of Theorem 2. From Theorem 2

(3.2) j;fi(xi + ki w) dx: = Lfi(xi + kf wi) dxi,
where ki < kf,and R = w(X: | X1, -+ ,Xiz1,Xip1, *+ , %, Y) is the set of
vectors x; that belong to w with given values of x;, -+« , Xiy , Xiq1, =+ * , Xq, Y.

Multiplying both the sides of the inequality (3.2) by the joint density of the

temporarily fixed variables and integrating with respect to them, we obtain
PI‘Ob(wIkl, s ,ki-l,ki,k;+1, .. ,k;)

(3.3) *

= Prob (w |k, -y kica, ki, kiga, -, k),

for k: < k¥, and any ks (j # ).
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Now we shall apply this theorem to the problem of testmg multivariate linear
hypotheses. The roots of S,S;" are the roots of (UU’)(VV')™), if U = BX* F,
and V = BX:F, ; hence invariant tests depend only on the roots of the matrix
(UU’)(VV’')™. The matrices B, F; and F; can be found (see [6], p. 86) so that the
density of U = [u;;]: p X s and V=1[njl:pX(n—r)is

(2r)Het™? oxp [— é {tr (VV) + _ﬁl (uis — 6:)°
(3.4) -
+ 3wt Y z}]

1=1 j=1
I

where m = n — r, and the hypothesis 3¢, holds if and only if 6 = 6, = --. =
0¢ = O

TurorEM 3. If the acceptance region of an invariant test is convex tn. the space of
each column vector of U for each set of fixed values of V and of the other column
vectors of U, then the power of the test increases monotonically in each 0; .

Proor. Let the jth column vector of U be denoted by u;(j =1, ---,s).
Note that the vectors u;, -, u, and V are mutually independent, the dis-
tribution of u;(¢ <j <s) is N(0,I) and the distribution of u;(1 <j < ¢)
is N(0;e;,I), where the sth element of e; is é:;, the Kronecker’s delta. Since
the test is invariant, the acceptance region is symmetric in each of the column
vectors of U. The result now follows from Theorem 1.

The following corollaries are implied by the above theorem:

CoroLLARY 3.1. If the acceplance region of an invariant test is convex in U
for each fixed V, then the power of the test increases monotonically in each 0; .

CoroLLARY 3.2. If the acceptance region of an invariant test is the interior and
the boundary of an ellipsoid in the space of each column vector of U for each set of
fized values of V and of the other column vectors of U, then the power of the test
increases monotonically in each 6, .

CoroLLARY 3.3. The maximum root test of Roy, the acceptance region of which
8 given by

chy[(UT')(VV) 7] = 4,

has a power function which is monotonically increasing in each 6;. (chy(A) de-
notes the maximum characteristic root of A.)
The above corollary follows from Corollary 3.1 and the following lemma:
Lemma 1. For any symmetric matriz B: n X n the region

= [A:n X m | ch;(AA'B) < 4]

8 convex in A,
Proor. Let B = T'T, where T is an n X n matrix. Then

ch;(AA’B) = chy[(TA)(TA)".
Let AicE, Acc E, and A = MA; + (1 — M\)A; for 0 = A = 1. It follows from
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the Cauchy-Schwarz inequality that for any vector x
x'TAA'T'x = Nx'TAAT'x + (1 — A\)xTAA;T'x
+ A1 — N\)E'TAA;T'x + x'TAA[Tx] < \(x'TAATx)}
+ (1 — M (E'TAATT) < ux'x.
Thus A ¢ E.

Let ;= -+ =¢, be the roots of (UU)(VV')™, and di=1+c:
(¢=1,---,p). Let Wy be the sum of all different products of dy, ---,d,
taken k at a time (k =1, ---, p).

THEOREM 4. An invariant test having acceptance region > t—y axWi < u(az’s = 0)
has a power function which is monotonically increasing in each 0 .

This theorem is proved using the following Lemma 2. Consider a matrix
A = [a, ---,a,]: m X n, where a,’s are the column vectors of A. Define W;(A)
as the sum of all k-rowed principal minors of AA’ + I, , or equivalently as the
sum of all different products of the roots of AA" + I, taken % at a time.

LemMa 2. Forany jand k(j =1, ---,n; k=1, ---,m) and for a/’s fized,
1 # j, Wi(A) s a positive definite quadratic form in a; plus a constant.

Proor. For simplicity we prove this for j = 1. Consider a k-rowed principal

minor of AA" + I, , say the one with rows and columns numbered 1, 2, --- , k;
it is
in Q12 OQ1a Gu Qa °*°  Ou
A1 Qg2 - QA2 Qiz Q2 Og2
. . N . . . +I
(3.5) . . . - . .
Qrr Qg2+ Qs Qin  Q2n  *°*  Opn

= [(au,am, ,akl)B—l(1§ 1,2 --- ,k)(an, Ao, *°*, akl)/ + 1]
'|B(171) 2; ,k)l,

where

Q12 -  Qin
Qs - @ Q2 Qg2 e Qg2
B(l;l’z"”)k)= : :n 3 3 E + L.

Gz G Qin  G2n Qien

Thus the determinant (3.5) is a_constant plus a positive definite quadratic form
in (au, - ,au) with the a,’s (j # 1) fixed. Since the sum of positive definite
quadratic forms is a positive quadratic form, we see that Wy(A) is a positive
definite quadratic form in a; plus a constant when the a;’s (j # 1) are fixed.

Proor oF TuEOREM 4. Let (VV')™ = T'T, where T is a p X p matrix, and
U* = TU. It follows from Lemma 2 that > .7 axWi(a's 2 0) is a positive
definite quadratic form in each column vector of U™ plus a constant when the
other column vectors of U* are fixed. Thus the region Ef = [uf | D f, axWi <
u, ui’s fixed, 7 # j] is convex and symmetric about the origin in the space of the
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jth column vector uj of U*. Since uf = Tu;, the region B; = [u; | D2y aiWi <
u, V, u/’s fixed, ¢ 5 j] is convex and symmetric about the origin in the space of
u;(j =1, --,8). The theorem now follows from Theorem 3.

The following corollaries are special cases of Theorem 4.

CoroLLARY 4.1. The likelihood-ratio test having the acceptance region of the
Sform W, < u has a power function which is monotonically increasing in each 0; .

CoroLLARY 4.2. The Lawley-Hotelling trace test with the acceptance region of
the form Wy = u has a power function which s monotonically increasing in each 0; .

In order that the power function of an invariant test should increase mono-
tonically in each 6; it is not necessary that the acceptance region of the test be
convex in each u; given the other u;’s and V. The following theorem gives another
sufficient condition on the acceptance region. There are some tests for which both
the conditions are satisfied; neither of these two conditions implies the other.
Let w denote the acceptance region of an invariant test, and let the region
w(u: | u’s, 7 # 2; V) be the section of w in the space of u; for a set of fixed values
of u/s (j # ¢) and V. For simplicity, we shall denote this section by w.(u.).

THEOREM 5. For each ©(i = 1, --- , s) and for each set of fixed values of u,’s
(7 # ¢) and V, suppose there exists an orthogonal transformation: u; — Mu; =
ul = (ufs, -+, up:) such that the region w:(u;) s transformed into the region
wf (u) which has the following property: Any section of wi (ur) for fived values of
umi(k 5 7) s an interval, symmetric about u}; = 0. Then the power function of the
test, having the acceptance region w, monotonically increases in each 0; .

Proor. Let M = [m,] be the orthogonal matrix satisfying the condition of
the theorem. For simplicity, we take 7 = 1. We shall indicate the proof by
treating the case p = 2 in detail. Let the section of wi (uf) in the coordinate
ugy for fixed uj; be the interval [—wii(uf), wic(ui1)], 7 # k. Since M is orthog-
onal we have

(271')—1/ exp [—3(un — 61)° — tus] duy dun

= (2m)™" | exp [—3(uly — 6umu)® — 3(usi — 6 ma)®] dudy dujy .
For 0 = X\ £ 1, we have from Theorem 2

L., oo l=3ub = oom)* — 3kt — o0 ma)?) dus i
wl ul

wia(uiy)
= ]{GXP [—i(ufi — 60 mn)z]f exp [—%(U;kl — 6y mam)’] du;kl} duty

wiz (uy)

@2 (u1y)

exp [—3(ua — Ny )] du} ak,

< f{exp [—i(uli — 6 m11)2][_

wfa(ut))

= f exp [_%(u;kl — b ’mu)2 - %(u;kl — My m21)2] dufl du;kl
w{(u;)
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wfp(%3))

exp [—3(uzy — N6y ma)’] [ exp [—3(uii — 6,mu)’] dufl} duz

oy (uf))

oy (u3))

- /{
= f {eXP [—3(u3y — N1 mg1) ]‘[Qh(“zl) exp [—3(ufy — Ny1mu)’] duu} duz,
[

exp [—3(ufi — Myimu)® — 3(usy — Ny ma)’] duty dus
HCH

= f w exp [—%(uu bl )\01)2 el %u§1] duu dum .
wy(u

The rest of the proof is similar to the proof of Theorem 1.

It may be noted that if the acceptance region satisfies the condition of Corollary
3.2, then it will also satisfy the condition of Theorem 5.

ReMmarxk. It can be seen ([3], p. 33) that any root of AA'=™ increases mono-
tonically in each of the diagonal elements of AA’. Hence, if the power function
of a test increases monotonically in each root of AA'X™ then it increases
monotonically in each of the diagonal elements of AA’ for each set of fixed =
and the nondiagonal elements of AA’.
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