TESTS FOR THE EQUALITY OF TWO COVARIANCE MATRICES IN
RELATION TO A BEST LINEAR DISCRIMINATOR ANALYSIS!

By A. P. DEMPSTER

Harvard University

0. Summary. A pair of test statistics is proposed for the null hypothesis
¥, = X, when the data consists of a sample from each of the p-variate normal
distributions N (w1, £1) and N(u;, E;). These tests are motivated in Section 1
and defined explicitly in Section 2. Section 3 proves a theorem which includes
the null hypothesis distribution theory of the tests. Section 4 gives some details
of the computation of the test statistics. An appendix describes the shadow
property of concentration ellipsoids which facilitates the geometrical discussion
earlier in the paper.

1. Introduction. Consider two p-variate normal populations with p X 1
mean vectors u; and us, and p X p covariance matrices X, and =, . If £; =
¥, = X, then all the information for discriminating between the populations
is contained in a single linear combination of the p given variables, namely the
best linear discriminator or b.l.d., which is-determined, up to an arbitrary linear
transformation, by w;, w2 and X. Given a sample from each population, one
might consider using a sample b.l.d. estimated on the assumption X, = X,,
but first one might wish to test the null hypothesis £, = X,. This paper will
propose new tests for this purpose, designed to be sensitive against particular
kinds of differences between £; and X, which might render the use of the sample
b.l.d. deceptive.

The tests will be motivated and described geometrically in terms of the
p-dimensional affine space in which a p X 1 p-variate observation vector X
represents a general point. In this space, the first and second moment properties
of a population with mean u and covariance matrix X are naturally represented
by its concentration ellipsoid A [3] with equation

(1.1) (X-w=z X~y =1

Suppose the populations of this paper have concentration ellipsoids A; and A,
with centers O; and O,. Consider projecting both populations into the line
joining O; and O, along a family @ of parallel (p — 1) dimensional planes, and
suppose A; and A; are the points where the line segment 0,0, is cut by planes
from Q tangent to A; and A, , respectively. Up to an arbitrary linear transforma-
tion, @ determines a linear combination of the p given variables which is constant
over a given member of @. This linear combination has a mean difference A
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EQUALITY OF TWO COVARIANCE MATRICES 191

between populations and standard deviations ¢; and ¢ in each population.
The shadow property of concentration ellipsoids, which is described in Section 5,
implies that the ratios A:gi:o are the same as the affine line segment ratios
0102:01A1:02A2 .
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Fia. 1. Four possible relative positions of a pair of concentration ellipsoids.

Figure 1 illustrates ellipsoids A; and A, . In Figure 1(a) X; = X, so that
A, is simply a translation of A, , whereas in Figures 1(b), (¢) and (d) increasingly
general differences appear between X; and X, . The corresponding general situ-
ations will be called Cases (a), (b), (¢) and (d).

Case (a) is defined by the condition £; = X,. Here the b.l.d. is defined as
that linear combination of the given variables with maximum ratio A to o1 = a3 .
Geometrically, this corresponds to choosing @ to maximize the ratio 0,0, to
0,4, = 0,4, . It is clear that this occurs when A; is the intersection of 0,0,
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with A; for © = 1, 2, and Q consists of planes parallel to the tangent planes to
A;and Az at A; and 4; . When X, 5 X, one can choose a family of planes @,
which maximizes the ratio 010: to 014, , and another family Q, which maximizes
the ratio 010, to 0.4, , i.e., Q; consists of planes parallel to the tangent to A;
where A; meets 0,0, for 7 = 1, 2. Case (b) refers to the situation where =; # X,
yet & and ; are the same, and even 0,4; = 0,4, for the common Q. Case (c)
is the same as Case (b) except that 0:4; # 0,4, for the common Q. Finally,
under Case (d), & and @, are different.

In Case (b) the common © may be used for discrimination just as in Case (a)
with valid results; the only trouble here is that this discriminator wastes some
information. In Case (¢) the common 2 may be used, but care must be taken
to allow for the different o, and o3 of the discriminator, and again some informa-
tion is wasted. In Case (d) no single linear discriminator is obviously indicated,
but see the paper of Anderson and Bahadur [1].

A pair of test statistics will be suggested. These will be independent under the
null hypothesis =; = X,. The first is intended to detect differences like Case
(¢) when @, and @, are the same, and the second is intended to detect different
Q; and Q, . These tests are based on sample analogues of the various line segments
in Figure 1.

2. The proposed tests. Suppose a pair of independent samples from the
p-variate normal distributions N (u; , ;) and N (u:, =») consist of p X 1 vectors
Xijforj=1,2,---,n;and ¢ = 1, 2. It will be assumed throughout that the
sample sizes n; and n, satisfy n; = p + 1 forz = 1, 2.

In this situation u; and X, for ¢ = 1, 2 are naturally estimated by

(2.1) X,‘ = i‘:l X,-,-/n.- and S; = Ti/(’n.‘ - 1)
where
(2.2) T; = 2 (X — X)) (Xi; — X)"

Or, if it may be assumed that £, = X, = X, then the common X is naturally
estimated by

(2.3) S =T/(m + n — 2)
where
(2.4) T = T]_ + T2 .

These sample statistics may be used to define ellipsoids which estimate A; and
Az 5 i.e. y

(2.5) (X—-X)s7'X-X%) =1

estimates A; if =; and = are assumed different, or
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(2.6) (X-X)s'X-X)=1
estimates A; if X; and X are assumed the same.

Rather than consider the geometrical picture provided by the four ellipsoids
(2.5) and (2.6) for z = 1, 2, it is convenient to consider the equivalent picture
as in Figure 2 with ellipsoids L, , L, and L centered at the origin O defined by

Fia. 2. Basic geometrical figures for defining the statistics of interest.

equations

(2.7) XT7'X =1, XT;'X=1, and X'T'X =1,
and with vector OP where P has coordinates

(28) D = [mme/(m 4 m)](&i — Xo).

Figure 2 also shows an ellipsoid A with equation

(2.9) X'=7'X =1,

where £ = X¥; = X, under the null hypothesis of interest. Suppose the line
segment OP meets A, L, L; and L, in M, @, R; and R, , respectively. Suppose
Q is the family of planes parallel to the tangent to L at @, and define @, and @,
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to be the points of intersection with OP of the tangent planes to L, and L, in
the family Q.

Under the assumption X; = X, , @ defines the natural estimator of the sample
b.l.d. based on (2.8) and the pooled within sample dispersion matrix (2.4).
Now the sample b.l.d. has a sum of squares about the mean of sample 1, a sum
of squares about the mean of sample 2, and the pool of these sums of squares,
and, from the shadow property, these three quantities are proportional to
0Q:, 0Q; and 0Q* = 0Qi + 0Qj . It is therefore plausible to use the ratio

(2.10) Cs = 0Q}/0Q:

to test the null hypothesis £, = X, against an alternative like Case (c¢) in Fig-
ure 1.

To further test whether Case (d) occurs it is plausible to use some weighted
combination of the ratios OR:/0Q} and OR3/0Q; . A particular weighted com-
bination which has a nice distribution property is

(2.11) Ci = H(OQi/ORi — 1, 0Q3/OR; — 1; 0Q3/0Q", 0Q}/0Q")

where H(x, y; p, ¢) denotes the harmonic mean of z and y with weights p and
g, ie.,

(2.12) H(z,y;0,9) = (p+ )/ (p-2™ + ¢-y7).

The null hypothesis distribution theory follows from the theorem of Section
3, and is very simple. In fact C; and Cy are independent and are both distributed
like ratios of independent x* random variables.

3. Null hypothesis distribution theory. In this section the notation xi(7%)
will denote the non-central x* distribution on r d.f. and non-centrality parameter
7, i.e., the distribution of (U; + 7)* + Us + -+ 4 U? where Uy, U, - -+ , U,
are independent N (0, 1). The notation G, , will denote the distribution of the
ratio of independent x? and x? random variables. The symbol ~ should be read
“is distributed like.”

The following theorem is a little more general than is required for the tests of
Section 2. The ratio Cy/C, is, apart from a constant factor, the two-sample T°
or D statistic. No special use is suggested for the statistic Cs .

THEOREM. Suppose the p X 1 random vectors X;; for j = 1,2, -+, n; and
1 = 1, 2 are distributed like independent samples from N(w;, ) for ¢ = 1, 2.
Suppose n; = p + 1 for ¢ = 1, 2 and suppose = has rank p. Suppose the line
segments OP, OM, 0Q, 0Q., 0Q,, OR, and OR; are defined from the X:; as in
Section 2. Then the random variables

(3.1) ¢y, = OP*/OM’,
(32)  C = 0Q*/OM",
(33)  Cs = 0Qi/0Q3,
(34)  Ci= H(OQi/ORi — 1, 0Q3/OR; — 1; 0Q;/0Q", 0Qi/0Q")
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(3.5)  Cs = [0Qi/OQ3IOR:/OR3)I(0Q; — OR3)/(0Qi — OR?)]

. . 2 2 2
are independent with the X»(7°), Xny4+ng—p—1 s Gnim1ms—1 » Gp—tin14ng—2p 0N Gy _pny—p
distributions, respectively, where

(3.6) 7 = [ma/ (m + 12)] (w1 — 82) =7 (w1 — w)-

The proof of this theorem will be shortened by not deriving the distributions
of C; and C; which have already been given by Bowker [2].

The remaining distributions are most simply derived in terms of a geometrlcal
approach different from that used in Sections 1 and 2. In the new approach the
rows of the p X (n1 + n.) data matrix

(37) (Xu y Xm y "y Xml > X21 y X22 y " X2n2)

are regarded as p vectors in an (n; + m2)-dimensional Euclidean space E. In
the manner usual in analysis of variance, E may be written as the direct sum of
four mutually orthogonal subspaces

(3.8) E=FE;®Es ® E: ® Eny

of dimensions 1, 1, n; — 1 and n, — 1, respectively. Here, E¢ is the subspace
spanned by the 1 X (n; + ns) vector,

(3'9) (1717""17171;"'11),

and corresponds to the single d.f. for the grand mean. Ep is the subspace spanned
by the 1 X (n, + n2) vector

(3'10) (nl ) nl— y T nl—l: _n;17 _n2_17 R _n2_1)

and corresponds to the single d.f. for the difference between sample means. E;
and E;; refer to the remaining subspaces describing differences within the first
and second samples, respectively.

The first task of this proof is to relate the line segment ratios of Figure 2 to
various angles in the new geometrical space. The information in Figure 2 is
based only on the components of the data vectorsin Ex @ E; ® E;; and so the
components in B¢ will not be considered further. Denote by Ep the p-dimen-
sional subspace of Ezx @ E; ® E;; spanned by the components of the data
vectorsin B @ E; ® Ey;.

Any vector U in Ej, corresponds to a linear combination of the p given vari-
ables, and the components of U along Es and E; @ E; have, for squared lengths,
the between sample mean square and the pooled within sample sum of squares
for this linear combination of variables. The ratio of this mean square and
sum of squares is therefore given by cot’ 6 where ¢ is the angle between U and
Ej5 . Henceforth, suppose U corresponds to the sample b.l.d., i.e., U is a vector
in Ep with maximum ratio cot’ @ or, equivalently, minimum 6. Then, from the
shadow property in Figure 2,

(3.11) cot’ 6 = OP*/0Q".
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Suppose the component of Uin E; @ E;; is denoted by U; and the components
of Uy in Er and E;; are denoted by U; and U;; . Suppose the angles from U;
to U; and U;; are denoted by 6; and 6; = 27 — 6, . Then

(3.12) cos’ 0 = 0Q}/0Q* and cos’ 6, = 0Q:/0Q%,

i.e., cos’ 6; and cos’ 6; represent the fractions of the pooled sum of squares OQ2
contributed by the first and second samples. The final step, which is to bring
in OR? and OR;, is somewhat more complicated and requires the following
build-up of theory.

Since only the direction of U is determined, it may be assumed for simplicity
that U has unit length, so that U;, U; and U;; have lengths sin 6, sin 6 cos 6,
and sin 6 cos 6; , respectively.

Suppose U is a unit vector orthogonal to U, in the space spanned by U; and
U;;, and suppose E; and E; denote the subspaces spanned by U; and U, . Sup-
pose E;- and E;;- denote the subspaces of E; and E;; orthogonal to U, and U,;,
respectively. Then

(3.13) Ei:®E;=E®E ®Er ® Enp

is a decomposition of E; ® E;; into four mutually orthogonal subspaces of
dimensions 1, 1, n; — 2 and n, — 2 respectively.

Suppose Eps denotes the (p — 1)-dimensional subspace of E, orthogonal to
U. E, is orthogonal to U, Ep and Uy, and so lies entirely in B, @ E;» ® E;p .
Suppose F; denotes the (p — 1)-dimensional orthogonal projection of Ep
into E; ® E;. , and define ¢; to be the angle between F; and E.. Then ¢, is
the angle between E; and a vector W; in F'; , where, for simplicity, W; may be
taken to have unit length. Let F;. denote the (p — 2)-dimensional subspace of
F; orthogonal to W; . In a similar manner, F;; may be defined as the orthogonal
projection of Ep into E, @ E;;, and ¢2, W;; and F;p» may be defined in a
manner analogous to ¢; , W; and F . Note that F; and F; are subspaces of
Ep and E;p respectively.

To bring OR} into the discussion, suppose that V is a vector in the orthogonal
projection of Ep into Ez @ E; making the minimum angle with E . The com-
ponents of V along E and E; have lengths proportional to OP and OR, . (This
is the same kind of result as (3.11).) By comparison, the orthogonal projection
U™ of U into Ez ® E; has components along Ez and E; which have lengths
proportional to OP and 0Q; . Now V can be expressed as U* + U** where U**
is the contribution from the orthogonal projection of Ep/ into Ep @ E; . Since
U™ has no component along Ej , the ratio OR;/0Q, is simply the ratio of the
lengths of the components of V and U*along E; .

The projection of Eps into Ez @ E; may be carried out in two stages. Firstly,
components along E;;» may be removed, leaving F; which may be decomposed
into W; and Fy- . Secondly, components along U;; may be removed. The second
stage does not alter F;, which already lay in E , but W;, which has com-
ponents of length cos ¢; and sin ¢, along E: and E , is reduced to a vector



EQUALITY OF TWO COVARIANCE MATRICES 197

W; with components of lengths cos ¢; sin ¢, and sin ¢, along U; and E,. .
Now U™ must be chosen to maximize the component of V along E; . No useful
contribution to U** can come from F,. because F; is orthogonal to both U,
and WY , and therefore U** must consist of a multiple of W5 . But W makes
angle g with U; where

(3.14) cot 71 = €os ¢ sin 6;/sin ¢

and so a multiple of W{ may be used to reduce the length of U; to a fraction
sin #; of its original length, i.e.,

(3.15) OR3}/0Q} = sin’ n; = tan® ¢,/ (tan’ ¢; + sin’® 61).
A similar formula holds for OR3/0Qj , or, in slightly altered form,
(3.16) 0Q?/OR? — 1 = sin’6; cot>¢: fors = 1,2.

The completion of the proof of the theorem now requires little more than
giving the null hypothesis distributions of cos’ 0y, cot’ ¢, and cot’p;. Under the
null hypothesis £; = =, the projection of Epinto E; @ E; is spherically dis-
tributed in E; @ E;; independently of the components of Ep along Ez. It
follows that, conditional on C; and C; fiixed, U; has a spherical distribution in
E; ® E;; and so '

(317) Ca = (SOt;2 01 ~ Gm—l.nz—l .

Next, if U and U; are regarded as fixed, which also fixes C;, C: and C;, the
conditional distribution of the subspace Ep- is spherically symmetrical in E, @ E;
@ E;; . The relationship of E5 to the subspaces E;, E;» and E;;» determines
cot’ ¢; and cot’ ¢, whose joint distribution is therefore independent of C;, C»
and C; and determined by the spherical distribution of Ep/ . In fact, from the
following lemma,

(3.18) (cot’¢s , cot’e) ~ (Z/Zy, Z)Z,)

where Z, Z, and Z, are independently distributed like x5_; , x»,_p and x2,_, .

Lemma. Suppose Hp is an r-dimensional spherically distributed subspace of a
Euclidean space H ® Hy @ H, where H, H, and H, are mutually orthogonal sub-
spaces of dimensions 1, my and my , respectively. Suppose the orthogonal projection
of Hp into H ® H; makes angle ¥; with H, < = 1, 2. Then

(3.19) (cot? ¥y , cot’ W) ~ (Y/Y,y, Y/Y5)

where Y, Yy and Y are independently distributed like X% , X2, —r+1 G Xmp—r41 -

Proor. Suppose Z;, Zy, - :,Znp 4m+1 are r X 1 vectors whose
r+(m1 + my + 1) entries are all independent N (0, 1) random variables. Suppose
Q= 2" ZZ and Q = D 1™ Z.Z. Suppose ¥ = ZiZ,, Y, =
Z1Z,/Z\Q7'Z, , and Y, = Z1Z,/Z1Q;'Z,. Then from the distribution of Cy
and C; in the theorem, i.e., from the theory proved in [2], the random variables
Y, Y, and Y, are distributed as independent x; , X&,—r+1 and xa,—r4+1 random var-
iables.
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Next suppose that the r rows of
(3.20) (Zl ) Zg y "ty Zm1+1 9 Zm1+2 y " Zm1+m2+2)

span an r-dimensional subspace Hp of a Euclidean space H ® H; ® H, where
H, H, and H; are subspaces spanned by variation in coordinates 1, 2 to m; + 1
and m; + 2 to my + my + 1, respectively. Then Hp , H, H; and H, satisfy the
hypothesis of the lemma, and, analogous to (3.11),

(3.21) cot’ ¥, = Z2;Q7'Z, = Y/Y;,

for z = 1, 2, as required.
To complete the proof of the theorem, one need only note that from (3.4),
(3.5), (3.12) and (3.16)

(3.22) Cs = (tan’¢; + tan’gs)™"
(3.23) Cs = tan’¢y/tan’¢,,
and from (3.18) these have the required distributions.

4. Computational details. Since the statistics C1, Cs, C3, Cs and Cs introduced
above are defined in terms of line segment ratios, it may not be obvious how to
compute them from the basic statistics D, T;, T; and T defined in Section 2.
Referring to Figure 2, it may be easily checked that

(4.1) OP*/0Q@* = D'T'D
and

(4.2) OP*/OR; = D'T{'D,
forz =1, 2.

To bring in 0Q; and 0Q. , it may be noted that the expression in (4.1) may
be written (T7'D)’T(T'D) which is the norm of the vector T 'D under the
inner product T, or, in statistical terms, (4.1) is the pooled within sample sum
of squares for the linear combination T™'D of the original p variates. (This linear
combination defines the usual sample b.l.d.) Now, OQ; and OQ3 are proportional
to the contributions to this pooled sum of squares from sample 1 and sample 2,
respectively. Consequently,

(4.3) 0Q}/0Q* = D'T'T,T7'D/D'T'D,
forz = 1, 2.

Formulas (4.1), (4.2) and (4.3) determine all of the required line segment
ratios.

5. Appendix: The shadow property of concentration ellipsoids. The con-
centration ellipsoid A (1.1) of a p-variate population is well-known, or easily
shown, to be affinely invariant, i.e., its definition is unchanged under any linear
transformation of the coordinates X. Consequently its properties can be de-
scribed in coordinate-free geometrical language. One such property is the shadow
property which was used earlier in the paper.
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Suppose a p-variate population with concentration ellipsoid A is projected
along a family Q of parallel (p — s)-dimensional planes into an s-dimensional plane
w. Then the shadow property states that the concentration ellipsoid A’ in = of the
projected population is given by the boundary of the shadow of A cast in w by the
projection. The property is illustrated in Figure 3 where A may be regarded as a
3-dimensional ellipsoid, 7 a 2-dimensional plane, and @ a family of parallel lines.

The proof of this property is straightforward in terms of a suitably chosen
coordinate system, and so is omitted. It may be noted that one can begin with
the case of a finite population and then deduce the result for an infinite population
or distribution as a limiting case. It may also be noted that the result continues
to hold when the population lies in an r-dimensional plane with » < p. In this

Q
A

Al

Fia. 3. Shadow property.

case the covariance matrix of the population has rank » < p, and so (1.1) cannot
be used to define A directly. However, A can be defined as an r-dimensional
ellipsoid using (1.1) for any set of r coordinates in the plane of the population,
and for this more general definition the shadow property still holds.

In this paper the shadow property is used in the special case s = 1, i.e., where
projection is into a line. Note that a 1-dimensional concentration ellipsoid con-
sists of two points whose mid-point and radius are the mean and standard
deviation of the population.
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