RANK TESTS FOR PAIRED-COMPARISON EXPERIMENTS INVOLVING
SEVERAL TREATMENTS!

By K. L. MeHRA®
University of California, Berkeley

1. Introduction and Summary. Two nonparametric tests presently available
for testing the equality of several treatments (varieties, objects etc.) on the
basis of paired-comparisons are: (a) the Bradley-Terry [4] likelihood ratio test;
(b) Durbin’s [7] test (which, in fact, covers the general balanced incomplete
block design ). These tests, however, were proposed for the case when no meaning-
ful measurements on the quality of treatments are possible. Instead, one can
merely decide for each individual comparison which ttreatment to prefer. Both
these tests are, thus, instances where only signs of the comparison differences
are involved, and as such can be regarded as generalizations of the Sign-test.
The large sample properties of these tests have been discussed by Bradley [3]
and by Van Elteren and Noether [17] respectively. As shown in the latter paper,
both these tests have asymptotic (Pitman) efficiency equal to 2/7 relative to
the F-test (under normality ). One can reasonably hope to improve this efficiency
by taking into consideration the magnitudes of the observed comparison dif-
ferences, when they are available.

A test of this nature, based on a generalization of the Wilcoxon-one-sample
ranking procedure, is proposed and investigated below for the case when all
comparisons are performed under the same experimental conditions (Section
2). The asymptotic distribution of the test statistic proposed is obtained using
the results of Godwin and Zaremba, [8] and Konijn [12] (Section 3). It is shown
that the asymptotic efficiencies of this test relative to the Durbin and the Bradley-
Terry tests and the corresponding F-test are independent of the number of
treatments involved. These results are also extended to the case of non-uniformity
of experimental conditions (Section 4).

(The attention of the reader is also drawn to a rank procedure suggested by
Hodges and Lehmann [11] for the general incomplete block design which, in
particular, is also applicable to the present problem. However, the efficiency of
this procedure has so far not been fully investigated.)

2. Mathematical model and the test. Consider a paired-comparison experi-
ment involving K treatments and suppose that each of the N,; comparisons for a
pair (i, j) of treatments (1 < 7 < j§ £ K) provides an observed comparison
difference Z.;; (I = 1,2, - -+, N;;). Let Gi;(z) be a c.d.f. denoting their common
distribution and assume that G;; is continuous. The hypothesis of no-difference
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among the treatments can be expressed as Ho: G;(2) + Gi;(—2) = 1and Gy;(z)-=
G.;+(2) for any two pairs (¢, 7) and (7', 7). An alternative statement of the null
hypothesis would be more appropriate in the following situation: Let
Fi(z=1,2, -+, K) be a continuous c¢.d.f. denoting the underlying distribution
of the 7th treatment effect and assume that the random variables X;;, X;;,
which measure the characteristics corresponding to the (¢, j)th pair and Ith
comparison have distributions F,;, F;; satisfying

(2.1) Q:Fa(z) = Fi(z +m),  Fa(@) = Fi(z + m)
where 7; is an unknown constant. The hypothesis of no-difference can be stated
asHo:F, = F2 = - -+ = Fx . Thedifferences Z;ji = Xu— X (1= 1,2, -+ ,Ny;)

for each pair (¢, j) have identical distribution, which in case of independence
between X,;, X;; is given by Gij(z) = PlZ; £ z] = fF,-(x + y) dF;(y).
Still another form of the null hypothesis would arise when the N;; comparisons
for the pair (¢, j) of treatments are supposed to provide vector observations;
namely, (X, X;;)) (I = 1, 2, --- N;) from a certain continuous bivariate
distribution D.;(u, v). The hypothesis of interest would then postulate that each
distribution D,;(%, v) is symmetrical about the line = » and that all distribu-
tions D;;(u, v) (1 = ¢ < § = K) are identical. The last two problems can be
reduced through invariance to that of testing the hypothesis Hy on the basis of
the observed comparison differences Z’s by arguments similar to those given in
Lehmann ([14], p. 234) for the case K = 2. In certain experiments, paired-
comparisons become necessary because the experimental units, on which the
treatment comparisons might be based, are available only in natural groups of
size two. It may be observed that if each pair of experimental units is considered
to form a block, the assumptions (2.1) would then correspond to the case of
zero interactions between the blocks and the treatments in the usual analysis of
variance model.

We now describe the test: Rank the N = D%, > .. Ny absolute values of
the observed comparison differences Z,; (1 = i <j = K;l = 1,2, --- Ny).
Let ri;; = rank of [Z,;] if Z;; > 0, otherwise let r;;; = 0; similarly let s;;; = rank
of |Z:j1| if Zi < 0, otherwise let s;j; = 0. Then Ry = > Yiir; and 8§ =

i s:j1 are respectively the sums of the ranks of the positive and the negative
Z’s corresponding to the (7, 7)th pair. The test statistic proposed for the hy-
pothesis Ho(or Hy) is

K

(2.2) L = [6/(N + 1)(2N + DRI (2, (Vi /NL))
where N is the total number of comparisons in the experiment and V> =

¢ — 8P (we observe here that Ry'” = S{'?, so that V{? = —V§™?).
The test consists in rejecting H, at level « if the statistic L exceeds a predeter-
mined number L, , with Pg,[L = L.] = a. For K = 2, this test reduces to the
two-sided Wilcoxon paired-comparison test. By following the method of proof
of Theorem 3.1 of the next section and using Theorem 4W of [13], it follows (see
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Theorem 3.2) that, when H, is true, L is asymptotically distributed as a x*
variable with (K — 1) degrees of freedom. This provides a large sample approxi-
mation of the critical point L, . The following lemma is useful in connection with
the large sample approximation for the distribution of L.

LEMMA 2.1. When Hy is true, E(L) = K — 1 = E{x’ variable with (K — 1)
degrees of freedom}.

Proor. From (2.2) we have

(23) B(L) = [6/(N + DEN + DKIX (T o0

= —

J#E1

where ¢;; = variance (V§?/N 1)). In the above expression, the product terms
vanish since, under the null hypothesis, EWE?) = 0 and V§?/N :, and
V§"? /N for any two pairs (¢, j) and (¢, 7/) are uncorrelated. Let m.;
denote the number of positive Z’s corresponding to the (7, j)th pair, and let
E(-) and Var(-) stand, respectively, for the conditional expectation and the
conditional variance given m;; (1 < ¢ < j < K). Then-

o = (1/Ni)[2 Var(R§?) + 2 Var(8§?) — Var(RY” + S¥7)]
where
Var(R{?) = Var(ER{*?) + E(Var R{*?)
= Var(mi (N + 1)/2) + E((N — my)mi;i(N + 1)/12)
= [N4(N + 1)/48](5N + 2 — Ny;), Var(Ry"”) = Var(Sy”)

and
Var(R$? + 8§?) = Niy(N — Ni;)(N + 1)/12.

The result now follows by substituting the value of ¢; in (2.3).

Another test statistic for the hypothesis H, (suggested by certain related test
statistics) could be formed by considering the variables E; = > i (RSP —
ER{?} (1 = 1,2, ---, K). By following the method of proof of Theorem 3.1, it

can be shown that, under H, and for all N;; = =, the statistic

x -
(2.4) [192/(5K — 2)KY K — 1)1 { 2 (RE? — ER{ )}

=1 i
has asymptotically, asn — o, a x” distribution with (K — 1) degrees of freedom.
The relative asymptotic efficiency of this statistic with respect to the statistic
(2.2) (for shift alternatives Ky of Section 3) was found to be less than 1 for all
K and all distributions G. For this reason the statistic (2.4) is not considered

further.
3. The asymptotic distribution of L under translation-type alternatives.

In this section, we obtain the limiting distribution of the statistic L under a
sequence of translation alternatives approaching Ho . This will provide an ap-
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proximation to the asymptotic power of the test for small translations and also
enable us to obtain its asymptotic efficiency relative to other competing tests.

Consider for each fixed N, the alternative hypothesis Ky: @ N {Fi(z) =
F(z + 0.N %) foralls = 1, 2, ---, K such that for some pair (3, j) 0; = 6;}.
It is easily seen that, under Ky, for each pair (¢, j) the distribution of the
variables Z;;; (I = 1,2, ---, N;;) is given by

Kn:Gii(z) = G(z + (0; — 0;)NH

for all (4,j) (1 £ 4 < j < K), where G(z) = [F(z+y) dF(y). We observe
that the distribution G(x) is symmetric about the origin, and, thus, in the
changed context of the distributions @;;(z), the shift alternatives can be directly
defined by Ky, with G(x) as any distribution symmetric about the origin. We
now prove .

THEOREM 3.1. Suppose, for each index N, that Ky (or Ky) holds and that the
distribution function G(x) satisfies the following:

(i) G(z) possesses a continuous derivative G' (x) = g(x) except possibly on a
set S with [s dG = 0.

(ii) There exisis a function b(x), such that

6z + 6) — G(x)1/8] < b(z) and [ b(z) dG(z) < .

(iii) g(x) is continuous at x = 0.
Assume further that, as N — oo,

(iv) limyowN;i/N = v;j exists and is positive for all pairs (7,7) (1 <7 <j <K).
Then the statistic L, defined by (2.2), has a limiting noncentral x* distribution with
(K — 1) degrees of freedom and the noncentrality parameter.

(3.1) A = }{—2([ 7(y) dy)2i (> 6 — 6",

i=1  jzi

The proof of this theorem requires two lemmas. To state the first of these we
set out some notation: Set Xa1 , X2, *** Xan, (@ = 1,2, - - - C) be C independent
samples of sizes n, from distributions F, (a« = 1,2, --- C). Let §(J3,J.) = 1 or
zero according as Xg;, < Xas, or Xgr, = Xas, and define

(32) Ua= 2 3% 3 675, ).

B=1 Ja=1 Jg=1
H#a

Then if R, denotes the sum of ranks of X,’s in a combined ranking of all X’s
(3.3) R, = ne(ne + 1)/2 + U.,.

Let N = D.5_in, and define W, = N? {U, — E(U.)}.

LemMA 3.1. Assume for each index N that Fa(x) = F(z + 6.N?) and that
limy,o(ne/N) = v, exists for each a (a = 1, 2, -+ C). Then (i) the random
vector W = (Wy, Wy, -+, W¢) has in the limit, as N — o, a multivariate normal
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distribution N (0, $) with £ = || D s|| given by
2 et = T (BapVa — va¥p)

where a5 is Kronecker’s delta and (ii) the covariance matrix Ty of W converges to
the covariance matriz 3.

Proor. The proof of this lemma follows by a direct application of a theorem
of Godwin and Zaremba [8] (pp. 683-684) and computations on the same lines
as in Andrews [1].

LeEmMA 3.2. Let X,.(v) be a sequence of random variables (N = 1,2, ---) such
that

(i) for given N, m(N) is a random variable such that, as N — o, m(N)/N — po
in probability, for some 0 < po < 1.

(ii) For non-random m(N')

P{Xniy — B(Xmin)l/5(Xmemy) < 8} — 8(1)

as m(N) — oo, where E(X ) and (Xmwy) denote the conditional expectation
and conditional variance of X , given m(N), respectively and ®(¢) is the standard
normal distribution function.

(iii) PE(Xnw)) — E(Xnaw))/0(BXniwy) <t} — (1)
as N — «. Then, as N — o,
P{[Xniy — E(Xmw)l/0(Xmwy) < 8} — &(2).

Proor. The proof of this lemma is given by Konijn [12].

Proof of Theorem 3.1. The proof will be carried out in several steps:

(i) Let ¢ = 3K(K — 1) denote the number of all possible pairs and label
them o = 1, 2, -+-, C in some convenient manner. (If o« denotes the ordered
pair (4, 7), then RY"? = RY; VE? = 7 ete.) Let Mo, e (M + ne = Na)
be the number of positive and negative Z’s respectively for the ath pair and
consider first the conditional situation where each m, (« = 1,2, -- -, C) is given.

For given m,, let Y&, -+, Y& m.; Ya1, -+, Yan, denote the absolute values
of the positive and the negative Z’s respectively for the ath pair. The joint
distribution of the ¥’s is then the average over N, ! distributions corresponding
to the N, ! permutations of the absolute Z’s coinciding with the Y’s, so that it
follows easily that the marginal distributions for any Y, Y7 are, respectively

G(z + (ua/NP)) — G(ua/N?) if >0

H:,N(x) = 1 - G(ﬂa/Ni) :
(34) =0 otherwise
N o 3
e (z) = G(ua/NY) G((i(/;;)+ (a/N)) 4 & >0
— o otherwise,

where p, = pi; = 0; — 6; . Thus, in this conditional situation, the absolute values
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of the positive and negative Z,’s (a = 1, - -+, C) can be regarded as constituting
2C independent samples from distributions HS y and Hzy (a = 1,2, ---, C).
Define now U}, Uy (e = 1,2, --+, C) as in (3.4) and let

(3-5) Wa,N = U: - U;-

Assume further that imy.o(ms/N) = v¥ | limy,o(n./N) = vg exist and are
positive. Then it follows on account of Lemma 3.1 and a linear transformation
that, in this conditional situation, the variables N H{W.y — E(W.x)}
(¢ =1,2, ---,C)have in the limit, as N — o, a multivariate normal distribution

N(0, %) with £ = || D_.g|| given by
(3.6) Dot = [Bap(vE + va) — vk — v)(vF — vg)].

(The covariance matrix Iy of the variables N H{Wax.— E(Won)} (o = 1,2,
-+, C') again converges to the matrix ¥)

(ii) We shall now apply Lemma 3.2 and the above result to the variables
VE (a = 1,2, -+, C). The conditioning with respect to the random variables
Mme (a = 1,2, --+, C) is now dropped. We note from (3.3) and (3.5) that

(3.7) Ve = RP — 8§ = (ma — No/2)(Na + 1) + Wern
so that '
E(vy) — B(VE)
= (Mo — PaNa)(Na + 1) + E(Weo,x) — E(Wa,x)

where pa.y = G(—ua/N?). Now by setting ps+o+ = P[YF < Vi), pp-at =
P[Y5 < Y] ete., we can write

(3.7a)

C
E(Wan) = mg, ; (mpPp+.a+ + M8 Pp-at)
#a

38) .
— Ng ﬂz_; (mﬁpﬂ"'.a" + nﬁpﬁ—.a—) + ma'na(pa_.a+ - pa"‘.a—)
Fa

so that on account of (ma/Ne) — E(ma/Na) = 0p(1), (Ma/Na)? — E(me/Na)’
= 0,(1) and that ps+ o+ = % + O(N™?) we have

(382)  E(Wew) — E(Wan) = (e — paxNo) (N — No) + 0,(N?);
thus, from (3.7a) it follows that
39)  BVE) = E(VE) = (ma — paND(N + 1) + 0,(NY).

Since m, is a binomial (N, , p.,») random variable for each fixed N, it follows
that (EVY® — EVSY)/e(EV) converges in distribution to N(0, 1) variable.
Further, under the conditional situation given m, (a = 1,2, - -+, C) the variable

(V& — BVE)N/a(VE) = Waw — B(Wan))/5(Wan)
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converges in distribution to N(0, 1) on account of (3.6). From these and a
repeated application of Lemma 3.2, it follows that the random variable

(3.10) MV — EV{P}/NNL
is asymptotically a N(0, 1) variable (¢ = 1, 2, ---, C). (In (3.10)

we have replaced o*(V{") = E{FVE'} + &{EVE’} by N°N./3, since
limy.<[c*(VEY)/(N*No/3)] = 1.) By following exactly the same reasoning
the asymptotic normality of an arbitrary linear combination of the variables
(3.10) can now be easily proved, using (3.9) and the conditional joint nor-
mality of the variable N Won — BEWan)} (@ =1,2, -, C). The joint nor-
mality of the variables (3.10) now follows by using the same argument as in
Section 7 of Wald and Wolfowitz [18].

(iii) We will now show that the random variables (3.10) are uncorrelated in
the limit. This coupled with the joint normality of these variables establishes
their asymptotic independence. To prove the last statement, consider

E{WG.N - E(WG.N) + (ma - pa,N'Na)(N + 1)

NN,
(3.11)  Wew — E(Waw) + (mg — paw-Ns) (N + 1)}
' NN}
- ER {Wa,y — EWan Wow — E(Wa,u)}
- j (
NNY NN}

(all other terms vanish since m, and mg are independent). From (3.6), it follows
that for large N

E{Wa,h' - E(Wa,N) . Wﬂ.N - E(Wﬁn)}
NN} NN}

. 1 _1\AT ard
= §(ma/Na %)(Nmﬁ/Nﬂ )N Np + 0,(1).

Observing that, as N — o, the expression on the right converges in probability
to zero and that the random variables involved are uniformly bounded, an
application of the dominated convergence theorem shows that (3.11) converges
to zero. On account of (3.7) and (3.9), this implies that the covariance of any
two of the variables (3.10) converges to zero, as N — . Since the variance of
each of these variables converges to the variance of the limiting distribution, it
follows that the limiting multivariate distribution has zero covariances. Thus
the C = K(K — 1)/2 random variables (3.10) are asymptotically independent
N(0, 1) variables.

(iv) Reverting back to the original notation, it now follows that the variables
{(Tw:— E(Ty:)} (¢ =1,2, ---, K), where

Ty = B2 (Vi7/NY)/NK

It
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have, in the limit, a multivariate normal distribution N(0, A) where A =
|6:4 — 1/K]||. Observing that the covariance matrix Ay of the vector Ty =
(Txi, -+, Twyx) is non-singular and converges to the corresponding sub-
matrix of A and that Y ., Tw.s = 0, it is easily seen that the statistic L is
asymptotically equivalent to the statistic TyAxy Ty and, consequently, is dis-
tributed in the limit as a non-central x* variable with (K — 1) degrees of freedom
and the noncentrality parameter

(3.12) A = (3/K)Y {2 limy.w E(VE? /NN

=1 Jxs
(v) It remains to compute the noncentrality parameter, which is accomplished
below: From (3.7) and (3.8), we have

(a) c .
limNaeo E ( ul > = -lz‘l}j ﬁ;l Vg ]j.mN_,oc N}{pa,N pﬂ"’,a"’ —_ (1 —_ pa.N)pﬂ"'.a‘}
Ha

NN%

3.13 < .
( ) + %Vi 2:1 vg limy.,w N*{pa.Npﬁ‘.a"' - (1 - Pa.N)pB’,a-}
Ha

+ L3 limyaw N (2pe-at — 1) + ¥4 limyow N} (paw — 3).

On account of Assumption (iii), for sufficiently large N, we have for some
0<o<l1

(3.14) N (pay — 3) = —pag(0pa/N*) = —pag(0).
Further
limN-wo N%{pa.Npﬁ"'.a"' - (1 - pa.N)pﬁ"',a'}

= §limee N [ (Han(y) — Hin(y)} dHEn(y) — neg(0)

= —4uaf0 g'(y) dy.
The last equality follows since limit and integration are interchangeable on
account of Assumptions (i) and (ii). Similarly
limN.>oo N}{pa,Npﬂ",a"' - (1 - pa.N)pﬁ".a"}

Nl . °
(3 5) = hInN-»eO N;{pa,Npﬂ"',a"‘ - (1 - pa.N)pﬂ"‘.a_} = '—4[-‘01‘[ 92(?/) dy

and
(316)  limyow N (2pa-a+ — 1) = 16u, {%g(O) — f g'(y) dy}.
0

Substituting (3.14), (3.15), and (3.16) in (3.13), we get
(5.4) o
. N 3 2
limy.o B (NN%,-) = —4u;;vi; ‘4 g (y) dy
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so that (3.12) reduces to (3.1). The proof is complete.
For the special case when all N;;(1 < 7 < j < K) are equal, the noncentrality
parameter reduces to

2= 2 ([ewa) & e-er

=1

where 8 = >, 6,/K.

As an immediate consequence of Theorem 3.1, it follows by letting 6, = 6,
= ... = fgin (3.1) that under the null hypothesis H, (or H;) the statistic L
has limiting central x* distribution with (K — 1) degrees of freedom provided the
common distribution function G(z) satisfies the conditions (i)-(iv) of Theorem
3.1. However, these conditions are not necessary for the statistic L to possess
limiting central x* distribution, which result holds under much weaker con-
ditions. By following the method of proof of Theorem 3.1 and using Theorem
4W of [13], one can prove

Tueorem 3.2. Suppose that the hypothests Hy (or Hy) is true and that for each
pair (4, 7) the ratio (Ni;/N) remains bounded away from zero and one as N — o,
Then the statistic L, defined by (2.2), has asymptotically, as N — o, a x* distri-
bution with (K — 1) degrees of freedom.

4. Extension: the case of non-uniformity of experimental conditions. In
experiments where the experimental conditions are not uniform throughout, it
would be unreasonable to assume all differences (Z’s) to have identical distri-
butions, even under the hypothesis of no-difference among the treatment effects.
For example, different sets of comparisons might be performed in different
laboratories. The term ‘blocks” in this model will refer to different experi-
mental conditions. In such a case one way of constructing a test statistic would
be to compute the statistic' L for each block separately and add them all. Asymp-
totically, the new statistic will again have a x* distribution with degrees of free-
dom equal to the sum of the degrees of freedom of the individual terms. However,
this would be a test against inhomogeneity in each of the blocks separately;
whereas for the present problem an appropriate test should be directed against
concordance between rankings in different blocks, caused by a common trend of
the underlying distributions of the treatment effects. We will now develop and
investigate such a test.

Let b denote the total number of blocks and N ;;; be the number of comparisons
for the (7, 7)th pair and ¢th block (1 =7 <j =< K;t=1,2,---,b). Let N, =

D >iNijzand N.= D /1 N,. Let X,; be the random variable denoting
the characteristic of the ¢th treatment in the tth block and let F;(z) denote the
distribution corresponding to it. If Gy (x), a continuous c.d.f., denotes the
distribution of the difference random variable Z;;; = Xi; — Xj:, then the hy-
pothesis of no-difference among the treatments can be expressed as Hg : For
each combination (7, j, t), Gii(x) + Gis(—x) = 1 and Gye(x) = Gojre (x)
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for any two pairs (¢, 7) and (¢, 5) and the same ¢t (1 £ i <j < K;t=1,
27 T b)

We now describe the test: Rank the absolute values of all Z’s separately for
each block ¢t (¢ = 1,2, ---, b). Let R;;; and S;;; denote the sum of ranks of
positive and negative Z’s respectively for the combination (z, 7, ) and let

b
Vijt = Rm - Sm H Vij = Z Vm 5 Vi = Z Vij .
t=1 i
The covariance matrix M = ||7;:|| of the variables V; (¢ = 1,2, - -+, K) is given
by

Tii='(1fzz

K
t=1 j4i
b

Tir = —& 2 Nune(N. + 1) (2N, + 1).

t=

Niji(N: + 1)(2N, + 1)
(41)

=

Suppose that Rank M = K — 1 (for Rank M < K — 1 see remarks below)
and let

™m T2 - mik V1
Mv =

Tkl Tk2 °°° TKK Vx

Vi Vo -+ Vg O

Let Ay and A be the matrices obtained from My and M respectively, by omitting
the ¢th row and 7th column, for an arbitrary z, (1 <7 < K), but not 2 = K + 1.
Let |Ay| and |A| denote their determinants; then the test statistic proposed for
the hypothesis Hy is

(4.2) L* = |av|/|a]

with large values of L* constituting the critical region. It is easily verified that
L* does not depend on the choice of rows and columns omitted in the matrices
My and M, since in both these matrices each row (column), except for the last
one in My, is a linear combination of the other rows (columns). In representing
L* we have used the same technique as Benard and van Elteren [2]. We observe
here that L* is just a convenient representation of the quadratic form

(4.3) valv

where V.= (Vy, +--, Vi, Vina, --+, Vx)'. Since (4.3) is positive definite it
can be transformed into a quadratic form of the type Y Cal, with C; > 0
(¢{=1,---,K—1)and > i = 2.VE. Alarge difference among the treatment
effects will tend to make Y _;V?, and therefore L*, large and consequently lead
to the rejection of the null hypothesis.

Theorems 4.1 and 4.2 below will enable us to approximate the critical points
for the large numbers of comparisons:
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THEOREM 4.1. Suppose that the hypothesis Ho is true and that for each pair
(2, 7) the ratio (N ;:/N) is bounded away from zero and one for some t, as N — o
(where b need not tend to «). Then the statistic L*, defined by (4.2), has asymp-
totically, as N — o, a x° distribution with (K — 1) degrees of freedom.

Proor. The proof of this theorem follows on the same lines as Theorem 3.1
and from the definition of the statistic L*.

THEOREM 4.2. Suppose that the hypothesis Hy is true and that the total number of
blocks b — o [the N ;;; may be finite for some or all combinations (1, j, t)] such that

(i) Foreacht = 1,2, --- K,

limbwzt: {E|; Vil /i) =0
J#i

(il) the matrix z: = ”pi,'/” has rank (K - 1), where Pt = ﬁmb_,w[T,;i'/(Ti{T,"i')}],
then the statistic L*, defined by (4.2), has asymptotically, asb— o, a X distribution
with (K — 1) degrees of freedom.

Proor. The proof of this theorem follows from the central limit theorem for
random vectors (see Uspensky [16], p. 318) and the definition of the statistic L*.

LemmMa 4.1. If N i < n (a constant) for all combinations (4,7,t) (1 £1<j = K;
t=1,---,b), then the Conditions (i) and (ii) of Theorem 4.2 are implied by the
following:

(i) For each i = 1, 2, -+, K, limp.e( D jws bi/b) > O where, for the pair
(4, 7), bsj s the number of blocks t for which N;je > 0 (t = 1,2, ---.b).

(i) The matric M* = ||r7:/||, where r5;: = lims,., — (biir/b) and 75; = lims..,
(D jxi bij/b) is not of the type

‘ P O
0 Q

(see definition below).

Proor. The method of proof of this lemma is similar to that of Theorem V of
Benard and van Elteren [2]. Since N;; < 7 for each combination (¢, j, t),
{31 E| >z Viji/*/b] remains bounded as b — . Also

b K
limy,e 75i/b = limpw(1/66) > 3 Ni(N, + 1)(2N, + 1)
t=1 jz%1

2 limpow 2 bis/b > 0
i
so that the Condition (i) is satisfied. Further on account of (4.4), it also follows
that pii = 0 if and only if limg.w(bsr/b) = 0 (¢ 5= 7).
Now consider the following definition: Let us say that a K X K matrix Mis
of type

(4.4)

)

P U
0 Q

where P and Q are square matrices and 0 consists of zeros, if and only if it can




RANK TESTS FOR PAIRED COMPARISONS 133

be transformed into a matrix of the type by the same permutation of rows and
columns.

From this definition, the preceding result and Condition (ii)’ of this theorem
it follows that the matrix ¥ of Theorem 4.2 is not of this type. Consequently,
the matrix =,, obtained from ¥ by omitting the »th row and »th column is also
not of this type.

Tausski [15] has proved the following result: Let |la;| be a K X K matrix
with complex elements such that

(4.5) Iaii[ = Z |aw| (2 =12 ---, K)
/=1
=1

with equality in at most (K — 1) cases. Then the determinant (a.:-) # 0 if and
only if this matrix is not of the type
P U

i

The matrix ¥,, defined above satisfied the Condition (4.5), so that its rank is
(K — 1). Since evidently the rank of ¥ is at most (K — 1), it is, therefore,
exactly (K — 1), and the proof is complete.

It may happen that there are two or more—say ¢ > 1— “noncompared”
subsets of objects; i.e., no comparison is made between objects belonging to
different mutually exclusive subsets. Benard and van Elteren [2] have proved a
theorem (whose scope also covers the present setup) which states:

The rank of the matrix M [see (4.1)] is (K - ¢) if and only if there are more
than ¢q non-compared subsets of objects.

In view of this theorem, the statistic L* can be defined as above if and only
if ¢ = 1. Further, it also follows that the Condition (ii)" of Theorem 4.3 will be
violated if and only if there are more than one ‘“non-compared” subsets of ob-
jects in the “asymptotic sense” i.e. as b — o, the proportions of comparisons be-
tween different subsets of objects tend to zero. If ¢ > 1, then one can com-
pute L* statistic for each of the q subsets and add them all; the new statistic
will have asymptotically a x* distribution with (K — ¢) degrees of freedom.

The last remark also applies to the statistic L of Section 2. Further, in this
model if some N,; = 0 (without partitioning the set of K treatments into disjoint
“non-compared” subsets), a statistic similar to L*, but with over-all ranking of
absolute differences Z’s, can be defined.

6. The asymptotic distribution of L* under Ky. Consider the following
sequence {N = 1, 2, ---} of translation alternatives: Ky: Fu(z) = F(z + &
+ 0N ) foralli =1,2,---,Kand ¢t = 1,2, ---, b, where £ is a constant and
not all 6; are equal. In the changed context of distributions of Z’s, the alternative
K3 reduces to Ky (see Section 3), so that the shift alternatives may again be
directly defined by Ky .

The asymptotic distribution of the statistic L™ of Section 4 will be derived for



134 K. L. MEHRA

the following ‘‘balanced’” design only: Let

N ;. = n, for all combinations (%, j, t),
X = the number of treatments compared in each block t = 1,2, -- -, b,
(5.1) p = the number of blocks in which each pair (7,7) (1 £ 7 < j £ K)
of treatments is compared, and
I = the number of blocks in which each individual treatment 7 appears
(=12, ---,K).

Then, u = A(A — 1)b/K(K — 1)and I = (K — 1)u/(\ — 1). For this case, (4.3)
and therefore the statistic L* is easily seen to reduce to the form

I

[

L* = [6/n(N 4+ 1)(2N’ + 1)K -4l é {Zt) ; Viie)®

where N’ = IA\(A — 1)n.

We now state, the following two theorems, which are counterparts of Theorems
4.1 and 4.2 of Section 4, respectively:

TueorEM 5.1. For each index N, let the hypothesis Ky be valid. Then under
Assumptions (1), (ii) and (iil) of Theorem 3.1 and the Assumption (5.1) above,
the statistic L*, defined by (4.2), has asymptotically, as n — o, a nonceniral
X -distribution with (K — 1) degrees of freedom and the noncentrality parameter

(52) ot = 2 A ew anf & 0 - 0y

where & = Y 1 0./K.
Proor. The proof of this theorem is accomplished on the same lines as that of

Theorem 3.1.

TrEOREM 5.2. For each index N, let the hypothesis K y be valid. Then, under the
assumptions of Theorem 5.1, the statistic L, defined by (4.2), has asymptotically
as b — o, a noncentral x’-distribution with (K — 1) degrees of freedom and the
noncentrality parameter

B 48
T (N 4+ DEN + 1)

o =n fewa+ o] 2y 3 -y

AF?
(5.3)

=1

whered = Y ~,0,/K and N' = n <g>

Proor. The proof of this theorem follows from the central limit theorem for
random vectors (see Uspenski ([16], p. 318) with the computations of the non-
centrality parameter as in Theorem 3.1.

6. Asymptotic relative efficiency. The. asymptotic efficiencies of the L and
L* tests relative to other competing tests will be obtained only for the “balanced”
case (5.1). It follows from van Elteren and Noether [17] that for this case,
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Durbin’s x5-statistic and the corresponding F-statistic have, under Ky, non-
central x’-distributions with (K — 1) degrees of freedom and noncentrality
parameters Ap and A} respectively, with

8 K

8h = z— 6°(0) 2 (06 = 0)?
(6.1) . (&
Ar =K__ 1{;(05_0)/70}

where o2 is the variance of Gand 6 = Y+, 0,/K.For such cases, the asymptotic

efficiency es s+ of a statistic S relative to another statistic S* is given by the
ratio of their respective noncentrality parameters (see [1], [9]). Let LI and L3
stand for the asymptotic test L™ in the two situations corresponding to Theorems
4.1 and 4.2, respectively. From (3.17), (5.2), (5.3) and (6.1), we thus have

erp = €lp = 3 [f g (y) dy]z/sf(o)

e = T 1)?22\,, ) [{N' - 1) j g'(y) dy + 9(0)}/9(0)]2.
Similarly |

2
eLr = €Llr = 1205 [/ 7 (y) dy]

(6.2)

(6.3)

2

. 24 2 1 2
e = D [V D [ ¢w a0 |
Further, van Elteren and Noether [17] have pointed out that the Bradley-Terry
and the Durbin paired-comparison tests are asymptotically equivalent. Thus the
efficiencies of the L and L™ tests relative to the Bradley-Terry test are the same
as (6.2). We observe here that these efficiency expressions (6.2) and (6.3) are
the same as those of the Wilcoxon-one-sample test relative to the sign-test and
the ¢-test respectively. For the particular case, when @ is N (0, ¢°)

L . _ 320N —1+2Y
(6.4) €L,r = €L, F = — €Ly, Fr = 1_|'(N, + 1)(2N, F 1)

We note that, asn — o [N’ = I\(A\ — 1)n], es},r of (6.3) tends to the value
12 *([¢*(y) dy)’ which is the same as e.},r . For the normal case (6.4), e}.r
increases monotonically to the value e, = 3/w, as n — . Further, consider
the case such that in each “block’ only comparisons for a single pair of treatments
is made, i.e., A = 2 and N’ = n. For this case e},» of (6.3) and (6.4) assume
respectively the values 4 ¢°g°(0) and 2/7 when n = 1. This must be so, since in
this case L* statistic reduces to the Durbin x3-statistic.

e

7. Discussion and concluding remarks. It is evident that under the assump-
tions of Section 2, where it is possible to rank the absolute Z’s in a combined
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sample, one can also rank the absolute Z’s corresponding to each pair (7, j) of
treatments (1 < ¢ < j £ K) separately and use the L*-statistic of Section 4,
instead of the statistic L based on the “joint ranking” procedure. By looking at
the asymptotic relative efficiency expressions (6.2) and (6.3), one might question
the need of a “joint ranking” procedure and the L-test when a more convenient
“separate ranking” L*-test is available, which has the same asymptotic Pitman
efficiency as the L-test. However, it must be remembered that Pitman efficiency
is just a limiting number and provides a comparison only for the local power and
for large samples. Hodges and Lehmann [10] have emphasized (see also [5] and
[6]) that a single number cannot provide a comprehensive efficiency comparison
of two tests.

That the L-test based on the “joint-ranking” procedure should provide better
local power against all alternatives of shift in location with the underlying distri-
bution as one for which e.,p = e 3.p >1 is suggested by considering the two
tests L and L* when N;; = 1 for each pair (¢,7) (1 £ ¢ < j < K). For then the
“separate ranking” L*-test reduces to Durbin’s paired-comparison test, whereas
the L-test still utilizes the magnitudes of the observed comparison differences
Z’s. This suggests—roughly speaking—that the L-test should be preferred to
the L*-test for the alternatives for which it is preferred to the Bradley-Terry or
Durbin tests. (Normal shift alternatives is one such instance). The author has
carried out computations for comparing the local power of the above two tests
for finite number of comparisons N;; = n for each pair (7, 7) and large number
of treatments. The results supported the above contention. These results will be
presented in a subsequent paper.

Acknowledgment. I wish to acknowledge my indebtedness to Professor
E. L. Lehmann for proposing this investigation and his constant encouragement
and many valuable suggestions during its progress.

REFERENCES

[1] AnprEWS, F. C. (1954). Asymptotic behavior of some rank tests for analysis of variance.
Ann. Math. Statist. 26 724-735.

[2] BENARD, A. and vaN EvteRrEN, PH. (1953). A generalization of the method of m rank-
ings. Proc. Kon. Ned. Ak. van Wet. A 56, Indag. Math. 156 358-369.

[3] BrapLEY, R. A. (1955). Rank analysis of incomplete block designs, III. Biometrika
42 450-470.

[4] BrapLEY, R. A. and TerRrY, M. E. (1962). Rank analysis of incomplete block designs,
1. Biometrika 39 324-345.

[5] Dixon, W. J. (1953). Power functions of the sign test and power efficiency for normal
alternatives. Ann. Math. Statist. 24 467-473.

[6] Dixon, W. J. (1954). Power under normality of several non-parametric tests. Ann.
Math. Statist. 26 610-614.

[7]1 DursiN, J. (1951). Incomplete blocks in ranking experiments. British J. Psychology.
4 85-90.

[8] Gopwin, J. J. and ZAREMBA, S. K. (1961). A central limit theorem for partly dependent
variables. Ann. Math. Statist. 32 677-686.



RANK TESTS FOR PAIRED COMPARISONS 137

[9] HanNaN, E. J. (1956). The asymptotic powers of certain tests based on multiple cor-

relations. J. Roy. Statist. Soc. Ser. B. 18 227-233.

[10] Hopees, J. L., Jr. and LEEMANN, E. L. (1956). The efficiency of some non-parametric
competitors of the t-test. Ann. Math. Statist. 27 324-335.

[11] Hopges, J. L., Jr. and LeaMann, E. L. (1962). Rank methods for combination of
independent experiments in the analysis of variance. Ann. Math. Statist. 33
482-497.

[12] Kon1in, H. S. (1957). Some non-parametric tests for treatment effects in paired replica-
tion. J. Indian Soc. Agric. Statist. 9 145-167.

[13] KruskaL, WiLLiam H. (1952). A non-parametric test for the several sample problem.
Ann. Math. Statist. 23 525-540.

[14] LeamanN, E. L. (1959). Testing Statistical Hypotheses. Wiley, New York.

[15] Tausskl, O. (1949). A recurring theorem on determinants. Amer. Math. Monthly 56
672-676.

[16] Usprensky, J. V. (1937). Introduction to Mathematical Probability. McGraw-Hill, New
York. )

(17] van Evreren, PH. and NoeTHER, G. E. (1959). The asymptotic efficiency xI-test for a
balanced incomplete block design. Biometrika 46 475-477.

[18] WaLp, A. and WoLrowiTz, J. (1944). Statistical tests based on permutations of the
observations. Ann. Math. Statist. 16 358-372.



