NOTES

MEMORYLESS STRATEGIES IN FINITE-STAGE DYNAMIC
PROGRAMMING!

By Davip BLACKWELL

University of California, Berkeley

Given three sets X, Y, 4 and a bounded function v on ¥ X 4, suppose that
we are to observe a point (2, y) € X X Y and then select any point a we please
from A, after which we receive an income u(y, a). In trying to maximize our
income, is there any point to letting our choice of a depend on z as well as on y?
We shall give a formalization to this question in which sometimes there is a point.
If (z, y) is selected according to a known distribution @, however, we show that
dependence on z is pointless, and apply the result to obtain memoryless strate-
gies in finite-stage dynamic programming problems.

We suppose that X, Y, A are Borel sets in Euclidean spaces and that v is
bounded and Borel measurable. A strategy o is a Borel measurable map of X X ¥
into A: o(z, y) is the a selected by ¢ when (z, y) is observed. The income from
o is the function I, on X X Y: I,(z, y) = u(y, o(x, y)). A memoryless strategy
is a Borel measurable function from Y into 4 ; its income is I.(x, y) = u(y, 7(y)).
I, is defined on X X Y, but depends on y only.

Question 1. Given any o, is there a = with I, = I, for all (z, y)?

If 4 is finite, the answer is clearly yes: define v(y) = max, u(y, a) and choose
7 so that u(y, 7(y)) = v(y). Then, for any o, I,(z, y) = v(y) = L(z, y).

If A is countable, the answer is no, in an uninteresting e sense. Here is an
example: X = {1 — 1/n,n=1,2,---}, Y = {0}, A = X, and u(y, a) = a.
The o with o(z, y) = z has I,(z, 0) = z, so that sup, I,(z, 0) = 1. For any
7, I, = 7(0) < 1, so that there is an x with I,(z, 0) > I.(z, 0). But for count-
able 4, given any ¢ > 0 (where e can even be a Borel measurable function of
y), there is a 7 such that, for any o, I, > I, — € for all (z, y): put
v(y) = sup, u(y, @) and choose 7 so that u(y, 7(y)) > v(y) —

Question 2. Given any ¢ and any e > 0, is there a r with I, > I, — ¢ for
all (z, y)? Section 2.16 of [2] implies an affirmative answer with certain addi-
tional not very restrictive hypotheses. But here is an example where the answer
is no. X is a Borel subset of the unit square B X S whose projection D on R is
not a Borel set. ¥ = A = unit interval, and u is the indicator of X:

u(y, a) = 1, if (y, a) e X,

= 0, if (y, a) 2 X.

For the strategy o: o(z,y) = sforz = (r,s), wehave I,((r,s),r) = u(r, s) = 1,
so that I, is 1 on the subset F of X X Y consisting of all points ((r, s), y) with

y = r. But for any 7, I.(z, y) = u(y, 7(y)). The projection of G = {(z, y):
I.(z, y) = 1} on Y is just the y-set {u(y, (y)) = 1}, which is a Borel subset
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of D, while the projection of F on Y is D itself. Thus F contains points (z, y)
not in @. For these points I, = 1 and I, = 0.

Here are two ways to avoid the unnatural conclusion that ¢’s cannot be re-
placed by 7’s. ‘

(1) Do not insist that strategies be Borel measurable. Then with »(y) =
sup, u(y, @), there is for any ¢ > 0 a 7 with u(y, 7(y)) > v(y) — efor all y, so
that, for any o,

I(z,y) —e=0(y) — e < I(z,y) forall (z,y).

Dubins and Savage [2] have found it convenient to admit nonmeasurable strate-
gies in their theory of gambling.

(2) Do not insist that I, = I, — e everywhere, but only on a set of Q-prob-
ability 1, where @ is some given distribution on X X Y. Part (b) of the theorem
below asserts that this can be done.

THEOREM. Given any o and any probability distribution @ on X X Y,

(a) there is a T with

L= [I(zy) dy) 2 [ L(zy) dQ(,y) = I,.

(b) For any € > 0, there is a T with I, > I, — € on a set of Q-probability 1.

Proor. (a) Denote by u the marginal distribution on Y determined by @,
and by m(+|-) a version of the conditional distribution on 4 given Y induced by
@ and ¢. Thus m(-|y) is for each y a probability measure on the Borel sets of
A and m(B |-) is for each Borel set B — A a Borel measurable function of y
such that, for every bounded Borel measurable ¢ on ¥ X A

J 6y, o(2,9)) dQ(=, y) = 1] ¢(y, a) dm(a|y)] du(y).
In particular, for ¢ = u,
L= [[[uly,a)dm(aly]du(y) = [ h(y) du(y).

The set D of all (y, a) for which u(y, a) = h(y) has m(D, | y) > 0 for all y,
so that, from a known result [1], there is a Borel measurable function 7 from
Y to A whose graph is a subset of D: u(y, 7(y)) = h(y) for all y. For this ,

L= [u(y, 7(y)) dQ(z,y) = [u(y, 7(y)) du(y) 2 [ h(y) du(y) = I..

For (b), we proceed as in (a), but use instead of D the set D, of all (y, a)
for which u(y, @) > S(y) — ¢ where S(y), the conditional essential supremum
of u(y, a) given y, is defined as the sup of all rational numbers r for which
m({a: u(y, a) > r}| y) > 0. Choosing = whose graph is in D; makes

m{a: u(y, r(y)) > w(y,a) — ¢|y) =1

for all y, which implies I, > I, — e with @-probability 1.

We, remark that the same method, using D N D, , yields a 7 satisfying both
(a) and (b). 1

The theorem enables us, in finite-stage dynamic programming problems, to
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replace any strategy by a memoryless strategy without loss. We illustrate the
idea for a two-stage problem. We are given four Borel sets X, 4, ¥, B, a func-
tion ¢(-|-, -) such that ¢(-|z, a) is for each (z, a) £ X X A a distribution on
the Borel sets of ¥ and ¢(F |-, -) is for each Borel subset of ¥ a Borel function
on X X A, two bounded Borel functions, u; on X X A X ¥ and u; on X X B,
and a distribution P on the Borel sets of X. An initial state z of the system is
selected according to P. We observe = and choose any a € A. The system then
moves to a state y ¢ Y, selected according to ¢(-|z, a). We observe y, then
choose b ¢ B and receive the income w(z, a, y, b) = wi(z, a, y) + wus(y, b). A
strategy o is a pair oy, o2, Where o; maps X into 4 and o, maps X X Y into
B. o(with P, ¢) determines a distribution P, on X X 4 X Y X B, and our ex-
pected income is I(¢) = [udP,. A o is memoryless if o, depends on y only.
To replace any ¢ = (o1, o2) by a memoryless + = (71, ) let Q be the dis-
tribution on X X Y determined by P,. Note that @ depends on &; only. Our
theorem, applied to @, o3, u, yields a 7, mapping ¥ into B with

J ey, 7)) dQ(z, y) = [ w(y, oa(z, y)) dQ(z, y).

Thus, with » = (o1, 72), the above inequality asserts [wu,dP, = [ u,dP,.
Since [u;dP. = [ dP,, we conclude I(r) = I(o).
I am grateful to L. E. Dubins and L. J. Savage for several helpful comments.
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