SUFFICIENCY IN SAMPLING THEORY
By P. K. PaTHAK'

Unaversity of Illinois

0. Summary. The present paper is an attempt to define sufficiency in simple
terms in the theory of sampling. This definition is a suitable version of the
existing notion of sufficiency as defined by Fisher, Halmos and Savage, Bahadur
and others. The paper gives justification for the use of sufficient statistics in
sampling theory. Applications to interpenetrating subsampling and two-stage
sampling are given.

In interpenetrating subsampling, it is proved that for estimating the popu-
lation mean when the subsamples are drawn by simple random sampling without
replacement, an estimator better than the usual overall average of subsample
means is given by the average of distinct sample units. An improved estimator
of the population variance is derived. In two-stage sampling where the first-stage
units are drawn with unequal probabilities and second-stage units by simple
random sampling (without replacement), two estimators of the population mean
which are better than the estimator in current use are given.

1. Introduction. The notion of sufficiency was first introduced by Fisher (1922)
and was made rigorous in abstract terms by Halmos and Savage (1949), Lehmann
and Scheffé (1950) and later by Bahadur (1954). Recently it has been noted by
Basu (1958), Hajek (1959) and the author (1961) that the theory of sufficiency
can be used in a great many problems in sampling theory. The reason why the
theory of sufficient statistic has not yet been fully used in sampling theory is
probably because most results concerning sufficient statistics and their use are
not available in the literature in a language understandable to most research
workers in sampling. The notion of sufficiency as it exists today in abstract
terms is neither necessary nor is it important from the view-point of sampling
theory and actually obscures the main problems of estimation therein. This
paper is being written in simple terms to make precise as to what is meant by
sufficiency in sampling theory and to justify the use of sufficient statistics in
sampling and to show that the existing theorems like Rao-Blackwell’s on suffi-
ciency apply here with almost no modiﬁca,tion.i Section 2 of this paper is, there-
fore, mainly expository.

2. A general sampling scheme. Consider a population = of N elements of
arbitrary nature and let Uy, U:, ---, Uy be the values of a certain vector-
valued variable under study associated with the N elements of the population.
U; is said to be the U-value of the jth population element and it is assumed that
in Uj is incorporated its unit-index j (j = 1, ---, N). It is considered worth-
while to define the following terms.
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DeriniTioN 2.1. A sample s from 7 is defined to be a finite sequence of U’s
selected from (U;, U,, ---, Uy) with or without replacement.

DEeriniTION 2.2. A sampling scheme on 7 is defined to be an arbitrary collec-
tion 8 = {s} of samples s from =, to be called the sample space, on which a
probability measure has been defined. Thus a sampling scheme is expressed as
[{s, p(s)}, s ¢S] where p(s) denotes the probability of selection of the sample
sand ¥ .sp(s) = 1. Sometimes a sampling scheme would be denoted by
{8, P} or just by S. It may be noted that S has at most a denumerable number of
samples.

The above definition of a sampling scheme is quite general as any method of
element-by-element sampling from a population can be expressed in the above
form. For example simple random sampling without replacement of size n from
a population of N consists of (7) sequences corresponding to (%) combinations
of n chosen out of N elements and p(s) = 1/(3) for each sample, and simple
random sampling (with replacement) consists of N" sequences of n elements
drawn with replacement from N elements of the population and p(s) = 1/N"
for each sample.

Dermvition 2.3. Two samples s; and s, are said to be equivalent if they
both contain the same elements of the population. For example s, =
(U, Uz, Uz, Us) and s, = (U, Us, Us) are equivalent as they both lead to
the inclusion of the first three elements of the population.

Derinrrion 2.4. A partition of the sample space is a division of the totality
of samples S = {s} into mutually disjoint subsets of S. A typical partition will
be denoted by Sz = {sz}.

DEeriNITION 2.5. A partition of S into subsets of equivalent samples is called
a sufficient partition. Thus Sr = {sr} is a sufficient partition if each sr of Sy
contains only equivalent samples. sy is called an element of Sy .

In some cases, it will be desirable to express a sufficient partition together
with its probability measure as Sy = {sr, p(sr)} where p(sr) = D eesr P(s).

A statistic T(s) [a function defined from S onto another space Y] induces a
partition Sy on S such that 7'(s) is the same for all s ¢ sy for each sreSr.
Further if for some s1, s2 ¢S, T(s1) = T(s;) then s; and s belong to different
sr’s of Sr. We, therefore, have the following definition.

DEerINITION 2.6. A statistic T'(s) is said to be sufficient if the partition, Sr,
induced by T is sufficient.

REMARK: Suppose Sr = {s.} is a sufficient partition of S. Let T be the indexing
set of sg’s. Then the function T'(s) = ¢ for all s ¢ s; is a sufficient statistic as it
induces the sufficient partition Sr. Thus given any sufficient partition there
exists a sufficient statistic 7 that induces it and so any sufficient partition can
be replaced by its sufficient statistic. In the sequel, whenever we say that T is a
sufficient statistic we refer to the sufficient partition induced by T' viz {s}.

The reason why partitioning of S into equivalent samples is sufficient is the
following. A sample s ¢ S provides us information about those population ele-
ments that are in the sample. If two samples contain the same population ele-
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ments then they give the same information about the population. Thus a parti-
tion of S into subsets of equivalent samples is sufficient because each of the
samples of a given subset is equally informative and also given one sample of a
subset it is possible to work out all the equivalent samples of that subset with-
out any information about the other samples. In other words this means that
the sampling distribution of samples depends on the population elements only
through equivalent samples. It is to be noted that U = (Uy, U, -+, Ux)
the U-values of the population elements play the role of the parameter. The
sufficiency here is with regard to U. '

The proof of the sufficiency of a sufficient partition in abstract terms can be
given in a rigorous manner and has been omitted here for reasons of simplicity.
Bahadur’s paper (1954) may be referred to for the definition of sufficiency in
abstract terms. It is believed that it is quite unnecessary to define sufficiency in
abstract terms in sampling. Definition 2.5 is a suitable version of sufficiency in
sampling theory. With this variation in the definition of sufficiency, existing
theorems on sufficiency can be applied to sampling theory without any modifica-
tion.

DermniTioN 2.7. A sufficient statistic 7 (or the sufficient partition Sr,)
is said to be smaller than a sufficient statistic T (or the sufficient partition
Sz,), T1 € T, (Sr; & Sr,) in symbols, if for each sr, € Sr, there is an sr, £ Sr,

such that sz, C sr, .

If T, € Ts (or Sr; < Sr,), then the elements of Sz, can be obtained from
Sr, by grouping together some elements of Sr, .

Derinition 2.8. For each s ¢ S, let

(1) T(s) =Un,Ug, -, Unl

be the set of d U-values corresponding to different population units included in
s and arranged in increasing order of their unit-indices, e.g., if s =
[Us, Us, Uz, Ug] then T(s) = [U,, U, Ug]. T(s) is called the “order-statistic”;
Uy, Ug, -, ete. are called respectively the first, second order-statistic ete.
This definition of the order-statistic is slightly different from the customary
definition of order-statistic where the units are arranged in order of magnitude
of a certain characteristic associated with the units. This definition is used to
avoid possible ambiguity in defining the “order-statistic’” when a sample may
contain two different population units of the same order of magnitude.

It can be easily seen that the “order-statistic” is a sufficient statistic since it
induces a partition of equivalent samples of S.

DerFinttion 2.9. Let f(s) be a real-valued function defined on the sample
space S. Then the conditional expectation of f(s) given a sufficient partition

Sr = {sr, p(sr)} is given by

(2) Elf(s) | T) = 221f(s)p(s)/ Lip(s)
where the summation, %, is taken over the samples se&sr. Note that

E[f(s) | T] is defined on Sz .
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LeEMMA 2.1. Let L be a real-valued convex function defined on an interval D
of the real line. Let {x,} be a sequence of points in D and let {p,} be a sequence of
non-negative numbers with Y, p, = 1 and Y pa|t.] < . Then

(3) L(Z Daln) = anL(xn)

with strict sign of inequality holding <f L is strictly convez.

The definition of a convex function and the proof of the lemma can be found
in Blackwell and Girshick (1954) p. 41.

The well-known Rao-Blackwell theorem is given below. The proof of this
theorem in abstract terms can be found in standard texts on estimation (see
Fraser (1957), p. 57). An alternative proof in terms of the definitions introduced
in this paper is given here.

TuareoreM 1 (Rao-Blackwell). Let T = {sr, p(sr)} be a sufficient statistic
for {s, p(s), se8}. Let f(s) be an unbiased estimator of a real-valued parameter
g(Uy, -+, Ux). Then fr(s) = E[f(s) | T] is also unbiased for g(Uyr, -+, Ux)
and for any convex loss function fr(s) has smaller expected loss than f(s) unless
f(s) = f2(s) for all s € S in which case f(s) and fr(s) have the same expected loss.

Proof. By definition

(4) Blfr(s)] = Lafr(s)p(sr)
where the summation, Y s , extends over all sy & Sy . Using (2),
Elfr(s)] = 222 {2215(s)p(s)/p(s1)}p(s1)
= 222 2 f(s)p(s) = ;Sf(s)p(s) = E[f(s)] = g(Ur, -+, Ux).

Thus fr(s) is also an unbiased estimator of g(Ui, - -+, Ux). To prove that fr(s)
has smaller expected loss function than f(s), let L(z) be a convex loss function.
Then

(5) Lif2(s)] = LIZap(s)f(s)/p(s2)] < 221 (p(s)/p(s2)} LIf(s)]

by (8), the strict inequality holding when L(z) is strictly convex. On taking the
expectation on both sides of (5), we get

(6) E{LIlf:(s)]} = E{LIf(s)]}.

This completes the proof of the theorem.

CoroLLARY 1.1. If the loss function is the squared error, then fr(s) has smailer
variance than f(s). The decrease in variance is equal to E{f(s) — fr(s)}".

Dermition 2.10. Of two estimators fi(s) and fo(s) of g(Ui, ---, Ux),
fi(s) will be said to be uniformly better than f»(s) if for any convex loss function
fi(s) does not have greater expected loss than fi(s) for all (Ui, ---, Ux).
Using a method of proof similar to that of Theorem 1, one can prove the follow-
ing theorem.

THEOREM 2. Let f(s) be an unbiased estimator of g(Uy, -+, Ux). Let T1 and
T be two sufficient statistics such that T1 & Ty . Then fr,(s) = E[f(s) | T] and
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fro(s) = E[f(s) | T are uniformly better than f(s). Further fr,(s) is uniformly
better than fr,(s) and fr,(s) = Elfr,(s) | T4].

Applications of these results to interpenetrating subsampling and two-stage
sampling are given below.

3. Interpenetrating subsampling. Let us consider a population of N units.
Let U; be the jth population unit and let ¥; be the value of some real-valued
Y-characteristic associated with U;, 7 = 1, ---, N. In conformity with the
notations commonly in use capital letters refer to the population and small
letters refer to the sample. The following sampling scheme is considered herein:
k simple random (without replacement) subsamples each of size n are drawn
from the above population independently of each other, i.e., each subsample is
drawn by simple random sampling (without replacement) and is replaced to the
population for subsequent selection of subsamples.

The usual estimator of the population mean ¥ = N D Y;, based on the
7th subsample is given by the sample mean

(7) gi:n_lzlyif i=1w"'7k

where the summation is taken over all units of the ¢th subsample. Obviously any
linear function 5, ¢y is also an unbiased estimator of ¥ provided Y %_;¢; = 1.
Of all the nk units observed in these subsamples, not all will be distinet. Let
U, U@, **° , Uwm be the m distinet units observed. Then the order-statistic
T = [uw, U@, * - , e is sufficient. Therefore, if any estimator of ¥ does not
depend on T it can be reduced by conditioning through 7T to yield a better es-
timator of ¥. For doing so and for other interest, we will need the probability
distribution of 7. The following lemma will be found useful for this purpose.

Lemma 3.1. Let A1, Aa, -+, A, be m evenis defined on a probability space.
Let A= Ul A;and B; = (A — A.),i=1, -+, m. Then

) P[Q Ai] = P(4) — X' P(BY + X' P(BiNBy) — ---

where the summation Y is taken over all combinations of B’s chosen out
ofBi, -+, Bn.

The proof is omitted.

It is easy to show on letting 4; = {u; is included in the sample} in Lemma
3.1, that the probability of selecting any preassigned m distinct units, in this
sampling scheme, is given by

B R e R V)

A consequence of Lemma 3.1 and Theorem 1 is the following theorem.
THEOREM 3. An estimator uniformly better than §i is given by
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(10) Jm = Elgi| T

where ., denotes the average of the m distinct units observed in the sample.
Proof. Obviously

(11) E(@|T) = E[n_l Z; Yur | T] =E(yu|T) = ;ym Pluy = uw | T

where u1 stands for the first sample unit of the first subsample, 311 being its
Y-characteristic value, and u is the sth order-statistic. Further

(12) Plun = ue | T] = Plun = uw N Tl/P(T).

Now letting A; = [un = uw] N [ug is included in the sample], j = 1, --- , m,
in Lemma 3.1, we get

E e
e O e
“al () =) ) o2 )GY]/ G

From equations (9), (10), (11), (12) and (13), it follows E(#1 | T] = . which
completes the proof of the theorem.

CoroLLARY 3.1. For estimating the population mean, Y, an estimator uniformly
better than any linear function ) iy ¢, dei= 1, of the subsample means 1is
given by Gum .

It is observed on taking ¢; = ¢; = -+ = ¢; = k' that Tm is uniformly better
than the overall average of the subsample means, the estimator in current use.

If n = 1, then the above sampling scheme reduces to simple random sampling
with replacement. This theorem then shows that the average of distinct sample
units is a uniformly better estimator of the population mean than the overall
average of all sample units. This result has been proved by Basu (1958) and
Hijek (1959). Des Raj and Khamis (1958) have shown that the former es-
timator has smaller variance than the latter.

An alternative proof of the above theorem based on intuitive argument which
would not require the evaluation of Pluiy = uu N 7T can be given. However,
the important point in favor of this proof is that it applies on similar lines to
the case when the subsample sizes are different. For this case the intuitive ap-
proach for the derivation of (12) will be rather vague and not too obvious and
therefore has not been adopted here.

4. Variance of #,. Obviously
(14) V(Gm) = BV (G| m)] + VIE(Gm | m)] = E[V (g |m)] = E[(m™ — N 1)
where §* = (N — 1) > X, (YV; — 7)%
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The author (1961a) has proved that if under a given sampling scheme m
denotes the number of distinet units in a sample then

-1y _ ’ 1-2 ’
w0 = g 14 G T e e T
12 - (N—l)
a EEERERE + (N—l) — 2 qu. N—]

where N is the population size, gi2..., is the probability of non-inclusion of first r
population units in the sample and the summation >’ is taken over all possible
combinations.

Since in the sampling scheme under consideration

N\ k k
(16) Q12...r=<Nn 7) /(ﬁ) R 7‘=1,~',N—n

we haveE <%2> ] (7]:,>-k [@r)"/zv + (N; l>k/ (N -1
+ o +<Z>k/”]

An asymptotic expression for V(7,) valid for terms up to order N~' is given
by
(18) V(gm) = [(nk)™ — (2N)H{1 + (n — 1)/(nk — 1)}IS"

Thus the approximate reduction in variance by using 7. over that of the
customary estimator, kY i_1§:, is given by

(k 22 y) — V(i) = (7_217C — JVIIE> o

_[Wc_’va{I“L(nk—l)}]S‘ Sk — DN

(15)

(17)

(19)

5. Estimation of variance. Considering now the problem of estimating the
population variance
N

(20) §= -7 5 -7y

from interpenetrating subsamples, it is easily seen that an unbiased estimator of
S? is given by
k 3

(21) = [k(n — DI 22 20 (e — 72~

1=1 7=l

The theorem given below gives an estimator uniformly better than s’
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THEOREM 4. An estimator uniformly better than s* is given by
(22) sn=(m— 17X (yo — 7)™

(It is assumed that n = 2. For n = 1 refer to Pathak (1962).)
Proor. Evidently, an estimator uniformly better than s” is given by

E[&|T|=E [(n -1 .; (y1r — 31)* | T:l

(23) = E[[2n(n — DI r;?:l (Y — y1)* | T1

= E[i(yu —yw)’| T
= Z 3 (y(i) - :l/(i'))2 Pluy = U 5 Utz = UG | T]

17t =1

where uy , s are the first two sample units of the first subsample, yu and yu
being their Y-characteristic values respectively and we) and wu¢n are the ¢th
and 7'th order-statistics respectively. Now

(24)  Plun = ug , e = U@ | T1 = Plun = uw , ur = ugn N T1/P(T).
An application of Lemma 3.1 will show that
P [un = uw), we = uun N7
[ - G0
n—2/\n 1 n — 2 n

oG

m—mn/\n — 2/\n

" TR

(-G ()
)

From the above two equations it immediately follows that

E[s"| T] = [2m(m — D)™ i;éZ=1 (o — Yan)' = sn.

This completes the proof.

6. Estimation of V(§.). For the purpose of estimating the variance of 7.,
the following estimator is suggested.

(26) V() = (M — N )sh .
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7. Two-stage sampling. Let Uy, U,, ---, Uy be the N first-stage units of a -
population. Suppose that U; consists of M; second-stage units and let Uj be
the hth second-stage unit of U; (h = 1, -+, M;;5 =1, ---, N). Let Y, be
some real-valued Y-characteristic of Uj, . In this section also capital letters refer
to the population and small letters refer to the sample, e.g., u1, us, -+, u,
stand for the n first-stage sample units (in order of draw), by . we mean the
rth second-stage unit (in order of draw) in the sth first-stage sample unit. It is
assumed that all relevant information about the units such as their unit-indices,
probabilities of selection etc. are incorporated in the symbols u; and u., .

Let us now consider a two-stage sampling scheme where the first-stage units
are selected with unequal probabilities (with replacement) and each subsample
of second-stage units is selected by simple random sampling (without replace-
ment). In this sampling scheme if the jth first-stage unit, U;, is included \;
times in the sample, \; subsamples of m; units each are drawn therefrom in-
dependently of each other by simple random sampling (without replacement),
i.e., each subsample is drawn by simple random sampling (without replacement)
and is replaced to the population for subsequent selection of the subsamples.
Let P; be the probability of selection of U; (D P; = 1) and call

(27) Zpn = (Yp/Pi)(M;/ 20 M;)

the z-value of Uj; . Unless otherwise stated, j runs from 1 to N, & from 1 to
M;, i from 1 to n, r from 1 to My, , () from (1) to (d) and (¢r) from (1) to
(de).

_In this sampling scheme the usual unbiased estimator of the population mean,
Y = (M) D> Y, is given by (Sukhatme 1953)

(28) Z, = n_l Z Z;

where z; = my: 2., 2« , 2 being the z-value of u; and m,,; denotes the number
of second stage units selected from u; . The summations »_; and D, are taken
over the first-stage sample units and the second-stage sample units of a given
first-stage sample unit respectively.

In the sequel 2, is shown to be inefficient and two estimators uniformly better
than 2, are derived. The first estimator suggests the immediate necessity of
employing it in practice as it is simple to compute and has smaller expected
loss. The second estimator though even uniformly better than the first, is dif-
ficult to compute and is not of much use in practice.

Since the first-stage units are drawn with replacement, let uqy , U@, - , 4w
be the d (=n) distinct first-stage units in the sample arranged in an increasing
order of their unit-indices. Let A(;y be the number of times u; is included in the
sample (Z Ao = n). Finally, let uuy, -+, Ugidgey) De diy (S N@Muy) distinet
second-stage units of u(; arranged in an increasing order of their unit-indices.
Now the statistic

(29) T* = [{u , Ny 5 W *** 5 Utidan} © = 1, <+, d]
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is sufficient as it partitions the sample space into disjoint subsets of equivalent
samples. It can be seen that the probability of getting a sample with a given

T* is
. NS 3 2 o
m AL =ColC )]
. : M
+ o (=1 <d<i> d_“)m(i)) [@8)] | )} '

Notice the similarity of the second term on the right side of (30) with the
right side of (9).

Therefore, by Rao-Blackwell theorem an estimator uniformly better than
3, can be obtained by taking the conditional expectation of 2, given T* We,

thus, have

THEOREM 5. An estimator uniformly better than 2, is given by
(31) o=n" E{ NZags)
where Za;, = [do]™ 20 2an » 2y being the z-value of wer -

Proor. Clearly an estimator uniformly better than 2, is given by
d  dg)
(32) El% | T*] = Eleu | T = Zl 2 2 Plun = uqn | T7].
It can be seen from (30) and (13) that

(33) Plun = uan | T* = n7\w/dew

and therefore,
d
E[z | T = n™" Z_; (\@/dw) 2226 = 17" 22 Norag -

Hence the theorem is proved.

The theorem thus proves the inefficiency of %, . It may be noted that 3} can
be gotten from Z, by replacing z; by the average of distinct second-stage units
sampled from u; . The author recommends the use of this estimator in practice
as it is simple to compute and in addition will have smaller variance than Z, ,

the estimator in current use.
8. Variance of 2;. We have
V(E) = ElVin™ 2 Nofay [N, =+ 5 Mal]
(34) + VIB{n™ 2 Nofan Mo, s M)l
= 0B NV @y | M) + VI 22 Mo 2]
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> —1 : . .
where Zy = [M]™" DnS Za and M, is the number of second-stage units

in Uy -
It is evident from (14) and (17) that

. = 11V .
Vizay | \0] = E I:( T Mm) (2) lM)]

M(i)>—)‘(” {(M(i) — 1)*‘”/
= b —1
[(m-) 0 (Mo — 1)

(8% M 2\ )
@) —
+< o ) /o —2) + -
M) Miymm) N8 (o
M) ] 2 _ & (r) } 2
+<m<")> /m(,)}:]S(,)(z)—{ g (M — 1) ()
where
. (Mo —r / M
o (r) —( me > (ma))
and

Si(z) = (M@ — 1) ; (th — Mol™ 2 Zan)

Further it is easy to see that

(36) VIn™ 22 \oZw] = obs/n

where o, = 2.; Pj(Z; — Y P;Z;)*. Thus (34) can be written as
®Y 15, <M S ¢§i(7’) > 2 :I b

(37) V(z) = E l:ﬁ J;l A ; m S,(z) + n

where \; is the number of times U; is included in the sample.
Since \; is a binomial random variable with parameters » and P;, we have

E{\jgy (r)} = nPibi(r){1 — P; + ng;(r)P}{1 — P; + ¢;(r)Pj}"

(38)
(r=1-,Mj—mj;j=1--,N)
so that
N Mi—m;g
V() = a2 PiSie) 2 ¢i(r) /(M — 1)
(39) j=1 r=1

' X{1 = P; + n¢;(r)P;} {1 — Pj + ¢;(r)P}" " + ota/n.

9. An estimator better than zi. If from the statistic 7%, we take away
Aoy, *°*, M@, we get another sufficient statistic

(40) T = [{uw;ua, -+, Uaaaplt = 1, --+, d].

The lemma given below has been used to derive the probability distribution of 7.
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LeEmMa 9.1.

X 7\., LI < {( .>M—<‘f‘)(d‘n; l>x"+...}
2< D E(®) e () () ]

where Y stands for the summation over all positive integral \/'s such that ), \; = n,
and Y_1 stands for the summation over non-negative o.’s such that s + ae + -+ + o

(41)

=r. <‘i‘> is to be regarded as zero for r > d;.

Proovr. The proof is obtained on observing that

et

and taking the sum of the left side of (41) for all /s such that ) A\; = n and
observing by direct expansion of the right side of (41) that the terms of the
type (42) vanish if some \; = 0.

Clearly from (30), the probability of getting a sample with a given T is

P(T) = Z, H [ )\(1) /[(M(i)>:|)\m
)\(l)' . 7\(d)' =1 Pol M)

ALGe) = CCas DT+

where the summation has been defined in (41).
It follows from Lemma 9.1 that

() - (1)

(43)

27}

) do — a1 / (M <1)> <d(d) - aa) / <M <a)>:|"
I:p(l) ( m() ) m() + TP M) M(a)

where the summation _; has been defined in (41).

The statistic 7" is smaller than 7™ (Definition 2.7). Therefore, any estimator
which depends on T* can again be uniformly improved by the use of Rao-
Blackwell theorem. We, therefore, have the following theorem.

THEOREM 6. An estimator uniformly better than %; (hence better than 3, Theorem

2) s given by

(44)

d
(45) 2 = ; cwag)
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where

=d¢i)—1 . '
cH = P { Z; (=12 (‘ﬁi’) . (‘iﬁf) <d(17)n(,-) a.) / (nﬂ;—’( (;))
. dw — e / (M “’) ... (d(.,) - aa) / M ]"_1 /
[P(l)( "y > ma + -+ pw e e P(T)

and P(T) is given by (44).
ProoF. It is obvious that an estimator uniformly better than 2 is given by

(46) EiE | Tl = 2 E(I\o/n] | T) Za, -

Moreover
et it/
T] = ! L — i (?)
Z n At Ay 11;1; [P M)

'{[@f})]m - (dii)> [(d(?n; 1)]»@) + } / P().

An argument similar to that of Lemma 9.1 will show that
(48) E[(\o/n) | T] = e (i=1,---,4d).

This completes the proof.
COROLLARY 6.1. When P; = M;/ Y., M; and m; = 1, the above estimator takes

the simple form
(49) 2= (20 do] 12 dea))-

Though the estimator 2, is better than 2} , it cannot be of much use in practice
except in the trivial case when P; = M;/ D, M; and m; = 1. It is better to rely
on £} which, though less efficient than 2, , has the merit of simplicity.

(47)

10. Estimation of variance. The problem of estimating the variance of 2}
(or of ;) is even more complicated and is not considered worthwhile to discuss
it here. However, in practice, it is recommended to use

n

n(n =7 X2 (2 — 2)°
=1
as an estimator of V(35). As it over-estimates V(8)), we will always be on the
safe side.
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