THE LINEAR HYPOTHESIS AND LARGE SAMPLE THEORY

By G. A. F. SgBER!

University of Manchester

1. Introduction. In a paper by Wald [7] we have the beginning of a series of
papers on the testing of statistical hypotheses about unknown population
parameters using large sample, maximum likelihood theory. We are given n
independent observations z; , z2, - - - , Z, (these may be vectors) from a common
underlying probability density function f(x, 6) where 0 = (61, 0:, -+, 0,)
and is unknown save for the fact that it is known to belong to @ a subset of s-di-
sional Euclidean space R°, and we wish to test whether 8,, the true value of
0, belongs to w an s — r dimensional subspace of Q.

There are two ways of specifying w: either in the form of constraint equations
hi1(0) = he(8) = .-+ = h(0) = 0, or in the form of freedom equations 6 = 6(«)
where @ = (o1, @2, *** , @), Or perhaps by a combination of both constraint
and freedom equations. Although to any freedom equation specification there
will correspond a constraint equation specification, this relationship is often
difficult to derive in practice and therefore the two forms of specification are
usually dealt with separately. These alternative methods of specification have
lead to the formulation of three methods of testing w: the Wald test (Wald [7]),
the Lagrange Multiplier test (Rao [4] and Silvey [6]) and the likelihood ratio
test, all of which are described fully in Aitchison and Silvey [2] and Aitchison
[1]. The choice of which method to use depends largely on the ease of computa-
tion of the test statistic and therefore to some extent on the method of specifica-
tion of w.

In [1], Aitchison considers the problem of testing more than one hypothesis
and introduces the notion of ‘“‘separability’” which is analogous to the idea of
orthogonality in linear hypothesis theory (c.f. Darroch and Silvey [3]). He
defines two hypotheses w; and ws to be separable with respect to @ if and only
if the critical region for the test of w; N w; against w; — w; Nw; (4,5 = (1, 2), (2, 1))
is the same as the critical region for the test of w; against @ — w; and derives
sufficient conditions for two hypotheses to be separable when the hypotheses
are defined by constraint equations. However Darroch and Silvey [3] indicate
briefly that, under reasonable assumptions, all large sample problems can be
interpreted as linear problems with known variance matrix of residuals and
therefore sufficient conditions for separability are given by sufficient conditions
for orthogonality in the corresponding linear model.

The aim of this paper is to demonstrate in detail this relationship between
large sample maximum likelihood theory and linear theory and hence find
sufficient conditions for the separability of two hypotheses where the hypotheses
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are defined by freedom equations only. Thus if
w; = {0 l 0cQand 6 = 0,(3;)}

where 0; is a function of an s — r; dimensional vector §;, then we shall derive
sufficient conditions for w; and w; to be separable.

The main results will be stated as theorems without proofs in Sections 2 and
3 and the proofs will be given briefly in Section 4.

2. Linear model approximation. Let w be defined by the following freedom
equation specification,

w=1{0]0c2and 0 = 0(a)}

where « is the s — r dimensional vector defined above. In this section we shall
show that for large sample size 7, » may be approximated by a linear hypothesis
™. We shall require the following notation.

Let ®, be the s — r X s matrix of rank s — 7 with 7, jth element 96;/9a; .

Let 'L,(0) = ]li~if(x:, 6) be the likelihood function and let Dy log L,(0),
D, log L,(6) be the column vectors whose i¢th elements are d log L,(0)/d6;
and 9 log L,(0(e))/dc; respectively. We denote the information matrix for
0 by Bs i.e., its 7, jth element is

n " E,[0” log L(0)/06,36;].

To simplify notation we use [:]. to denote that the matrix in square brackets
is evaluated at «; thus [0Bs0']s = ©uBowO%x .

We have two cases to consider as By, may be positive definite or positive
semidefinite and of rank s — 7 say. In this latter case 0, is non-identifiable and
we introduce r, independent identifiability constraints

ho(8) = (hou(8) = hea(8) = -+ = ho, (0)) = 0.

If Hy, is the s X 7, matrix of rank r, with ¢, jth element 9ho;(0)/96;, then we
assume that [B + HHols, is positive definite. (We shall see later that this
assumption follows naturally from linear hypothesis theory).

As we shall use maximum likelihood theory in what follows we shall require
certain underlying assumptions to hold and these are provided by Silvey [6].
The maximum likelihood estimates of 6 for 8 belonging to w and Q are denoted
by 6, and @, respectively. If 8* is the value of 6 which maximises Ejlog f(z, 6]
for 8 ¢ w, and if certain regularity conditions on @, f and 8(«) are satisfied (c.f.
Assumptions 1-6 of [6]), then §, and 6, will converge with probability one to
0* and 6, respectively. In addition Silvey points out that if 8, is not “near”
w then the powers of the three tests will be asymptotically near one. Thus the
situation of interest is when @, is near « i.e. when 6, is near 6*. (For rigour we
could define what we mean by nearness by choosing 0, close enough to w such
that ||(6* — 8,)] = O(n™?). In what follows we assume that Assumptions 1-10,
11B and 12 of [6] holds (suitably interpreted of course in terms of a freedom
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equation specification ), and for convenience, the dependence on the sample size n
is dropped from the notation. We shall now give the linear model approxima-
tion to w.

Case 1. Let By, be positive definite, i.e. there exists a non-singular s X s
matrix Vs, such that By, = [VV']s, .

Let o* and & be defined by 6* = 6(¢*) and 6 = 6( & ). Then assuming 8, to
be near 8% we have the following theorem.

TrEOREM 1. The hypothesis that 8, belongs to w given that 8, is in Q is asymptot-
ically equivalent to the linear hypothesis y = {§ -+ € where y, i, € are s dimensional
vectors, ¢ is a random vector distributed as N(0, I,), I, being the s X s unit
matrix,

Q% = {¢| ¢ = Vo) = B
and
W = {‘b | ¢ = V;o®'!"f}-

Cask 2. If By, is positive semi-definite, then there exists an s X s — 7y matrix
W, of rank s — 7o such that By, = [WW']s, . Theorem 1 is now modified as follows.

TuroreM 2. If [B -+ HoHys, is posttive definite then the original hypothesis is
asymptotically equivalent to the linear hypothesis y = ¢ -+ & where y, ¢, € are
s — ro dimensional vectors, ¢ is distributed as N (0, I,_,,),

Q% = {91 & = Wa,; Huesy = 0} = B
and
o = {<I> l ¢ = W;o®¢l!‘Y; H690®;*Y = 0}

Remark. We note that the conditions Hys,3 = O are necessary and sufficient
for the identifiability of 8 if and only if [W:H,)s, is of rank s and the rank of
Hy, is 7o (see Scheffé [5], p. 17) i.e., if and only if [B + HoH(')]oo is of rank s and
therefore positive definite. Thus the stipulation made in Section 2 that
[B + H,Hqs, should be positive definite follows from the identifiability of the

corresponding linear model. This implies that since 8 is of greater dimension than
¢, 2% = {¢} = R which we would expect intuitively.

3. Sufficient conditions for separability. Suppose we wish to test two hy-
potheses

w; = {0[089,0=01((¥,)}, 1 = 1’ 2,

where 0, is a function of an s — r; dimensional vector a; . We assume that B,
is positive semidefinite of rank s — 7, as in Section 2. If @ is near w; M w; then,
dropping the dependence on 6, and o from the notation and letting ©; and
©®. denote the corresponding matrices of derivatives, we have from Theorem
2 that the two hypotheses are asymptotically equivalent to the linear hypotheses

wf = {¢| b = WOiy; HOx = 0.
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Then wy and w. are sepa,rable if and only if w; and w; are separable If the tests of
wf Nof against ©f — wf Nwf (5,7 = (1, 2), (2, 1)) and o against Q% — wf
not only have the same critical region but are identical, then the linear hypotheses
w1 and wz are said to be orthogonal. From Darroch and Silvey [3] we have that
wr and ws are orthogonal with respect to 9 if and only if the orthogonal com-

plements of wf and ws with respect to @* are mutually perpendicular i.e. if
[wl] ﬂﬂ _L [wz] ﬂQ .

Thus this condition is sufficient for the separability of w; and w. (Aitchison [1])
and we have the following theorem.
TureoreM 3. The hypotheses w, and wy are separable if

2
[B — 2. BO[6B + HyH)01'0.B
(3.1)

=1

+ BO{[0:(B + HoH;)0:] 0, BO:[0:(B + H0H6)®;]‘1®;BJ0 =0

for every 0 in w; N wy .
In (3.1) we interpret [@.]s as meaning [@.],, where 6 = 0;(a).

Slightly stronger' conditions for separability are as follows:

THEOREM 4. The hypotheses w, and w, are separable if [(I, — 0i[0.0{]7'0;)-
[B + HoHo"'Hols = O for either i = 1 or 2 and

[(I, — 016:0:]7'01)[B + HoHo| (I, — ©1[0:05]'0,)]s =

for every 0 & w; N ws .

CoroLLARY. If By, is positive definite then sufficient conditions for separability
are obtained from Theorems 3 and 4 by putting Hy = 0.

We observe that the above sufficient conditions are not as simple as those
obtained when w; and w; are defined by constraint equations (c.f. Aitchison [1])
and therefore as far as separability is concerned, the constraint equation speci-
fication should be used where possible. However we shall demonstrate the use
of Theorem 4 in a simple example based on Example 6 of [1].

ExamprE. Consider the model

flxy, 22, 23,24, 0) = n!i]i]lz {67 /2: 1}
where ho(8) = D.i—16; — 1 = 0. Suppose we have the following subspaces
Q:00 = (6,02, 05,0,); 0<6;,<lfori=1,---,4,
o= (1—a), G=of, 6=, bi=m,
and
we 0 = o, 0 = g, 03 = B2, 0 = 7v2.

We wish to know whether w; and w, are separable.
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To apply the above theorems we first of all define w; N w; . For a point 6 in
w1 N wz we have (1 — )’ = a, of = @, P =P, 71 = v2i€. a1 = % and
oz =L As Hy, = [1111],[B + HoHol;' = diag [6:, 62, 65, 05] and this evaluated
for 0 £ w; N w, takes the form diag [%, %, 6;, 6. The matrices ©; and O, for
0 £ w; N w, are given by

-1 1 0 O 11 0 0
0 0 1 O0f and [0 O 1 O
0 0 0 1 0 0 0 1

respectively. By direct matrix calculation we find that the conditions of Theorem
4 are satisfied for 7 = 2 and w; and w; are therefore separable.

4. Proofs of theorems. In this section we shall give brief proofs of Theorems
1-4.

Proor oF THEOREM 1. The maximum likelihood equation for & and 6 are
given by

(4.1) n "Dy log L(8) = 0
and ,
(4.2) n "D, log L(8( &)) = 0.

As 0™ is near 6 and therefore near & we have from (4.1) using a Taylor expansion
that

m — Bynt(6 — 0%) 4 Byn?(0, — 0%) + 0,(1) = 0

where m = n*D, log L(8,) is distributed as N (8, By,) (by assumptions 7-10
of [6]) and 0,(1) means ‘“o(1) with probability one for each element of the
vector.” As 0 is near 6™ and therefore also near & we have a similar equation
from (4.2) namely
0 = n'n @Dy log L(8),
= 2@ .+Dy log L(8) + 0,(1),
= —n!@uByy[0 — 8] + 0,(1).

Thus by puttingy = n*V5, (6 — 0%), & = n*V5,(0, — 6%) and & = n*V5, (6 — 6*)
the theorem is proved. .
We note that as Vy, is non-singular its range space is just R’ i.e. Q* = R".
Proor oF THEOREM 2. For By, positive semidefinite, the estimates & and 6
are given by

(4.3) n "Dy log L(8) + Hud = 0,  he(d) = 0
(4.4) n "D, log L(8(&)) + OaHeud = 0,  he(6(&)) =0

where & and A are the appropriate Lagrange multipliers. As 6, is near 0™ we can
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express the Equations (4.3) as a system of matrix equations (cf Silvey [6]),
solve for & and thus prove the following lemmas.

LemMa 1. If [B 4 HoHo)s, is positive definite then n'%. = o,(1).

Lemma 2. If O, is of rank s — r then n* & = o0,(1).

We omit the proof of Lemma 1 as it is straightforward. Lemma 2 follows from
Lemma 1 by treating the unknown parameter as o« instead of 6 and replacing
Boo by @a:Bo(,@;* and Hooo by ®a‘H000 .

Theorem 2 is now proved by using Lemmas 1 and 2, expanding the Equations
(4.3) and (4.4) by Taylor’s theorem as in Theorem 1 and putting y =
n'Wo, (6 — 6%) ete.

ProoF oF THEOREM 3.

w = (o] d = W' Oy ;H(;@;‘Yi = 0}
= {(b' (Is*ro - W/®:[®1(B + H0H6)®:]_1®1W)¢ = 0}
= {o| M:dp = 0} say.

Since the null space of any matrix is the orthogonal complement of the range
space of its transpose, 4
[wi]* Ne* 1L [w3]* No*

if and only if MiM; = 0 or WM, M;W' = 0 (since W is of full rank). As the
dependence on 0 is understood in the above equation and we are concerned
only with critical regions, we have proved Theorem 3.

Proor oF THEOREM 4. It can be shown that

vi = [0:0:]7'0.[B + HHo|'W¢
and thus
wi = {¢|Nip =0}

where N; = I,_,, — W 0i[0.0:;]'0,[B + HoH)"'W. As in the proof of Theorem
3, wi and w; are orthogonal with respect to @ if and only if

(4.5) WN.NW' = 0.

Now if G = [W:Hy, then @ is a regular s X s matrix and ¢'[GG']"'G = I, . Thus
w'eeT'W = I,,, and Ho[GG'T'W = 0. Using these relations in Equation
(4.5) we complete the proof of Theorem 4.

ReMark. If we apply the method of Section 2 of approximating a non-linear
problem by a linear one for two hypotheses expressed in constraint equation
form, namely

wi = {0]hi(0) = -+ = hy;s(0) = 0;ho(0)}
then it can be shown that the corresponding linear hypotheses are

wf = {¢| [HIB + HHi 'Wlsyé = 0}
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where H is the matrix with j, kth element dh:;/06; . Thus as in the proof of
Theorem 3 we have that the condition

[H:i[B + HoHo|'B[B + HoH ‘Ha)s = 0
for every 0 ¢w; Nw. is sufficient for the separability of w; and w,. If either
(4.6) [HiB + HH('Ho)y = 0 or [HsB + HH( ‘Hyy =

for every 0 € w; N we then the above condition reduces to the stronger but simpler
condition

(4.7) [Hi[B + HoHo] 'Hs)y = 0

for every 0 ¢ w; N w; which is derived in Aitchison [1] by a different method.

Turning our attention once again to the freedom equation specification we see
that as the range space of ©; is the same as the null space of (I, — 0i0:0:7'0,),
the sufficient conditions for separability in Theorem 4 are thus completely
analogous to Conditions (4.6) and (4.7).

In conclusion, I would like to thank Dr. 8. D. Silvey for suggesting the above
problem to me and for many useful discussions on large sample theory. My thanks
also go to the referee for helpful criticisms of a previous draft of this paper.
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