COMPARISON OF REPLACEMENT POLICIES, AND RENEWAL
THEORY IMPLICATIONS

By RicEARD E. BARLOW' AND FRANK PROSCHAN
Boeing Scientific Research Laboratories

1. Introduction and preliminaries. Among the most useful replacement
policies currently in popular use are the age replacement policy and the block
replacement policy. Under an age replacement policy a unit is replaced upon
failure or at age T, a specified positive constant, whichever comes first. Under a
block replacement policy a unit is replaced upon failure and at times T, 27T,
3T, --- . We shall assume for both policies that units fail permanently, inde-
pendently, and that the time required to perform replacement is negligibly
small. Block replacement is easier to administer since the planned replacements
occur at regular intervals and so are readily scheduled. This type of policy is
commonly used with digital computers and other complex electronic systems.
On the other hand, age replacement seems more flexible since under this policy
planned replacement takes into account the age of the unit. It is therefore of
some interest to compare these two policies with respect to the number of fail-
ures, number of planned replacements, and number of removals. (“Removal”’
refers to both failure replacement and planned replacement.)

Block replacement policies have been investigated by E. L. Welker, 1959,
R. F. Drenick, 1960, and B. J. Flehinger, 1962. Age replacement policies have
been studied by G. Weiss, 1956, and Barlow and Proschan, 1962, among others.

The results of this paper depend heavily on the properties of distributions with
monotone failure rate (Barlow, Marshall, and Proschan, 1963). If a unit failure
distribution F has a density f, it can be verified by differentiating log F(z) that
the failure rate 7(z) = f(z)/F(z) is increasing (decreasing) if log F(z) is con-
cave when finite (is convex on [0, «)). We consistently use ¥ for 1 — F. For
mathematical convenience and added generality, we use this concavity (con-
vexity) property as the definition of increasing (decreasing) failure rate whether
a density exists or not. We shall refer to increasing failure rate by IFR and de-
creasing failure rate by DFR. It is also easy to show that F is IFR(DFR) if and
only if

Fi(8) = [F(z + A) — F(2))/F(2)

is increasing (decreasing) for all  such that A > 0 and F(x) > 0. This implies
F is IFR(DFR) if and only if

(1.1) F(z — A)/F(x)
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is increasing (decreasing) in x for all A > 0. This property will be needed in

Theorem 2.1.
The evaluation of the replacement policies considered also depends heavily on

the theory of renewal processes (e.g., Smith, 1958, and Cox, 1962). A renewal
process is a sequence {Xi}z-1 of independent random variables with common
distribution F. We also assume F(0~) = 0. If the random variables are not
identically distributed we call this a renewal sequence. Let us write N (¢) for the
largest value of n for which X; + X; + --- 4+ X, £ ¢; in other words N (¢) (the
renewal random variable) is the number of renewals that will have occurred by
time ¢. The process {N(¢); ¢ = 0} is known as a renewal counting process. We
will be primarily concerned with bounding the renewal function, M (t) = E[N (¢)].
Previously, Feller, 1948, has given methods for bounding M (¢) using bounds on F'.

In this paper we show that, assuming an IFR(DFR) unit failure distribution,
the number of failures in [0, #] is stochastically larger (smaller) under an age
policy than under a block policy (Theorem 2.1). The number of planned re-
placements and the total number of removals is always stochastically smaller
under an age policy than under a block policy (Theorem 2.2). By considering
the number of failures and the number of removals per unit of time as the dura-
tion of the replacement operation becomes indefinitely large, we obtain in Theo-
rem 2.4 simple useful bounds on the renewal function for any failure distribution,
and an improvement on these bounds by assuming IFR(DFR) failure distri-
butions. In particular we show that the moments, binomial moments, and vari-
ance of a renewal random variable associated with an IFR(DFR) renewal
process are dominated (subordinated) by the corresponding moments and vari-
ance of a related Poisson random variable. Inequalities for renewal sequence

are also obtained.

2. Contrast between age and block replacement. Denote the number of re-
newals in [0, ¢] when replacement occurs only at failure by N (¢) and let M (¢) =
E[N(t)]. Denote the number of failures in [0, ¢] under a bloek policy by N 3(t)
and under an age policy by N%(t), both having replacement interval T. The
following theorem provides a stochastic comparison of the number of failures
experienced under these policies. We assume F(0~) = 0 throughout.

TuroreM 2.1. If F is IFR(DFR), then

(2.1) PIN(t) 2 n] 2 (=) PINi(t) 2 n] 2(=) PINZ(1) 2 0]

fort =2 0,andn = 0,1,2, --- . Equality 7s attained for the exponential distribution
F(z) = 1 — ¢ ™ where u; denotes the mean of F.

We defer the proof of Theorem 2.1 to Section 3. The following bounds on
M (t) are an immediate consequence of Theorem 2.1 and will be useful later on,
(See Theorem 2.4 and Theorem 4.2.)

CoroLrary 2.1. If F is IFR(DFR), then
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(1) M) z(=) EINI()] 2(=2) EIN3()]
(22) (ii) M@) =2(=2) kM(t/k) k=1,2 -
(iii) M) =(2) t/m
(iv) M(h) £(Z) M@+ h) — M(t) Rz=0
forallt = 0.
Proor.

(i) This follows from Theorem 2.1 and the fact that
M(t) = EIN()] = Z_:lP[N(t) 2 n).

(ii) Let T = t/k and observe that for this replacement interval
M(t) 2(=) EIN3(9)] = kM(T) = kM (¢/k).
(iil) By (ii)
MET)T/ET =2 (=) M(T) k=1,2,3,---.

Letting k — « we obtain M(T) <(=2) T/m, since lim,,, M(t)/t = 1/m by
the elementary renewal theorem (e.g., Smith, 1958).
(iv) Define 6(t) = t — [X1 4+ X2 + -+ 4+ Xww]. Then

M+ k) — M(t) = fotfoh [1 4+ M — w)] dF.(u) ds P[5(2) < 2]

v

(=) fofo [+ Mk — w)] dF(u) d. P[5(2) < 7]
since F,(u) is increasing (decreasing) in z. Therefore
M+ h) — M) = (<)M (k) / d. Ps(t) < 2] = M(). |

It is easy to show that (ii) is not true in general if & is allowed to be rational.
The following formula, true for all distributions with second moment pz < «,
provides an interesting comparison with (iii) of (2.2)

M) = t/m + we/2ui — 1+ o(1),

(see e.g. Smith, 1958). As we shall show, inequality (iii) of (2.2) can be improved
by assuming somewhat more. It is also true under weaker assumptions.

Let N4(t) and Ns(t) denote the total number of removals in [0, #] following
an age and a block replacement policy respectively. The following theorem, true
for all distributions, is intuitively obvious.

THEOREM 2.2.

PIN(t) = n] £ P[N4(t) = n] < P[Ns(t) = n]
forallt Z0,n=0,1,2,---.
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We defer the proof to Section 3.
COROLLARY 2.2.

(i) M(t) = EIN4(8)] = EINs(1)]
(2.3) (i) M(t) < kM (t/k) + k k=12 ---
(iii) M@) zt/m—1
forallt = 0.
Proor.

(i) This is an immediate consequence of Theorem 2.2.
(ii) Let T = t/k and observe that for this replacement interval

M(t) = E[Ns(8)] = kM(T) + k = kM (t/k) + k.

(iii) This follows from the elementary renewal theorem lim .M (t)/¢t =

1/ M1 . ”
The following theorem summarizes some well-known limit results from renewal

theory.
THEOREM 2.3.
(1) limpoN () /t = limeoM(8)/t = 1/m

(ii) limewN4(t)/t = imnoENA(t)]/t = F(T)/[tF(z) dx

(iii) limpoN5()/t = lime.oE[N3(t)]/t = M(T)/T.

Proor.

(i) See e.g. Smith, 1958.

(ii) The times between failures {¥}:-, for an age replacement policy con-
stitute a renewal process with distribution

(24) Hy(t) = PIY; 2 {] = [F(T)]" F(t — nT)
fornT =t < (n + 1)T. The expected value of Y can be calculated from (2.4)
to be E[Y;] = f o F(x) dz/F(T). (Weiss, 1956, calculated higher moments.)
Hence lim..oN%(1)/t = F(T)/ [% F(z) dz by (i).

(iii) Let N3,(T) denote the number of failures in [(¢ = 1)T, 4T] following a
block replacement policy. Then

lime,oN5(8)/t = limpae O N5.(T)/nT = EIN3.(T))/T = M(T)/T. ||
1=l
For a generalization of (iii), see, e.g., Flehinger, 1962.

Using these limit results we can improve (iii) of (2.2) and (iii) of (2.3).
THEOREM 2.4.

o5 (i) M(t)zt/[oF(z)do — 1 = t/p — 1.
(25) (i) If F is IFR(DFR), then
26) M) () #0) [ [ P dr <(2)

for all t = 0.
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Proor.
(i) By Corollary 2.2 (i), E[N4(t)] = E[N5(t)]. By Theorem 2.3 (ii) and
(iii)

limssw E[N.($)]/t = 1 / f t F(2) dz < limew E[N5(2)]/t = M(T)/T + 1/T,
which implies
M(T)gT/fTF’(x)dx—l forall T > 0.

Obviously [7 F(z) dv < m implies T/[s F(z)de — 12 T/m— 1.
(ii) By Corollary 2.1 (i), EIN4(t)] Z(<) EIN3(1)]. By Theorem 2.3 (ii)
and (iii)

M(T)/T = limew EIN5(1)]/t £(2) limew E[N1(2)]/t
=F<T>/forﬁ<x> iz <(2) .

The last inequality follows by noting that H:(t) [see (2.4)] is decreasing (in-
creasing) in T if F is IFR(DFR). || )

Smith, 1961, has given the inequality M (¢) < 1/F(¢) which is true for all F.
Since

tF(t)/fot Flo) do < t/fot Fz) do < 1/F ().

(ii) of Theorem 2.4 is an improvement on Smith’s result when F is IFR. (This
observation is due to the referee.)

Equality is approximately attained in (2.5) for intervals (¢ — ¢, t) where
t = kum(k = 1,2, --+) by the distribution degenerate at the mean u; , and of
course M (t) = 0is sharp for ¢ < ;. Equality is attained in (2.6) for the Poisson
process. Note that inequality (2.6) is an improvement on (2.5) in the DFR
case since ,

tF(t)/fotF-'(x) dngotF(x) dx/[li-’(x) dx=t/[17’(x) do — 1.

From (2.5) and (2.6) we see that
1/m — 1/T < M(T)/T < F(T) / [ ) do S U

when F is IFR. Hence when F is IFR the expected numbers of failures per unit
of time under the two replacement policies do not differ by more then 1/T in
the limit as t — .

3. Proofs of the Theorems of Section 2.
Proof of Theorem 2.1. Assume F is IFR. First let us suppose 0 £t < T, where
T is the replacement interval. Let P[N(t) = n | z] denote the probability that
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N(t) = n, given that the age of the unit in operation at time 0 is 2. Then we

shall show that
(3.1) PIN(t) 2 n|a] 2 PIN4(t) 2 n|a] 2 PIN3(t) 2 n].
Forn = 0, (8.1) is trivially true. For n > 0, we can rewrite (3.1) as
t t
Fo(t — u) dF,(u) = f F™(t — u) dFE(u)
0

0

(3.1 ,
> / F™ (¢ — u) dF(u)
0

where F™ (t) denotes the n-fold convolution of F with itself and
Fo(u) = [F(z 4+ u) — F())/F(z).

F7 (u) is the distribution of the time to the first failure when the age of the unit
in operation at time O is z and planned replacement is scheduled for T — z if
no failure intervenes. We need specify the distribution F; (u) only on [0, #]:

Fi(uw) = [F(z + u) — F(z)]/F(z) . if u=T—2

= [F(T) — F(z) + F(T)F(w — T + 2)]/F(z) if T—2z=<u <t
To prove (3.1) we need only show
(3.2) F.(u) = F; (u) = F(u) for0<u=t

since F™™" (t — w) is decreasing in u. Foru = T — «
Fo(u) = F7(u) = [F(z 4+ u) — F(2))/F(z) = F(u)
gince FisIFR. Fori —z = u =t
Fzx+u—T+T)—F(T)/F(T)=2F(zx+u—T)
implies F(z + u) = F(T) + F(T) F(w — T + z) and so
Fz+u) —F(z) _ F(z) = F(T) + F(T)F(u =T +3) _ 4o
- = - = Fz (u)
F(z) F(z)
proves the first inequality in (3.2). Alsofor T —z <u = ¢, Flu— T+ z)/F(u)
is increasing in u by (1.1) since we may assume ¢ < T. Therefore

F(u— T+ 2)/F(u) £ F(z)/F(T)

Fz(u) =

since 0 £ u £ T. Rearrangement yields
F(u) = F(T) F(u — T + 2)/F(x),
so that
Fi(u) = [F(z) — F(T) + F(T)F(u — T + 2))/F(z) = F(v)
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which completes the proof of (3.2). From (3.2) we deduce that for £ > 0 and
0=t=T

PIN(t) Z n|2] = PIN4(t) 2 n|3] = P[N3(¢) = nl.

x]
Now suppose kT < ¢t < (k + 1)T, where k = 1. The proof proceeds by in-
duction on k. Assume (3.1) is true for 0 < ¢t < k7. For n = 0, (3.1) is trivially
true. For n > 0, write

PIVGW 2 ) = 3 [T (PN =+ 5(1) = slPING — 7)

=2n—r|8(T) = 2]} d, P[6(T) < x]

P[N%(t) = n] = gofoT {PINX(T) = r|&(T) = z]P[N5(t — T)
=2n—r|8(T) = 2]} d, P[6(T) = z]

and

P[N%(t) = n] = gofoT {P[N3(T)

— 7 16(T) = 2]P[N3G¢ — T) 2 n — +]} d P5(T) < 1]
where §(T') is a random variable denoting the age of the unit in use at time 7.
By inductive hypothesis
PIN(t—T)zn—r|8(T) =2l Z PINi(t —T) 2 n —r|8(T) = 2]
2 PIN3(t—T) z2n—r1]
Also
PIN(T) = r|&(T) = ] = PINX(T) = r|&(T) = 1]
= PIN3(T) = r| &(T) = z
since all three policies coincide on [0, T]. Hence (3.1) follows for kT < ¢t <
(k4 1)T for all £ = 1 by the axiom of mathematical induction.
For F DFR the proof is similar with the inequalities reversed. ||
Proof of Theorem 2.2 (Due to Albert W. Marshall). Let {X}} 7~ denote a
realization of the lives of successive components. We shall compute what would
have occurred under an age and under a block replacement policy. Let T%(T5)

denote the time of the nth removal under an age (block) replacement policy.
Then

T:=win(T5" 4+ T, 757 + X.),  T5 = min(T3” + o, 757 + X,)

where a(0 £ a = T) is the remaining life to a scheduled replacement. Since
initially T% = T% , we have by induction T% = T3 . Thus for any realization
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{Xi) i1 N4(t) is smaller than Nj(f). By a similar argument N(f) is smaller
than N4(t) for any realization. ||

4. Renewal theory consequences. A renewal process is an IFR(DFR) renewal
process if the underlying distribution F is IFR(DFR). This does not imply
that N(t), the renewal random variable associated with an IFR(DFR) renewal
process, is IFR(DFR). (See Barlow, Marshall, Proschan, 1963.) However,
just as the geometric (exponential) distribution is a natural comparison dis-
tribution for IFR and DFR discrete (continuous) random variables, the Poisson
process serves as a natural comparison process for IFR and DFR renewal proc-
esses. In Corollary 2.1 we saw that the medn of an IFR(DFR) renewal random
variable is dominated (subordinated) by the mean of an associated Poisson
random variable. This is also true of the binomial moments and, indeed, even
the variance.

We define the mth binomial moment, B,(t), as

]

B = 35 (7)PV) =)

=0 \™

The following result is well known and we omit the proof.
LemMa 4.1. For any renewal counting process {N(t);t = 0},

Ba(t) = M™ (1)

where M™ (t) denotes the m-fold convolution of M (t) = E[N()].
A stationary renewal process { X} 5 is one for which X, has distribution

Pt) = fo F(z) dz/u

and X,(k = 2, 3, -- ) are independently distributed according to F. Denote a
stationary renewal counting process by {N(t); ¢ = 0}. It is known (Cox, 1962,
page 46) that E[N(t)] = t/u for this process. A useful comparison can be made
between renewal counting processes and their associated stationary processes.

TuaroreM 4.1. Let {N(t) : t = 0} denote a renewal counting process governed by
F with mean uy . Let {N(t);t = 0} denote the associated stationary process. If

(4.1) fo F(z) dz/F(t) < (2) m forall t=0
then t
(i) P[N(t) 2 n] 2(=2)P[N(t) 2 n]
. N(t) £
i 5.0 -5(") 2@ s
(iii) M,(t) = E(N"(¢)) =(2) jg)j"(t/m)"e"’“/j!

forn,m=0,1,2,---and 0 £ t < .
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Proor. By hypothesis
Pt) = [ F(z) do/m =(S) F(2).

Therefore
P[N(t) =n] = ft F™ V(¢ — g) dF (z) = ft F"™ (¢ — z) dF(z)

= P[N(t) = n],

proving (i).

By (i), EIN(t)] = M(t) < E[N(t)]. Since E[N(¢)] = t/m (Cox, 1962, p. 46),
(ii) follows from Lemma 4.1.

To obtain (iii) note that z" = D> maz(z — 1) -++ (¢ —m + 1)S% where
S™ are Stirling numbers of the second kind (Jordan, 1950, p. 168). Therefore
EIN"(t)] = > neym! Bn(t)Sh. Since S, are positive (Jordan, 1950, p. 169),
(iii) follows from (ii). ||

The importance of Theorem 4.1 stems from the interpretation of (4.1). Note
that (4.1) implies that the mean residual life of a unit aged ¢ is less (greater)
than the mean life of a new component. If F is a IFR(DFR) with mean p,
then (4.1) is true. Of course, the converse is not true and (4.1) is a significant
weakening of the IFR(DFR) assumption.

TuroreM 4.2. If {N(t); t = 0} ¢s an IFR(DFR) renewal counting process,
then

Var[N ()] =(2) EIN(8)] = M(2).

The inequality is sharp.
Proor. Assume {N(t); ¢ = 0} is an IFR renewal counting process. Since

Var[N(t)] = jt [2M(t — z) + 1 — M(t)] dM ()
we need only show
ft [2M (¢ — z) — M(1)] dM(z) < O.

But M(z) < M(t) — M(t — z) by (iv) of Corollary 2.1 implies that we need
only show ffJ M(t—2) — M(z)]dM(z) < 0. Clearly

t/2

[~ ) — @) i) = [0 = ) = M) M

+ ft; (Mt — z) — M(2)] dM (z).
Let y = ¢ — =, then

t/2

[~ )~ M@l an) = [ 6 - )~ u@)] e .
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Hence we need only show

[P0 =) - u@) anw)

t/2

< f Mt — o) — M) dM@1) — Mt — )],

This follows immediately, since M (¢ — z) — M(z) is non-increasing in z,
M@t —2) — M) =20for0 <z =t/2and M(z) < M) — M(t — z).
All inequalities are reversed if F is DFR. Equality is attained by the Poisson
process. ||
It is well known (Feller, 1948) that
lime.o, Var[N (1)I/EIN ()] = o*/ui < 1

when F is IFR. Therefore, Theorem 4.2 is in a sense an extension of this result
to all ¢.

b. Generalizations. Next we obtain a generalization of the inequality
M(t) £(=) t/m which holds when successive replacements have different

failure distributions but a common mean. The method of proof is quite different
from that used in Theorem 2.1 or Theorem 4.1. We will need to define the general-

ized renewal function
(5.1) Mo(t) = Fi(t) + Fu % Fo(t) + Fyx Fo + F3(8) + -+ - .

Note that Mo(t) is the expected number of renewals in a stochastic process in
which the first unit has distribution F;, its replacement has distribution F,,

ete.
TaeoREM 5.1. Let F1,F2, Fs, - - - be non-degenerate IFR(DFR) distributions

with common mean w and assume

Fit) £G1) =1—¢'™ fort=0
and i = 1,2, -+ . Then '
(5.2) Mo(t) <(>) t/m fort > 0.

Proor. Assume F; (¢ = 1,2, ---) are IFR. First suppose F; = Fo = - --
Then

M) = S FP() < 35600 = b/

for 0 < t < w1 . (See Barlow, Marshall, 1963.) Suppose there exists 7 > w; such
that Mo(7) = 7/u1 . Then, since F has mass in [0, 7]

ou = M) = [+ Mulr = D] dRsGe) < [ [1 +7 x] dFy()
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or
o/ < Filr) + [ Fi@) do/m
which implies
[j: Fi(z) dx/Fl(r):l < 1.

But this contradicts (2.6) of Theorem 2.4. Hence Mo(7) < 7/m1,0 < 7 < o,
for this special case.

The argument proceeds by induction. Suppose the theorem is true for all
sequences of distributions of the form Hi, Hs, -+ ,Hy = Hppp = Hppa = -+~
where the H; satisfy the IFR assumption.

Ml(t) =F2(t) +F2 *F3(t) + e +F2*F3* e *Fk+1(t)
F+ FoxFynx oo xFrpyx Fra(t) + -

and
o) = [ U+ Mt — 2)] dFi(a).

As before, Mo(t) < t/usfor 0 < t = pi. Suppose there exists 7 > u; such that
Mo(7) = 7/p . This implies

/] = /: (1 4+ Mi(r — 2)] dFi(z) < Fi(7) + j: Fi(z) dx
and
[ F@)/Fir) < .

This is a contradiction. Theorem 5.1 follows by the axiom of mathematical
induction. '

All inequalities are reversed for DFR distributions. |

We note that Smith (1960) and Chow and Robbins (1963) have considered
sequences of non-identically distributed random variables and have given con-
ditions under which lim¢ M (2)/t = 1/ .

The method of proof used in Theorem 5.1 can be used to generalize the bound
on M(t) in yet another direction.

TurorEM 5.2. Assume F has density f, falure rate r(z) = f(z)/[F(x)], and
mean p .

(i) If r(z) = afor all x, then M(t) = t/m + 1/au — 1.

(ii) Suppose there exists § > 0 such that f(z) > 0 for 0 < z < 6.
If r(z) = B, then M(t) = t/m + 1/Bm — 1.
Equality is attained in (i) and (ii) for the Poisson process.
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Proor. If F(z) = 1 — ¢ the bounds are attained. Hence suppose F(x)
# 1 — ¢, Then
(5.3) inf, r(z) < 1/m < sup; r(z)

(see Barlow Marshall, Proschan, 1963). (5.3) implies @« < 1/um < 8, and 1/au,;
—1>0,1/8m — 1 < 0. Since M(0) = 0,
t/m+ 1/mB—1 < M(t) <t/m~+ 1/op — 1.

for ¢ sufficiently small.
(i) If « = 0, we are done. Hence assume o > 0 and suppose there exists

0 < 7 < o such that
M(r) = 7/m+ 1/op — 1

and
M) <t/wm+1/am —1 fort < 7.
Then 1
/i + Vo — 1= M) = [ "1+ M(r — 2)] dF (z)
(5.4)

< /(;T [(r — z)/p1 + 1/ap] dF ()

since r(z) = « implies F(t) 2 1 — ¢™** and hence F has mass in [0, r]. (5.4)
implies

F(z) dx.

/u + aw — 1 < L1’7’(1') +f
apm bk

But 7(z) = «implies f(z) = aF(z) and so

F(r) = f @) do 2 « f F(z)do
which implies
Tt 1 _ 1,
M1 (2755

Lpey 4 [Hel & o
am o 01
a contradiction. Hence, actually
M(t) <t/wm+ 1/au — 1

when F(f) # 1 — ¢ /"1,
(ii) If B = o, the inequality follows from Corollary 2.2 (iii). Hence suppose
B < . There exists 0 < 7 < o such that

M(r) =7/m+1/Bm — 1
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and
M(t) > t/um + 1/Bum — 1 fort < 7.
Then

T 1 _ [ _
L4 am—1= M) —fo [1 + M(r — ©)] dF(x)
" —z 1
— | dF
>-/l; [ w +ﬁ#1:|d (=)
since F' has mass in [0, r]. Therefore

;.1 F(r) , [Fl&)de _ v , 1
AT | >7T 4 *
M + Bu1 > B + l Mmoo m Bm

since r(x) =< B. This is a contradiction and therefore
M(t) > t/m+ 1/Bm — 1
for0 <t < o when F(t) 1 —¢ "™ |

Acknowledgment. Igor Bazovsky, 1962, conjectured (2.5) and (2.6).
We are indebted to Albert W. Marshall and Ronald Pyke for help and advice.
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