A FLUCTUATION THEOREM AND A DISTRIBUTION-FREE TEST

By Charles H. Kraft¹ and Constance van Eeden²

University of Minnesota

Let (X_1, \dots, X_n) be completely independent random variables with continuous and symmetric (about zero) distributions. If $N^* =$ number of positive sums in $\{X_1, X_1 + X_2, X_1 + X_2 + X_3, \dots, X_1 + \dots + X_n\}$, it has been shown by Andersen [1], [2] that N^* has, for each n, a distribution which is the same for the given class of sequences (X_1, \dots, X_n) . See Baxter [3] for this and a related result.

We show here that the random variable N = number of positive sums in $\{\sum_{j \in T} X_j ; T \subset (1, 2, \dots, n)\}$ also has a distribution which is constant for the same class of sequences (X_1, \dots, X_n) .

Theorem. The distribution of N is given by

$$P(N = k) = 1/2^n,$$
 $k = 0, 1, \dots, 2^n - 1.$

PROOF. The conditional, given $(|X_1|, |X_2|, \dots, |X_n|)$, distribution of (X_1, \dots, X_n) is uniform on the 2^n points $\{(\epsilon_1|X_1|, \epsilon_2|X_2|, \dots, \epsilon_n|X_n|); \epsilon_i = -1, \text{ or } 1\}$. Let $0 = S_0 < S_1 < \dots < S_{2^n-1}$ be the ordered partial sums from $\{|X_1|, \dots, |X_n|\}$. Let $S_k = \sum_{i \in T} |X_i|$, and, for $j = 1, \dots, n$, $\delta_j = -1$ if $j \in T$, $\delta_j = 1$ if $j \in T$.

Then (see lemma below) $N=N(\delta_1|X_1|$, $\delta_2|X_2|$, \cdots , $\delta_n|X_n|)=$ number of positive sums in $\{S_i-S_k$, $i=0,\cdots,2^n-1, i\neq k\}$. Since this last expression is clearly equal to 2^n-1-k and

$$P[(\delta_1|X_1|, \dots, \delta_n|X_n|) | (|X_1|, \dots, |X_n|)] = 1/2^n$$

the result follows.

LEMMA. $N(\delta_1|X_1|, \dots, \delta_n|X_n|) = number of positive sums in <math>\{S_i - S_k; i = 0, 1, \dots, 2^n - 1, i \neq k\}.$

PROOF. A one-to-one correspondence between the partial sums from $(\delta_1|X_1|, \dots, \delta_n|X_n|)$ and the elements of $\{S_i - S_k, i = 0, 1, \dots, 2^n - 1, i \neq k\}$ is given below where $T = T(S_k)$ is defined above.

To $\sum_{j \in A} \delta_j |X_j|$, make correspond $S_{i(A)} - S_k$ where

$$S_{i(A)} = \sum_{j \in (A-T) \cup (T-A)} |X_j| \qquad A \neq T$$

$$i(A) = 0 A = T.$$

Received 10 December 1963.

¹ This research was supported in part by the National Science Foundation under Grant Number G-19126.

 $^{^2}$ This research was supported in part by the National Institutes of Health under Grant Number 2G-43(C7+8).

To $S_i - S_k$, make correspond $\sum_{j \in (B-T) \cup (T-B)} \delta_j |X_j|$ where B is defined by $S_i = \sum_{j \in B} |X_j|$.

The number of positive sums in the two sets is the same since the correspondents of the first map are equal, i.e., $\sum_{j \in A} \delta_j |X_j| = S_{i(A)} - S_k$.

We shall now discuss the consistency of tests based on N (or N^*). Let T_n denote one of N^*/n or $N/(2^n-1)$. A test of the null hypothesis, X_1, \dots, X_n are independent and symmetric about zero is to reject H_0 if $T_n > k_n$ where k_n is, for large n, approximately the solution to $B_t(\frac{1}{2}, \frac{1}{2}) = 1 - \alpha$ (B_t is the incomplete beta-function) if $T_n = N^*/n$ and $k_n = 1 - \alpha$ if $T_n = N/(2^n - 1)$.

Since, for any random variable Z with $P(0 \le Z \le 1) = 1$,

$$P(Z \ge 1 - \epsilon) \ge 1 - (1 - EZ)/\epsilon$$

a lower bound for the power of these tests is $1 - (1 - ET_n)/(1 - k_n)$. Therefore the tests will be consistent if $ET_n \to 1$. Further,

(1)
$$1 - ET_n = \sum_{k=0}^n P\{(Y_k - k\theta)/k^{\frac{1}{2}}\sigma < -k^{\frac{1}{2}}\theta/\sigma\} \cdot p_k$$

where

$$p_k = n^{-1},$$
 $k = 1, \dots, n$ for $T_n = N^*/n$
= $\binom{n}{k} (\frac{1}{2})^n,$ $k = 0, \dots, n$ for $T_n = N/(2^n - 1)$.

and where it is assumed that (X_1, \dots, X_n) are independently and identically distributed with a distribution $F[(x-\theta)/\sigma]$ for some F, and for $\theta > 0$, $\sigma > 0$, and Y_k is a random variable distributed as $\sum_{i=1}^k X_i$. From (1) and the Helly-Bray theorem it follows that the test will be consistent if

(2)
$$P\{(Y_k - k\theta)/k^{\frac{1}{2}}\sigma < -k^{\frac{1}{2}}\theta/\sigma\} \to 0.$$

If, for some alternative, ET_n does not converge to one there will be a size for which T_n will not be consistent. For example (2) is constant for the Cauchy distribution and T_n is not consistent.

REFERENCES

- [1] Andersen, E. Sparre (1949). On the number of positive sums of random variables. Skand. Aktuarietidskr. 36 27-36.
- [2] Andersen, E. Sparre (1953). On the fluctuations of sums of random variables. Math. Scand. 1 263-285.
- [3] BAXTER, GLEN (1962). On a generalization of the finite arcsine law. Ann. Math. Statist. 33 909-915.