SOME THEOREMS ON FUNCTIONALS OF MARKOV CHAINS

By SioneEy C. Port
The RAN D Corporation

1. Introduction. In this paper we shall investigate various phenomena
associated with a Markov process in discrete time, extending results found in
[3], [6], [7], and [13]. The paper is divided into three parts. In part one we focus
our attention on recurrent events (i.e., to successive entrances into some fixed
state of a Markov chain with the positive integers as states) and show that the
waiting time distribution is completely determined by the sequence {EY,},
where Y, is the time as observed from 7 that the event last took place. Moreover,
we show that criteria for the event to be persistent, transient, positive, ete., may
be given directly in terms of the £Y, . In part two we examine a particular class
of null events called B-regular (see Section 2 for the definition), where we find
various joint limit distributions for some of the functionals usually associated
with these events. In part three we extend these limit laws to situations more
general than recurrent events, and these extended results are then applied to
several concrete situations.

2. Criteria for recurrent events. Let ¢ be a recurrent event on the positive
integers with waiting times W , these being independent, identically distributed,
positive integer valued random variables which may also assume the value .
We recall that e is ealled transient or persistent according as to whether or not
p = P(W; < ») < 1. A persistent event is positive if EW; < « and is null if
EW, = «. A recurrent event is periodic of period \ if ¢ may only occur at times
nxforn =0,1,2, ---. If A\ = 1 we say that e is aperiodic. From now on we
shall always assume that the recurrent event is aperiodic. The methods needed
to extend results to the case of periodic events are both simple and standard [8].
We introduce the following functions. For n > 0 let

N, = sup{k £ n:Wi + ... + Wi = n} (number of occurrences by time n)

Y. = Wi+ ... 4+ Wy, (time of last occurrence),

Y, = n — Y, (time elapsed since last occurrence),

Zn = Wi+ - 4+ Wy, — n (time to elapse until next occurrence). For
n = OletNo = Yo = 0.

Let u, = P(Y, = n), ¢. = P(Y, = 0), and for || < 1 let

F(t) = E@"; Wy < o) = kz_ltkP(Wl = k),
Ui) =1+ Zlu,,t",
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and
T(t) = ZP(Yn = 0)t" = antn~
n=1 n=0

Recall (see [8]) the well-known relations:
[L—F®OI' =U®W, (=71 —=F@®]=T(®.

We are now in a position to show that the various criteria associated with e
may be given directly in terms of the sequence EY, . This result was motivated
by the results of Andersen [1] and Spitzer [17] which implicitly contain these
criteria for the special recurrent event, “Ladder Point.” (See the example at the
end of this section.)

THEOREM 2.1. Suppose ¢ is an aperiodic recurrent event. Let A, = E(Y, — Yn i)
ifn > 0and let Ay = 0. Then e is transient if and only if Do Akt < o, and

(2.1) P(Wy= o) =1—p = exp {—i Aklc—l}.

k=1

Moreover, we have

(2.2) EW, = exp {,; 1 - Ak)k—l}

in the sense that both sides of (2.2) are finite or infinite together and always equal.
Proor. In [14] we showed that for any recurrent event

(2.3) U(t) = exp {Ig AL k—l} ;

Since Ar = 0, (2.1) follows from (2.3) by an extended version of Abel’s theorem.
From (2.3) we also have T'(t) = exp D i (1 — ALK Now, suppose
(2.4) 2o(1— Ak

k=1

converges. Then, as ¢” is continuous, from Abel’s theorem we have
EW,; = limy,,-T(t) = exp ;(1 — ADEL

Conversely, suppose EW; < «. Then we know at once that

(2.5) - limes- :th"(l — MK

exists, and to conclude the proof we must show that the series (2.4) converges.
If we knew that
(2.6) limp.w Ar = 1,

then this result would follow at once from (2.5) and Tauber’s theorem. To verify
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(2.6) we may proceed as follows. Observe that
(2.7) (1 =82 At = tF' QU@ (1 — t).
k=1

At t = 1, the series U(¢)(1 — t) becomes the series uo + (w1 — o) + (uz — u1)
4+ ... = lim,,e %, . By the fundamental limit theorem on recurrent events [8],
the above limit is (EW;) . Moreover, F' (1) = EW; . Thus by Merten’s theorem
([11]; Theorem 161, p. 228) we have from (2.7),

(2.8) liMpaw Ay = EWL(EW,) ™ = 1.

As a corollary of the proof we have the following.

CoROLLARY 2.2. If e is a positive, aperiodic event, then (2.8) holds and the series
(2.4) converges to a finite positive value.

We introduce next the following definition.

DEFINITION. A recurrent event is B-regular if

(2.9) lim,.»w(l/n)ki_1 Ar = lim,, E(Y./n) = B.

The following result is essentially due to Lamperti [13].
TurEOREM 2.3. e ¢s B-regular if and only if

(2.10) 1—F@t)~ (1 —8)r1/(1 —1t))

where h(x) 1s a slowly varying function. Moreover,
(2.11) R(1/(1 — t)) ~ L(1/(1 — t)) = expkz (B — ALK
=1

Proor. Lamperti in [13] showed that (2.10) and (2.9) were equivalent and
now (2.11) easily follows from (2.10) and (2.3).

We conclude this section with an illustration of the preceding results. Let S,
be the nth partial sum of independent random variables with a common distri-
bution. Set Sy = 0, and define ¢ to be the event S, > M, where
M, = max(Sy, -+, Sa). It is well known that ¢’ is an aperiodic recurrent event,
and it is easily verified that Y, for the event ¢ is the random variable L, = inf
{k=n:S,=M,}.1fZ,,Zs, - - -, are the successive, “ladder random variables,”
(i.e.,if Wy are the waiting times for ¢, then Z; = Swypopw, — (Z1+ - -+ + Zia),
where Z; = Sw,) then M, = Z, + --- + Zu, . The equivalence principle of
Andersen-Feller asserts that L, and Q, = D_r=1(1 + sgn S;)/2 have the same
distribution. From this, it follows at once that for the event ¢ we have A, =
P(S, > 0). If M and N denote the limits as n — « of M, and N, respectively
then it is clear that M is finite with probability one if and only if N is. Conse-
quently, Theorem 2.1 gives the following results of Spitzer. If D a1 P8, > 0)n™
< o then P(M < «) = 1while P(M = «) = 1 if the above series diverges.
Moreover, for the event ¢ we have
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P(Wy < ©) =1— exp [—Z P(S; > O)Ic_l:l
k=1
and
EW, = exp 2 P(S; £ 0)k™.
k=1

3. Limit laws for recurrent events. Feller in [7], and independently Darling
and Kac in [3], showed that if there are constants C, such that N,/C, has a
nondegenerate limit distribution, then

(3.1) 1—F(t) ~ (1= 8)%1/(1 —1)

for some 8,0 < 8 < 1 and some slowly varying function h. Conversely, if (3.1)
is satisfied then one can take C, = nﬁh( n) " and N,/C, will have a nondegenerate
limit distribution. Similarly Dynkin [6], and independently Lamperti [13] showed
that when e was a 8-regular event for some 8,0 < 8 < 1 then Y,/n had a non-
degenerate limit law, and conversely if ¥,/n had a nondegenerate limit law, then
e was B-regular for some 8,0 < 8 < 1.

Now by Theorem 2.3, (3.1) and B-regularity are equivalent, and moreover,

(3.2) h(n) ~ L(n) = exp I;((n — 1/n)8 — Ak

From now on we shall always take the normalizing constants on N, to be
(3.3) b, = n°L(n)™".

The above discussion makes it plausible that the following result holds.

THEOREM 3.1. In order that (Na/ba, Y./n) should converge in law to (N, Y)
having a nondegenerate distribution, it is both necessary and sufficient that e be
B-regular for some B, 0 < B < 1. The distribution of (N, Y) s then uniquely de-
termined by its moments:

bo__ (=D%Im! (—p(m+ 1)
@4 B = s (7).

In the proof given below, we shall follow the method used by Lamperti to
establish the corresponding result for Y,/n. It seems to have first been used in
problems of this type by Spitzer [17].

Proor. If (N,/b,, Y./n) is to have a nondegenerate limit distribution, then
Y,/n must have one. But as was mentioned above, this is only possible when e is
B-regular for some B, 0 < B < 1. If then, e is such an event, we obtain from
Theorem 2.3 that (3.1) and (3.2) hold, and we shall now show that this implies
(Na/bs , Yu/n) has the nondegenerate limit law with moments (3.4).

Wehave P(N, =k, Y, =m) = P(Wy+ --- + Wy = m)qn_n and thus for
Bl =1L lyl = 1,0 < 1,

(3.5) > B = T — yF )],
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which is an analytic function in (z, y, ¢) for |z| < 1, [y| £ 1, |{| < 1. Taking the
mth derivative of (3.5) with respect to y at 1 results in

(36) Z:Ot”E(xy"Nﬁm)) — m,F(tx)m[l _ F(t)](l _ t)—l[l _ F(xt)]_('”'"l),

where N = N,(N, — 1) --- (N, — m + 1). Set z = ¢* in (3.6) and
expand in powers of A to obtain
2 I(=DYEIN(L = 0" 2 "E(YLN")
(3‘7) k=0 n=0

= ml[l — F()](1 — )7 F(te ™) "[1 — F(te2)" ",
Ast— 17,

1=t ~ @1+ N1 -0,

and so, taking account of the slowly varying nature of L, we obtain from (3.7)
(after a slight rearrangement),

IMt—>1 Z ( )\ (1 )k+1(1 _ t)ﬁmL (_1_)
k=0 =
(3.8) -
: Z tnE(Y’:L Ns.m)) = m?(]_ + >\)—'ﬂ(m+l)'
n=0

Since the quantity in (3.7) is analytic in A, ¢ for |{§ < 1 and X = 0, and the
right-hand side of (3.8) is analytic in A at A = 0, we obtain from (3.8), by an
appeal to the Weierstrass theorem,

limg (1 — ¢)*mr, <_1——-> Z E (YEN™ — YE N

h = (—1)*ki m! <"ﬁ(”}g+ ”).

Now, E(Y5NS™) is, for each fixed k and m, a monotone increasing function in 7.
Hence we may apply Karamata’s Tauberian theorem (see [4], p. 507) to (3.9)

and conclude that .
m)yky L Bm k -m (—=1)°k! m! (—B(m + 1)>

Finally, as E(N{Y%) ~ E(N72Y%), n — o, we have (3.4). To complete the
proof, we must show that these moments uniquely determine a distribution. By
Theorem 1.12 of [15] this will be true provided

(3.9)

(3.11) ZOE(N” + YTV = oo,

A simple computation shows that
E(N" + Y™™ > (1 4+ EN™)™™ 2 const./(n + 1)},
and so (3.11) certainly holds. This completes the proof.
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It is possible to give an interesting characterization of the distribution of
(N, Y) and even to write down its density function.

CoroLLARY 3.2. (This was brought to our attention by M. Dwass.) (N, Y) is
distributed like (NY®, Y') where (N, Y) are independent. Y has a density on [0, 1]
which 1s a generalized arc-sin law density,

(3.12) dP(Y < z) = fa(zx) = (sin 78/m)a* (1 — 2)°
while N is a positive random variable with a density
(3.13) he(z) = T(B + 1)zgs(x)

on [0, ) where gs(x) is the density of the Mittag-Leffler distribution of index B.
(See [3] for a discussion of the Mitiag-Leffler distribution.)
Proor. A simple computation shows that

(=1 m! (—ﬁ(m + 1))
T(mB + k + 1) k

(3.14)
_(m+1ire+1) T+ plm+ 1))

I(1 + B(m + 1)) T(BTBm + k + 1)

and that

Uik _ (k4 B(m + 1))
lxﬂ‘Lfﬁ(x) dx_I‘(ﬁ)I‘(ﬂm+k+1)'

Finally, as the mth moment of [5gs(x) dz is m![T(1 + mB)] " it is easily seen
that the first quantity on the right in (8.14) is the mth moment of the distribution
on (0, ) with density given in (3.13).

COROLLARY 3.3. Under the same conditions as Theorem 3.1 we have that
(No/bs, Yn/n) converges to (N, Y') in distribution. Moreover (N, Y') has the
same distribution as (NY?, (1 — Y)), and

E(N™Y"™) = m! ki(—1)" (B; 1>/r(1 + k+ gm).

Proor.
lim, e E[(Nn/b,,)'”(Y;/n)"] = liMpsw E[(Na/bs)™(1 — Y,,/n)"].

A simple computation and Corollary 3.2 now completes the proof.

From the joint distribution of (N, ¥) we may obtain the joint limit distri-
bution of (Nn/bn, Zs/n) and (Na/bn, [Npitmy — N.Jb»"). Since the proofs of
these results follow closely those used by Lamperti in [13] to obtain the limit
distribution of Z,/n from that of Y,/n, and by Dynkin in [6] to obtain the limit
distribution of [Nnyimj — Nalbn' from that of Z,/n, we shall merely state the
results with no proofs.

TrEOREM 3.4. B-regularity (0 < B < 1) is both necessary and sufficient condition
for (Nu/bs , Zn/n) to have a nondegenerate limit law. The density of the limat law s

(3.15)  he(x(1 4+ )*)(1 + w)fs(1/(1 + u))(1 + u)" = dP(N S 2,Z < w).
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TaEOREM 3.5. Under the same conditions as Theorem 3.4 we have
limuysw P(Ny £ @by , Notirn) — No > uby)
1

(3.16) - _ ~
- [ e (%T,;) PV = 2(1+ )1 + 9% <m> ds

where Gg(z) s the stable law on (0, « ) with Laplace transform e,

At times it is possible to assert that a stronger version of the limit laws for
Y, and Y, hold.
TrEOREM 3.6. Suppose 0 < s < land k ~ sn. Then for0 < 8 < 1

(3.17)  limp,enP(Y, = k) = limy,onP (Y = n — k) = fa(s),
and uniformly so for s bounded away from 0 and 1, if and only if
(3.18) U ~ 07 L(n)TT(B) T,

where L(n) and fz(s) are as before.
Proor. If (3.18) holds a well-known Abelian theorem ([4], p. 460) gives us that

(3.19) 1—F@)~ (1 —t)’L/1 —t),
and thus by Karamata’s theorem ([4], p. 508) we have
Qo+ -+ @a~nTPL)T(2 — B)L

As ¢, is monotone, an application of another Tauberian Theorem ([4] p. 517)"
allows us to conclude that

(3.20) ¢ ~n?L(n)(1 — B)™.
Equation (3.17) now follows at once from the relation
(3.21) P(Y,=k)=P(Yn =n—k) = tgns.

Conversely, suppose we know that (3.17) holds for all 5, 0 < s < 1. A simple
argument then shows that for0 < a < b < 1,

b
Plan < Y, < bn) Nfa fs(s) ds,

and thus Y,/n converges in distribution to the nondegenerate law on (0, 1) with
density fs(s). Theorems (3.1) and (2.3) then tell us that (3.19) holds, and thus
(8.20) holds. Setting k£ = [sn] in (3.21) we obtain, by a simple computation, that
wtem) ~ [sn)'T(B) " L([sn]) 7.

ReMmARK. In the course of the above proof we showed that B-regularity and
(3.20) were equivalent and that (3.18) always implied (3.20). Recently the
problem of when (3.20) implied (3.18) was attacked by A. Garsia and J. Lam-
perti in [9]. Their results show that for § < 8 < 1 this is always the case, while
for 0 < B8 < % this need not, in general, be true. However, it is worth pointing
out that if u, is monotone, then (3.20) implies (3.18) for all values of 8.

1 The extension of this result to include a slowly varying function causes no difficulty.
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The results of Theorem 3.1 and Corollary 3.2 make it seem very plausible that
(3.22) limpw P(N, < 2EN,|Y, = [sn]) = P(N < 25%), 0 < s £ 1,

for every B-regular event. Under the more stringent condition (3.18), Dwass and
Karlin [5] have shown that (3.22) is true. By the above remark then, (3.22) is
true for all B-regular events with 3 < 8 < 1, but whether this can be extended
to 0 < B8 = 3 remains open. It might be well to point out that if (3.22) holds,
then the event is B-regular. To see this, observe that when (3.22) holds we have,

limpreo B(No/EN, | Yo = [sn]) = §® limp,e E(N,./EN, | Y, = n)
and thus, for all 5,0 < s < 1, we have limy,, EN 4n)/EN, = §°, from which it

is easy to deduce that EN: ~ nh(n) where h(z) is a slowly varying function.
Application of a familiar Abelian theorem ([4], p. 460) and Theorem 2.3 then

show that e is B-regular.

Let us conclude this section with the following applications to the recurrent
event ¢’ introduced at the close of Section 2. Assume that ES; = 0 and that ES? =
o < . In [16] Spitzer showed that under these conditions the series

y =k§ & — P(8: > 0)k™

was convergent and that EZ; = ce”/2}. By the strong law of large numbers, we
then have lim,,, M,/N, = EZ; with probability one. Moreover, in this case we
may choose the b, of Theorem 3.1 to be nl¢™”. Consequently, from Theorem 3.1
and Corollary 3.2 we have, by the well-known fact ([3]) that g;(z) = e

limsew P(M, S zon’, Nu < yb, 2, ¥V, < tn)
min(z,y) t L N .
= w_lf / w (1 — v) e dy db.
0 0

Let us further observe that for the event ¢’ we have u, = P(S; > 0,1 < i < n),
which is obviously a monotone function of n, and thus by the remark following
Theorem 3.6, if ¢ is B-regular then (3.18) holds. But ¢’ is B-regular if and only if

lirnn,oo(l/n)kz:lP(Sk > 0) = 8,

and since Y, = L,, and @, have the same distribution, we have (by Theorem
3.6) the following stronger version of the generalized arc-sin laws for L, and @, :
TaEOREM 3.7. If 0 < s < 1,and of k ~ sn, then for 0 < B < 1

limy. P (L, = k) = lim,.e nP(Q, = k) = fo(s),
and uniformly so for s bounded away from 0 and 1, if and only if

limya(1/2) 32 P8 > 0) = 6.

4. Extensions. In this section X, will denote a Markov chain with states in
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a measurable space (E, §). Its nth step transition function will be denoted by
P*(z; A) = P(X,e A | Xo = z), where, of course, z ¢ E and A ¢ 5. For A ¢ 5,
define (in analogy to the recurrent event case)

N,(4) = ;h(X,-), n > 0,
=0, n = 0,
where 64(z) is the characteristic function of A4, and
Y.(4) =0, n =0,
= sup{r = n:X,eAd}, n>0andN,(4) > 0.
=0, n > 0and N,(4) = 0.

For|t| < 1, zeE, AeFlet Ulx, A) = Dm0 t"P"(x; A), and for a given set
A G, let

4Ui(zx, B) = Uiz, B) if xeE, and Beg, B C A,
=0 . otherwise,

be the restriction of U, to the set A. Let
Vi =inf{r > 0:X, e A4}, if X,eA for some r > 0,

= o if there is no such r,

)

be the time of first return to 4, and for B ¢ %, B C A4, let
Ho(x,B) = ) P(X,eB, Vai=n|X, = z)t"
n=1

Finally, let s7¢(z) = Dm0 P(Va > n| X, = z)t".

From now on we shall focus our attention on a fixed set A, and it will be our
purpose in this section to show under appropriate regularity eonditions on ,U,
and A, that it is possible to extend Theorem 3.1 to (N,(A4), Y.(A4)). The
regularity condition we shall take is as follows.

AssuMmpTION 4.1. There exists a finite measure =(-), with 7(A) > 0, on the
measurable subsets of A, and a function ¢(t) such that ¢(t) — © ast — 17 and
such that for every bounded measurable function f(y) we have

@D [ aUa i) = o0 [ f@m(ds) + [ vue, v D7),
where for each fixed x,
limg - SUPys 4 W’l(xf Y, t)|/¢(t) = 0’

and moreover,

(4:.2) liInt»l" Supz,yeA w’l(x) y} t)l/¢(t) = 0
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In addition to Assumption 4.1 we shall also assume that the following recurrence
condition holds:

(4.3) PVi< o |Xo=12)=1 forallz ¢ E.

The Condition (4.1) above is similar to the conditions employed by Darling
and Kac [3] and Lamperti [13] to establish corresponding results for N,(4) and
Y.(A), respectively. Probably the result we establish here is true under less
drastic conditions than the above, but this condition suffices for the applications
we have in mind.

TrEOREM 4.2. If for the set A we have that (4.3) and Assumption 4.1 holds, and
if for some 3,0 < B < 1, and some slowly varying function h(x) we have

(4.4) e(t) ~ (1 — ) h(1/(1 = £))7,
then f we choose
(4.5) B, = n’h(n)™"

we have, for any initial point x,

limpsw P(No(A)/7(A)By £ 4, Ya(4A)/n = t|Xo=2) = P(N 24, Y £1),

where (N, Y) s as tn Theorem 3.1.
Proor. The same argument used to establish Theorem 3.1 will show that the
desired result follows from (4.4), provided we can show

(4.6) BN (A)s™™ | Xy = 2) ~ 7(A)"o(st)™™ (1 — ) o(¢) ™ 'm!,
n=0
when s = exp[—M\(1 — ¢)]. This will be accomplished by use of the following
lemmas.
LemMA 4.3. Let 4U; = 4U., and for m > 1 define
(47) U@, B) = [ LUz, dy) uU(, B).

Then under Assumption 4.1 for every bounded measurable function f(x), we have

[ U2, i) = e )™ [ sy)n(ay)

(4.8)

+ [ dalz, , OF)n(ay)
where
(4.9) Lim - SUPa,yea [¥m(2, Y, 1)]/0(H)™ = 0.

Proor. We proceed by induction onm. For m = 1, this is just part of Assump-
tion 4.1. Suppose we have already established (4.8) and (4.9) for all m < my.
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Let

g1, 5, 1) = 0(0) [ Yma(z, 9, O7(d2)
(4.10)
+ ¢(t)moW(A)mo—l /; |l/1($, zr t)"r(dz) + L ‘l’l(x) 2, t)wmo(z, y, t)‘ll'(dZ).

A simple computation shows that for any bounded measurable function f, we
have

[ 0z, anit) = o a4y [ w)atay)

= [ mons(z, v, OF @) (ay).

But from (4.10) we have

[Wmgt1 (2, y,t)| _ w(A) sup [¢m,| , 7(A)™ sup |4
SUeaes oyt = e T o

m(A) sup |ya| sup [Wm,|
p(t)mtt

and thus, by the induction assumption, the limit as { — 17 in the above expression
is 0. This establishes the lemma.

LemMA 4.4. Let B(E) be the Banach space of bounded measurable functions.
On ®(E) define the operator

LH, f(z) = f Hi(, dy)f(y).

+

Then, for || < 1, and |u| = 1 we have that
(4.11) (I —uwH) =1+ 2 u".HE,
n=1

and the expression in (4.11) defines for |u| = 1 an analytic function of u. Moreover,
its mth derivative at u = 1 is given by the formula

(4.12) (-Ztl"‘ I—u AHt)_l lum = m! JHF 4 T

Proor. Let V4, V4, .-+, be the times between the successive returns to 4,
thatis V4 = V4, and forn > 0,
S =inffr > Vi+ o+ V= (Vit -+ VD,

and note that (4.3) assures us that these are defined with probability one. A
simple renewal type argument shows
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(4.13) Hi(x,B) = > {P(Vi+ --- + Vi =1, X,eB| X, = z).
r=1

(See Chung [2] where the details are carried out for the case of a denumerable
state space E. An examination of his proof, however, reveals that it may be
carried over to the case of an arbitrary state space.)

If fe B(E) then for [t| < 1

et = s [ Hi(o, a)1(w)

< sup, [f(@)] [t 22 P(Vi = n| Xo = 2) = IIf] It],

and thus |.H.| = |{| < 1. Consequently by a fundamental theorem in the
theory of linear operators (see e.g. Section 5.1 of [18]) we have for all u, [u] < 1,
that the expression in (4.11) holds, defines an analytic function of 4, and has at
u = 1 the derivative m! JH?(I — 4H.)~ ™. However, the relation

P(X,eB|Xo=2) =2, P(Vi+ - - +Vi=nX,eB|Xo=2z), n>0,
r=1

= oz(z), ‘ n =0,
shows at once that

(4.14) U= (I — H)™
We may now quickly establish that (4.6) holds. From the obvious relation
P(N.(A) =k Y.(A) = 1| Xy = x)
=fP(Vi+ e+ Vh=y
A

X,edy| Xo=2)P(Vi>n—r|Xo=1y), k>0
=P(Va>n|X, = z), k=0

we obtain, upon taking generating functions, that
(4.15) 20 B0 | X, = o) = (I — u Ho)™" JTi(x).
Use of Lemma, 4.4 then gives us that

n:ZO E(s"™ NI (A)] Xo = )" = m! JHY, JUS™ aTu(x).

From Lemma 4.3 and Assumption 4.1 we then have, when s = exp[—N(1 — ¢)],
AT AU 4T(2) _1l-o.
¢(8t)m+11r(A)m L AT(z)w(dx)

limg-»l -
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Consequently we have, for all m = 0
(416) mil JHE JUE? Tua) ~ ml o(s))™ n(4)" [ (Ta)n(de), - 1.
A

If weset s = u = 1in (4.15) we obtain (1 — )™ = LU, 4T(z), and if we set
s=1(ie.A=0),m = 0in (4.16) we obtain 4U, sTu(z) ~ o(t) [ 4 4T+(zx)7(dz).
Thus, (1 — )™ ()™ ~ [4 4Ti(x)7w(dx). Substitution of this result into
(4.16) yields (4.6).

REMARK. The converse of Theorem 4.2 is also true. Namely, if (4.3) and
Assumption 4.1 hold and if for some constants D, we have that (N,(A4)/D,,
Y.(4)/n) has a nondegenerate limit law, then we must have that ¢(¢) is of the
form given in (4.4). This follows at once from the fact, that under a condition
which includes Condition 4.1, Darling and Kac [3] demonstrate that N,/D,
has a nondegenerate limit law only if ¢(¢) is of the form given in (4.4).

If we define

Zn(A) = inf{r > n:X, e A} — n,

then by the use of Theorem 4.2 we may also extend Theorems 3.4 and 3.5 to the
same situations in which Theorem 4.2 holds.

We shall conclude this section with several examples.

Example 1. Let E be the integers and let X, be an irreducible, recurrent chain
with states in E. Then, the Doeblin ratio theorem [2] asserts,

(a.17) limae 3 PG, 31) / 3 PO, 10)) = (i)

where u( -) is the invariant measure of the chain normalized so that u({0}) = 1.
A simple Abelian argument then shows that if A is any finite set of states we have

lim ;- ;)t"P"(i, 4) Zjot"P"(o, (0}) = u(4).
If we choose the 7(-) of Assumption 4.1 to be the above u(-) and if we choose

(418) o) = 3P0, (0)

we then have that Assumption 4.1 holds for any finite set A (the required uni-
formity is trivial in this case since A is finite).

From the above we see that Theorem 4.2 contains Theorem 3.1 as a special
case, for it is a well-known fact [8] that the successive returns to a fixed state
in a Markov chain with integer states constitute a recurrent event, and con-
versely, that every recurrent event may be viewed as the successive returns to
0 in some irreducible chain. (In fact Y7, is just such a Markov chain.) This leads
us to the following result.

TaeoreM 4.3. Let X, be an trreducible Markov chain with the integers as states.
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Suppose the successive returns to 0 are a B-regular recurrent event for some £,
0 < B < 1. Then, for any r functions h;( -) defined on the integers such that

(419) 2 [ha(k)lu({k}) < o and D hi(k)u({k}) = hs # O,
for any finite non-empty subset of states A, and for any initial point I, we have

1im,MP< hi(X;) S Tihiba, 1SS0, Va(A) S| Xy =1
(420) Z=; i) (4) | Xo=1)

=P(N<min (z;,-+,2), Y £t)

where b, = (1 — 1/n), and ¢(t) is given in (4.18).

Proor. The above results follow at once from Theorems 2.3 and 4.2 and the
familiar ergodic theorem [2] that for functions satisfying (4.19) we have, for
any finite non-empty set A4,

lirnyon g hi( X2) / Na(4) = hifu(4)

with probability one.

In particular, if X, is the nth partial sum of independent, identically distrib-
uted, integer-valued random variables such that EX; = 0, |E(e®*)| = 1 if
and only if # = 2n, and such that the X, lie in the domain of attraction of a stable
law with exponent «, for 1 < a =< 2 we have, by the local limit law for lattice
distributions [10], that the successive returns to 0 are 1 — 1/a regular. Thus

Theorem 4.3 applies.
Another example of when Theorem 4.3 holds is the following. Let V, be in-

dependent, identically distributed, integer-valued random variables with par-
tial sums S, . Define

To= (Vo + Tua)"

where 2t = max (z, 0). It is easily seen that T, is an irreducible Markov chain
with the nonnegative integers as states. It is a well-known fact [16] that

P(T, £z|Ty=0) = P(max (0,8, ---,8) = z).

Let Y,.({0}) = Y, . Then, it is readily seen ([14]) that Y, has the same distribu-
tion as the position of the last minimum amongst the sums (S:, Sz, ---, S.),
and thus the equivalence principle shows that Y, has the same distribution
as the number of nonpositive sums amongst the first » partial sums. We there-
for have E(Y, — Y,.1) = P(S; £ 0), and thus the event 7, = 0 is g-regular if
and only if

n

(4.21) limpoen ™ D, P(S; £ 0) = 8.

k=1

In particular, if the sums S, are attracted to some stable law, or have a sym-
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metric distribution, then (4.21) holds. Consequently whenever (4.21) holds for
B8 £ 0, 1 we have that Theorem 4.3 is applicable to the 7', chain.

Ezample 2. Let E be the real line, § be the Borel subsets of E, and X, be the
nth partial sum of independent random variables each with density pi(x).
Assume further that

(a) X, are attracted to a stable law with exponent ¢, 1 < a, £ 2,

(b) for some m, we have E|X,,|" < « for1 < r = 2,

(¢) EX, = 0.

Then by the local limit theorem for densities [10] we have, for p,(z) the density
X, and g(x) the density of the limit law, that

(4.22) B.pn(z) — g(Bn'z)— 0 uniformly in 2z, —w <z < o,

where, for some slowly varying function h(z), B, = n"/*h(n). Now let A be a
bounded Borel set. Then since g(z) is continuous [10], we have

(4.23) g(Ba'(y — z)) — g(0) =0
uniformly in z, y for z, y € A.

In Theorem 4.2 let
(4.24) o(t) = 9(0) 2 "By’

and choose 7( -) to be Lebesgue measure. Then,
[aUs(2, dy) — o(t) dy| = Zflanpn(y —2) — g(Ba'(y — «)[t"Ba’

+ BBy — @) — g(0).
Since ¢(t) — « ast— 17, we have from (4.22) and (4.23) that,

laU(z, dy) — o(t) dyl/e(t) =0,

and uniformly so for z, y ¢ A.
Finally, a familiar Abelian theorem ([4], p. 460) shows that

(1) ~ g(0)T(1 — 1/a)h(1/1 — ) 7(1 = ¥, t— 17,

and thus we have that Theorem 4.2 is applicable in this case. We state this fact
a bit more generally as follows:

TuroreM 4.4. Let X, be the nth partial sum of independent random variables
with a common density pi(z), and suppose Conditions (a)—(c) hold. Then for any
r functions hi(x) in L,(— ©, ») such that fhi(x) dx = h; # 0, we have, for
any bounded Borel set A with non-zero Lebesgue measure,

limpw P (Z hi(Xe) € 2By, Ya(A)/n < t)
k=1

= P(N £min (1,22, -+ ,2,), Y S t).
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Proor. This follows from Theorem 4.2 and the ergodic theorem of Harris
and Robbins [12] which asserts that

lima.e ;hi(Xk)/N,,(A) = hi/n(4)

with probability one.
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