CONVERGENCE PROPERTIES OF A LEARNING ALGORITHM!

By LEo BREIMAN AND Zivia S. WURTELE
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1. Introduction. In a recent paper Albert [1] introduced an algorithm for learn-
ing to classify individuals that are drawn from a population which is partitioned
into two categories. The purpose of this note is to discuss an algorithm which is
simpler, in the sense that at any given stage half as many items are retained
in memory.

In the learning process described by the algorithm, observations are made on
individuals one at a time and the current estimate of the required partitioning
may be adjusted after each observation, on the basis of knowledge of the category
to which the individual observed belongs. At any given time, the current esti-
mate of the partitioning is all that is held in memory; past history is lost except
insofar as it has been incorporated into the present estimate. The learning
process of perceptrons, as well as that of other artificial intelligences, is of this
general form.

2. Notation and assumptions. It is assumed that each individual is a member
of one and only one of two categories. The results obtained are applicable to the
more general case, however, for they may be applied to appropriate partitions of
a set of three or more categories into two subsets.

Each individual in the population is characterized by an attribute vector X in
m-dimensional Euclidean space; let Si, S, be the sets of vectors attributed to
members of the first and second categories, respectively. We shall suppose that
this characterization is sufficiently rich with respect to the given classification
problem, that is to say that the regions S; and S, are separable by a hyperplane
(except for a set of probability measure zero). This terminology is appropriate
to situations for which in the case of failure of the condition of sufficient rich-
ness, a re-examination of the world of individuals and the subsequent increasing
of the number of components of the characterizing vectors can be expected to
yield a new description for which this condition is satisfied. The question of
whether, in a particular case, a sufficiently rich characterization can be achieved
is obviously crucial but beyond the scope of this paper.

It is supposed that initially there are two samples: X{°, -+, X from S,
and X{?, .-+, X from S:. Let X, be the nth vector sampled after the initial
p + g vectors. We assume the following.

Assumption. There exist two bounded sets S: , Sz and a distribution @ on S; U S,
such that
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(a) There is a vector B* and a & > 0 such that Q(z; (B*z) > 8, ze81) = 1
and Q(z; (B*z) < —8,z¢8:) = 1.

(b) Samples X;, X,, -+ are drawn independently from the distribution Q.

(e) Fori=1,2,Q(S:) > 0.

3. The algorithm. Estimate B* as follows.

(1) Let the initial estimate of B* be B, = 2 2408 X® — > 4,69X?,
where the 6{”’s are non-negative but not all zero.

(2) By = Bn + ePX, — X, , where the ¢’s are determined in accordance
with the following rules.

(a) If X, £S; then

e = 0,6 = 0if (B.X,) 20, ¢ = —(B.X,)/|X." if (B.X.) < O.
(b) If X, e 8., then
e = 0,6 =0 if (B.Xy) £0,e = (BX,)/|Xal" if (B.X,) > 0.

This algorithm may be described geometrically as follows. If X, is not oriented
correctly with respect to the plane (B,X) = 0, then B,,; = B, + U, , where U,
is the shortest vector which can be added to B, so that (B,1X,) = 0; otherwise,
Bn+l = B,, .

~ The results below also hold for the class of algorithms defined as follows:
¢ = 0 in accordance with the algorithm above; if ei” 5 0, 0/(B.X.)|/ ]X,,|2 =<
e < 2|(BaX,)|/|Xal", where 6 is a fixed number in the interval (0, 1).

4. Convergence properties of the algorithm. A convergence theorem analogous
to the one below was proved by Papert [2] for the case where the attribute
vectors X are binary. Note that

n n
1 2)
Bin = Bi+ 2, e"Xi — 2 "X
1= 1=

Assume none of the X; fall in the exceptional set of probability zero violating
assumption (a). We introduce coordinates as follows. Let £ be a unit vector in
the B* direction. Write X, = Y, + ,E, where Y, is orthogonal to E, and B, =
Cn + B.E, where C, is orthogonal to E. Let ¢ = 8/IB*{. If X, &8, then k, > ¢;
and if X, 8,k < —e.

LEMMA 1. Bt 2 Bn 2 61 > 0.

ProoF. If X, 81, Bat1 = Bn + €5ks and eky = 0. If X, 68, Bot1 =
Bn — €Pks, and ek, < 0. In either case Bny1 = Bn . Similarly, since B, =
SR 0PXP — 34, 09X P, where the 6”’s are non-negative, 8 is positive.

LEMMA 2. |Bpya| < |Bal.

Proor. If e 5 0, |Bops|" — |Baf* = ()| X + 2¢$(B.X,). This is
negative since el’ < —2(B,X.)/|X.[".

If e 5 0, |Bop|’ — |Bal” = (e2))|Xa° — 26 (B, X,). This is negative, since
e < 2(B.X.)/| X%

LemMa 3. B, — B, a finite, non-zero vector.
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Proor. Note that |B,|" = 85 + |Cu|". Since by the previous lemmas, |B.,|
is non-increasing and B, is non-decreasing, it follows that 8, — B < «. (Ob-
serve also that |C,| must be non-increasing.) But

Buri = B+ Z P — D P2 Byt e Z N SC)

=1 =1

Thus, since ¢ > 0, 2 e and D ¢ must converge to finite limits. Since S
and 8. are bounded, we have

Bui = Bi 4+ X e’X; — > ePX; — B,
=1

=1

a finite non-zero vector.

THEOREM. With probability one, (a) Q(z; (Bx) < 0, ze81) = 0 and (b)
Q(z; (Bx) > 0,z¢8,;) = 0.

Proor. We ﬁrst prove (a). From Lemma 3 we know that >y el is finite
and therefore that & — 0. Thus for every 6 > 0, lim,.,, P(eS’ > 6) = 0. For
every a > 0, since the event (B,X,) < —a/2 is contalned in the event eﬁ,l)&>
o/2H, Where h is an upper bound of [X| on Sy U S, , it follows that

limyaw P((BuXn) < —a/2, X, e81) = 0.
Since the X’s are independent,
P((BuXn < —/2, X €81 | X1, -+, Xua) = Q(z; (Baz) < —a/2, z £ 8.

Thus P((BuX,) < —a/2, XaeS) = [Q(z; (Biz) < —a/2, z¢8)dP.
Let M, = min [inf,.s,((B — B.)z), 0], and observe that M, < 0 and that
M, — 0 almost surely. Now

Q(z; (Bz) < —a/2 4+ M, ,xe81) = Q(z; (Bax) < —a/2, xe8).
Therefore,
fQ(x; (Br) < —a/2 + M.,z e 8)dP — 0.
Note that

fQ(x; (Bz) £ —a/2 + M,,z¢8,)dP

> f Q(x; (Br) < —a/2 + Ma,z ¢ 81) dP
Mp<—al2

+ Q(z; (Bz) < —a, x € 81) dP

Mpz—a/2

> —P(M, < —a/2) + f Q(z; (Bx) < —a,x & Q1) dP.
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Since P(M, < —a/2) — 0, we have Q(z; (Bz) < —a, z & 8;) = 0 almost surely
for any & > 0. Part (a) follows from the fact that Q(z; (Bz) < v) is continuous
from the left in v. Similarly, for part (b).

6. Conclusions. It has been assumed that sampling is random from the entire
population of individuals to be classified. If stratified sampling, i.e., by categories,
is permitted, convergence may be made more rapid. It may be feasible, for
example, to alternate categories by sampling from a given category as long as
the vector sampled requires an adjustment in the estimate of the dividing hyper-
plane, and as soon as a vector is obtained which is correctly oriented with respect
to the hyperplane, switching to the alternative category. Furthermore, if any
information about the distribution of X is available, it might be practlcable to
incorporate it 'into the stratified sampling plan.
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