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1. Summary. After discussing the sequential decision problem in the general
case and its Bayes solution as given by Wald [11], LeCam [8] and others, in Sec-
tion 2, we give the integral equation satisfied by the Bayes risk. In Section 3 we
specialise to Markov dependent observations and in the last section we give an
illustrative example.

2. Bayes solution in the general case.

(1) Formulation. Let X = {X,},7 = 1,2, - - - be a set of random elements, not
necessarily real or vector-valued. Let % be the space of values of X and @ be
a o-field on % with respect to which all the X,’s are measurable. Let Q@ be an
arbitrary set of parameters, to each element w of which there corresponds a
probability distribution P, on Q.

If X;,, Xip, -, Xi, are observed in this order, we will say that A =
{41, %, -+, @) is observed. Let {X;, , X,,, - -+, X;,} induce a o-field @\ C @
on X and {X,, X1, ---, X,} induce @, . At a certain stage N of experimentation

(including the start) one has to choose an element among a set A, of all actions
available to the statistician after observing A—either stopping experimentation
and taking a terminal decision or continuing observation or taking some other
action. ,

The above formulation is essentially due to Wald [10], [11]. LeCam [8] assumes
that A\ = T\ U Jy where T, is the set of terminal decisions after observing A
and Jy , the set of decisions on how to continue experimentation. J) is associated
with the set of indices of variables which could be observed in the next step. If
J» consists of only one or no index, then we have the usual case of sequential
analysis considered by Wald [11], Wald and Wolfowitz [12] and others. There is
no loss of generality in this assumption if J» is the only set of indices of variables
which will be observed in the next step.

The cost of observing A is a non-negative @\-measurable function c¢(), z, w)
and if the terminal decision ¢ is accepted by observing A, the total amount paid is

C()\, z, w) + W(w’ A >‘)h()" z, w)

where W and h are extended numerical functions satisfying some assumptions.
The formulation given above will include a situation discussed in [4] in connec-
tion with the inventory problem if the future joint distribution and loss are
permitted to depend on the decision at the Ath stage.

(ii) Ewistence and completeness theorems. Under certain assumptions on X,
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Ay, cost and loss functions given below, LeCam [8] has proved the existence of
Bayes solutions in the wide sense and under some more restrictions, Bayes solu-
tions in the strict sense and has proved the completeness of the class of these
Bayes solutions. In the former case e-Bayes solutions will exist (for definition
cf. Blackwell and Girshick [2]). Restrictions which he puts on X and cost func-
tion are (i) the set of variables which can be observed in not more than 7 steps
is finite, (ii) for every A, there exists a o-finite measure ux on @, , such that
whatever be we @, P, is absolutely continuous with respect to w, and (iii)
c(N, z, w) £ c(\, 7, w) if \ is an initial segment of A and ¢(}, z, w) — » as
the number of co-ordinates of A — . The restrictions on A, are of topological
nature which ensure the existence of a measurable Bayes solution. They are,
(iv) T, is metrisable and is a countable union of compact spaces and (v) Bayes
risk after the stage \ is a ®@\-measurable function. Assumption (i) is milder than
the corresponding one imposed by Wald [11] and Kiefer [6], [7], who also have
proved the existence and completeness theorems. Kiefer [6] establishes the
existence of measurable Bayes solution in the stationary case, by first restricting
himself to non-randomized decisions and then mixing with ‘care’.

Wald [11] has proved the completeness theorems, under the restriction that
the risk functions of the procedures is bounded. This restriction is removed by
Ghosh [5] and Kiefer [7]. LeCam’s conditions given above are milder than those
considered by other authors. Evidently the above complete classes will be mini-
mal complete, if they are admissible, which would be so, if for example @ is com-
pact and there exists a unique Bayes procedure associated with a given a prior:
probability distribution on @ (cf. Wald [11]). Moreover, if the class of e-Bayes
solutions is complete, which would be so, if the class of Bayes solutions in the
wide sense is complete, the class of Bayes solutions is e-complete (cf. Wolfowitz
[13]) and conversely.

(iii) The integral equation. Henceforward in this paper we shall assume that
observations are taken sequentially one at a time. Let r, be the minimum (Bayes)
risk (assumed to exist) of terminating the procedure at the nth stage. We assume
that r, is @,-measurable, which will be so under the assumptions given in (ii).
Let ¢, be the cost of observing the first n» variables and 2, = 7, 4+ ¢, . Then
{2, , @ ,n = 1} is a stochastic process. Following the notion of a maximal regular
generalised semi-martingale relative to a stochastic process {2.}, Snell [9] proved
that under some mild restrictions on 2z, (which are satisfied in our case), such a
semi-martingale {y,} exists and gives us the e-Bayes solution, if we terminate at
the mth stage, where

(1) =7 if ypx<z—e€ for k<j and y; = z; — ¢
= oo if undefined by above.

Hence, if lim 2, = o a.s. a Bayes solution in the strict sense will exist.
Snell’s [9] paper is an extension of a paper by Arrow, Blackwell and Girshick
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[1] and of Wald and Wolfowitz [12] (ef. [11]). These papers give us a practical
method of obtaining the Bayes (or e-Bayes) solution in particular cases, at least
in principle. Moreover, if ¥, is the Bayes risk after n observations, then for all =,

(2) Yo = Min(2n , E(Yns1 | @n)) a.s.

This integral equation is of great importance in the theory of sequential analysis
and has been proved by truncation and passage to the limit in [1] and-[12] and
directly by Snell [9]. Evidently (2) needs modification if more than two choices
are available for continuation at the nth stage (cf. [4]).

3. Determination of Bayes solution in the Markov case. Even though (1) and
(2) determine the Bayes solution in the general case, it has not been possible to
determine the stopping regions explicitly even in the case of dichotomy and of
independent and identically distributed random variables. However some
general properties of these Bayes solutions can be established. In this section we
shall assume that {X;} form a Markov sequence with given initial observation
Xo.

Let the cost function be

"k
(3) (i, Tiqr, * 0 5 Tigh, 0) = Zl C(Tjpim1s Tjti, @)
£

for all j and k and for any a priors distribution &,
(4) Ee[e(zi, i1, 0) | = c(§ @) >0

Let &; denote the a posteriors probability distribution on © after ¢ observations.
We shall assume that the loss due to the acceptance of the terminal decision ¢
depends only on w and ¢ and not on z. Under these assumptions, from (2), the
a posteriort risk after n observations (z;, - - -, #,) is (with obvious notation)

yn(&) y X0, 0, xn) = E‘éoc("); Lo, ", xn) + min(“(é"); C(En ) xn)

(5)
+ E(y0(£n+1 sy Ln y xn+1) I xn)) = EEOC(O) y Loy * xn), + Pn(En ) xn) say.

Henece we stop sampling at the nth stage if
(6) 7'0(51») < C(En ) xn) + E(y0(£n+1 y Tn xn+l) | xﬂ))
or Pn(En ) 1?,,) = TO(En),

for the first time, and continue sampling otherwise. This will give us the Bayes
procedure. ‘

It can be easily proved that y(£, z) is concave and, in the case of finite number
of alternatives a;, @z, - -+, ax, continuous in £ The latter property can be
proved by truncation and following a method used in Blackwell and Girshick
[2], for the case of independent identically distributed random variables. Hence
the stopping region E; C E, the space of all a prior¢ distributions, can be split
up into % closed convex regions which have at most boundary points in common,
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where we prefer one of the k actions. In particular, for a dichotomy with hy-
potheses 1 and 2, the region where we prefer hypothesis 7 at the jth stage, Z;(7),
is an interval given by

Ei(1) = [6(z;) = & = 1],
Ei(2) = [0 £ & = y(z)] v(z;) = 8(z;),

where & is the a priors probability of hypothesis 1. By continuity in ¢ of both
sides of (5), the boundaries §(x;) and v(z;) satisfy the equations

(7)

(1 = y(z))we + v(x)wee = ®(x;, v(z;))
d(z)wn + (1 — 8(z;))wa = $(z;, 8(x;)),
for all  and z; , where w;; denotes the loss of accepting 7 when 7 is true and
(9) Q(z;, &) = E(yo(, 25, zin) | 25) + c(§, z5)
Since ®(x;, £) is continuous and concave in £, (8) has a unique solution for
£e(0,1) if w, < 0 and wyy < 0. Hence we have the Bayes solution at least
in principle, even though the explicit form will involve the computation of
yo(gr zj, xf—f-l)'

In the case of independent identically distributed random variables, by study-
ing the associated SPR test we are able to get approximate Bayes solution, using

Wald’s approximation. The results of this section are proved in a less general
manner in [3]. An illustrative example will be given in the next section.

(8)

4. Testing of hypothesis in a 2-state Markov chain. Let the transition proba-
bility matrices under H; and H, be

1 0 1 0
P 1 = and P 9 = , ,
P P D1 P2

respectively. Let w;; be the loss incurred by accepting H; when H; is true, which
is positive for ¢ £ j and is zero for 2 = 7, (4,7 = 1,2). Let ¢ > 0and ¢; = 0
be the costs under Hy and ¢; > 0 and ¢; = 0 under H; , of observations belonging
to the first and second state respectively.

According to the general theory, if after » observations we are in State 1,
sampling is continued if the a posteriors probability £ of H; is such that

(10) v(1) < & <8(1),

sampling is discontinued and H, is accepted if £ > 8(1) and sampling is dis-
continued and H, is accepted if & < y(1). Similarly if after » observations we
are in State 2, sampling is continued if

(11) 7(2) < & < 8(2),
H, is accepted if & > §(2) and H. is accepted if £ < ¥(2). At the boundary
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points one is indifferent and may base his decision on an independent experiment
such as tossing of an unbiased coin.

(i) For sequences whose Oth observation belongs to State 1, the Bayes solu-
tion is to make a decision without any observation. Thus

(12) v(1) = 8(1) = wu/(wa + wi).

(i) For sequences whose Oth observation belongs to the second state, sampling
is continued until it reaches State 1 or & > §(2) or & < v(2), whichever happens
earlier. If the last observation belongs to State 1, procedure given in (i) is
followed with ¢ replaced by &, . Hence, if p(2, £) is the loss incurred by the Bayes
solution starting from State 2 with £ as the a prior: probability of H, , v(2) and
8(2) are given by

v(2)wis = v(2) (1 p1 + 2 p2) + (1 — v(2)) (et 1 + ¢35 p2)
+ min [(1 - 7(2))17{ Wa , ’7(2)1)1 W2

(13)
_ ’ 7(2)1)2
+ (7(2)172 +Q 7(2))1’2)9 (2’ 7(2)1)2 Fa- 7(2))1)2) ’
(1 — 8(2)wa = 8(2)(cr pr + 2 p2) + (1 — 8(2)) (et p1 + ¢z p2)
(14) + min [(1 — 8(2))p1 wa , 3(2)p1 w2

+ (5(2)p2 -+ (1 — 5(2))1);)17 (2, 3(2)172 j_(2(ip_2_ 3(2)p2) :

Our main problem is to determine p(2, £).
CasE (i): ps < p2 . In this case
(15) p(2,8) = HEi(c] &) +wn(l — p)*] 4+ (1 — £)[Ba(c | £) + wa(p2)™].
where E;(c | £) = expected cost of observations under H; when £ is the

(16) a priori probability of H, ,

No—1

= Nocp,* + ;; (&1 + ko) pips

where No(&) is the smallest non-negative value of n for which

1oy E(1 —8(2)) £(1 — +(2))
(17) (pz/I’z) < —(—].—_:W or > m .

Similarly
Ex(c| &) = expected cost of observations under H,,
(18)

No—1
Noca(ph)™ + 2 (e1 + ker) (p2)'pi -
Further ko(£) equals Ny or the smallest integer & such that

Eplé Y4l > Way
Epé A (1 —8pep ~ wu+ wie’

(19)
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whichever is smaller. (15) follows from the fact, that, in this case, the probability
of accepting H; ultimately when H; is true for sequences starting from State 2
equals p5°. Hence from (14), since

No(a:(%,2,2)) = 0 = ko(&(%,2,2)) = Ei(c| &) = Ex(c| &),
(20) (1 — 8(2))wn = 5(2)(cpr + cxpa) + (1 — 8(2)) (cipi + caps)
+ min ((1 — 5(2))piwa, 5(2)pwn) + (1 — 5(2))prwn
Thus §(2) is given by

1 - 5(2»17{“’21 = 8(2)(c1pr + c2p2)
+ (1 = 8(2))(ca1pr + caps) + 8(2)pawne -

It may be noted that (21) gives the value of the upper boundary point for the
Bayes solution truncated at the first observation.

Once we obtain §(2) we can solve for y(2) from (13) as follows. Guess a value
v0(2) of ¥(2) and calculate No(&(%0(2), 2, 2)) and ko(£1(v0(2))) and hence
Ei(c| &) and Ex(c | £&). Then (13) is a linear equation in y(2) and can be solved
easily. If v1(2) is the solution obtained, repeat the process of calculating Ei(c | &)
and Ex(c | &), now from £(v1(2), 2, 2), then from & (v2(2), 2, 2) and so on until
we get the same value of %,(&) and No(&) for two consecutlve 1tera,t10ns

ExampLE 1. Let wiy = 30, wy = 60, ¢, = 1, ¢ = 3, ¢ = 2, ¢z = 5 and

P1=<} 2) and P2—<1 ?)
3 3 3 3

From (12), y(1) = 8§(1) = %. Since ps < P2, from (21) 8(2) = +ii. Assume
that v(2) = 7(2) = ’21' Then No(&) =ko(t1) = 1, Es(c| &) = 3§, Ez(c l &) = 3.
Because for y(2) < %, min[(1 — v(2))40, 107(2)] = 10v(2), from (13),
v(2) = . Now assume that v(2) = v1(2) = . For this value of y(2),
No(&) = 1 = ko(&). Hence v(2) = 5.

Cask (ii): ps > p». In this case the role of v(2) and §(2) is the reverse of
that of Case (i). Equation (13) does not involve 8(2) and hence can be solved
for v(2). Substituting this value of v(2) in (14) we can solve for §(2) in the
same manner as for y(2) in case (i).

(21)
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