INEQUALITIES FOR THE rth ABSOLUTE MOMENT OF A SUM
OF RANDOM VARIABLES, 1 = r = 2

By BENGT vON BaHR AND CARL-GuUsTAV ESSEEN

The Royal Institute of Technology

1. Introduction and summary. Let X;, X,, - -+, X, be a sequence of random
variables (r.v.’s) and put S, = w1 X,,1 £ m £ n. It is well-known that
0 BlS, = w1 BIX r> 1,

E|S,|" = 2~ E|X)|, r < 1.
However, if the r.v.’s satisfy the relations
(2) E(Xmi1| Sw) = Oas. 1=mEn-—1,

't is possible to improve the first inequality considerably. The case r > 2 with
lnd¢.=,-pendent r.v.’s will be treated elsewhere by one of the authors, von Bahr.
If r = 2, we have, under (2),

(3) ES: = ) 1, EX}
In the case 1 < r £ 2, we will show that under (2)
(4) E|S." £ C(r,n) 21 E|X,[,

where C(r, n) is a bounded function of r and n. In Theorem 2 we show that (4)
is true with C(r, n) = 2. If the distribution of each X, conditioned by S,
is symmetric about zero, one can put C(r, n) = 1 (Theorem 1). Further, if the
r.v.’s satisfy the following conditions

5) E(X;|Run:) = 0 as. 12si=m+1Z=n,

m+1
where Ry = 2 00X,

it is possible to put C(r, n) = 2 — n™".

The conditions (2) and (5) are fulfilled if the r.v.’s are independent and have
zero means. In this case, however, it is possible to make C(r, n) dependent on r,
so that C(r, n) — 1 as r — 2. It is possible to show by an example, that (4) is
not generally true with C(r, n) = 1 even in this case.

If1=r<s=2and E|X,]° < »,1 £ » < n, it is generally better not to use
(4) directly, but to use it together with E|S,|” < (E|S.|°)™, so that E|S,|" £
(C(s, n) 2= BIX|")".

The case r < 11is by (1) trivial.

2. Symmetric conditional distributions. We start by stating without proof a
special case of an inequality due to Clarkson [2]:
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(6) o+ ol + e — oI < 20kl + Iyl"), 1sr<e,

where x and y are real or complex quantities. In the real case this inequality will
also follow as a special case of Theorem 1, which we shall prove by different means
in Section 3.

We say that the distribution of a r.v. ¥ conditioned by a r.v. X is symmetric
(about zero), if foreverya = 0, P(Y > a | X) = P(Y < —a| X) as.

LEmMMA 1. Let X and Y be two r.v.’s with E|X|" < « and E|Y|" < «. If the dis-
tribution of Y conditioned by X s symmetric, then E|X + Y| < E|X|" + E|Y],
1<r =2

The lemma follows from

BIX + Y[ = E{E(IX + Y["| X)} = E{E(]X — Y["| X)} = E|X — Y[

by taking expectations in (6).

The following theorem is now easily proved by induction.

TuroreM 1. Let X1, X,, -+ X, be a sequence of r.v.’s with E|X,|” < «,
v £ n. If the distribution of each X1 conditioned by S, is symmetric,
m = n — 1, then

._
A gA

ElS." = 2l EIX., 1sr<2.

3. Zero conditional expectations. In order to be able to prove a correspond-
ing inequality under the condition (2), we shall express absolute moments by
means of characteristic functions (Lemma 2), state an inequality due to Lo&ve
(Lemma 3) and finally examine the effect of symmetrization (Lemma 4).

We shall use the formula

(7) o] = K(r)[Za (1 — cosat)/|t|™ dt, 0<r<2,
where z is real and
(8) K(r) = (JZ (1 — cosu)/|u™ du)™ = (T'(r + 1)/x) sin rx/2.

LemMA 2. Let X be a r.v. with the distribution function (d.f.) F(x) and the charac-
teristic function (ch.f.) f(t), where f(t) = [Z, e dF (z). If E|X|" < o, then

EIX|" = K(r)[2. (1 — RF())/|t|™ a, 0<r<2

where R stands for the real part.
Proor. From (7) we have

EIX|" = [Zolal dF(z) = K(r)[2e [Zu (1 — cosat)/|t| ™ dt dF (z)
= K(r) % [Za (1 = cos o) dF ) di/ ™ = K ()% (1= BF(0)/U" .

Since the integrand is non-negative we may invert the order of integration.
This integral representation of the absolute moment enables us to give another
proof of Theorem 1 without using the inequality (6).
Proor or TuroREM 1: The theorem is trueif n = 1. Wefixm, 1 Em = n — 1
and let f..(¢) be the ch.f. of X,..1 conditionedby S,. : fu(t) = E(exp (6t Xns1) | Sn).
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According to the assumptions, f,.(t) is real. The ch.f. of S,.,1 conditioned by S is
exp (8 )fn(t), and consequently we have from Lemma 2 a.s.

E(|Snsl" | 8n) = K(r)[Za[L — R(exp (itSn)fn(t))/|I"™ dt;
but
1 — R(exp (&tSm)fm(t)) = 1 — fu(t) costS, = (1 — cos tSn)
+ (1 = fu(®)) = (1 — costSn)(1 — fult)) < (1 — costSn) + (1 — fu(t)),
so that |

E( |Smta] | 8n) = K(7) [: 1 — cos tSm ) + K(r) [: L:Mdt

It!r+l |tlr+1
= 'Smr + E( 'Xm-l'llr l Sm).

Taking expectations, we get E|Suu|” £ E|Sn|” + E|Xnu|’, and the theorem
follows by induction.

ReEmARK: Applying Theorem 1 to two independent r.v.’s X and Y, where
X = z with probability 1 and ¥ = +y each with probability %, we get the in-
equality (6).

Lemma 3. If X and Y are two r.v.’s with E|X|” < =, E|Y|" < « and
E(Y|X)=0as.,then E|I X+ Y| 2 EX|,r = 1.

For a proof see Logve [3], p. 263.

We will denote a r.v. by X', if it is independent of and has the same d.f. as X.
If f(t) is the ch.f. of X, X — X’ has the ch.f. [f(#)|’, which is real and non-nega-
tive. From Lemma 2 and the identity 2(1 — Rf(¢)) = (1 — |f(1)]*) + |1 — f@)[%,
we obtain

(9) E|IX|" = 1E|IX — X'| 4+ 3K(r)[Z(|1 — fOF/1™ ) dt, 0 < r < 2.

From this formula and Lemma 3, we get the following lemma.
LemMma 4. If X is a r.v. with EX = 0 and E|X|" < « then

(10) 1EIX — X" £ BIX| £ EIX — X7, 1

A
<

I\
o

We are now ready to prove the inequality (4) in two cases.

THEOREM 2. Let X;, X., -+ X, be a sequence of r.v.’s satisfying (2). If
EBX, < o, 1 v En,thenE|lS, S22 EX|),1<r <2

Proor. The theorem is trueif n = 1. Wefixm, 1 £ m < n — 1 and introduce
ar.v. Xni1, which, conditioned by S, , is independent of and has the same con-
ditional d.f. as X,41. By Lemma 3, Lemma 1 and the left hand inequality of
Lemma 4 we obtain E|Smy| = E|Sn + Xnu £ ElSn + Xnn — X"
< B|Su|" + E|Xni1 — Xmu|” £ B[S, 4+ 2E|X,11|” and the theorem follows by
induction.

TueoreM 3. Let Xy, - - - X, be a sequence of r.v.’s sattsfying (5). If E|X,|” < =,
1 v £ n,then

E|S. =@ —-n" 2L EX)S, 1<rg2

A
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Proor: The theorem is true if n = 1. Supposing it is true if n = m, we fix an
5,1 <7 =< m+ 1, and put Spys = Rni + X, , where Rp; = D oit, i X, . Intro-
ducing a r.v. X,’, which conditioned by R is independent of and has the same
conditional d.f. as X, we obtain from Lemma 3, Lemma 1, the assumption
and Lemma 4:

E|Snu|" = E|Rmi + Xi|" £ E|Rmi + Xi — X/|"
< ER.| + EX; — X/I" < (2 —m™) WL L BIX." + 2B|X.".
Suming over ¢ from 1 to m + 1, we obtain
(m + DESnal” £ (2m + 1) 235 EIX[,
i.e.
ElSnul = (2 — (m+ 1)) 203 BIX.[
and the theorem follows by induction.

4. Independence. We will now suppose that the r.v.’s X, are independent
and have zero means. In this case it is possible to state an inequality of the type
(4), which continuously passes over to (3) as r — 2. The method is to estimate
the last term in (9).

Lemma 5. If f(2) is the ch.f. of a r.v. X, where EX = 0 and E|X|" = 8, < =,
then

1 — f(t)] = [3.38/(2.6)"1B.¢", —o <t< o, 1=r=2,
Proor. By simple calculations one obtains

1 — ™ + itz| < 1.3|tx|, - <fr < =,

1 — e + x| < 0.5(tz)’, — o <t < o,

Multiplying the (2 — r)th power of the first inequality by the (r — 1)th power
of the second, we have |1 — ¢" + dtz| < [3.38/(2.6)"]|tz|". From 1 — f(¢) =
2w (1 — €™ 4 4tz) dF(z) the stated inequality follows.
We shall now estimate the integral J = [Z,[1 — f(¢)[/|¢|"" dt, where f(t)
satisfies the conditions of Lemma 5. Let a be a positive parameter. Then

J =2[/0a+f‘j§2<_(§2'%3,)2foa§;dt+2f;%dt

-2 @E5e) < 3]

We choose a so that this expression is a minimum, and obtain

(11) J £ [27.04/(r2.6)"18, .

We now combine (9) and (11) into the following lemma.
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LemMmA 6. If X isar.v. with EX = 0 and E|X|" < o, where r satisfies the follow-
ing tnequalities
(12) D(r) = [13.52/(#2.6)0(r)sinre/2 <1 and 1 =7r £ 2,
then E|X|" < [2(1 — D(r))]"'E|X — X|".

This 1nequahty is sharper than the right hand side of (10) if D(r) < 1. Now,
D(r) decreases monotonically to zero as r varies from 1 to 2, and D(r) < % when
7> 1.6. Forr = 1.8 we have [2(1 — D(r))] "' /2 0.643.

TuEOREM 4. Let X, X, - -+ X, be a sequence of independent v.v.’s with EX, = 0
and B|X,|” < ©,1 £ v £ n. If r satisfies (12), then E|S,|” £ [1 — D(r)]™*-
2 EIX)

Proor. We introduce a new sequence of independent r.v.’s X;, Xy, -+ X,
which are independent of the original ones and where X,” has the same distribu-
tionas X,,1 < » < n. Putting 8,” = X~ X,’, we get by Lemma 6, Theorem 1
and Lemma 4

B8 £ [2(1 = DO)ITEIS, — 8" £ 2(1 = D)™ 2= EIX, — XI
<[ — D)™ X ElX
5. Application. Let X, X,, - -+ X, be a sequence of independent r.v.’s with
the same d.f. and with EX = 0, E|X,|" = 6, < ©,1 < v £ n.
D. Brillinger [1] has shown that in this case
P(|Xa| > a) = o(n'™"),n— o, 1=r<2,

where X, = n* 2 1, X, . From Theorem 3, Theorem 4 and Markov’s inequality
we easily deduce the following inequality, which is slightly weaker than Bril-
linger’s, but on the other side only contains explicit quantities:

P(|X.| > a) £ M(r,n)B,a 0", 1<r=<2

where M (r,n) = min {2 — n™", [1 — D(r)]7"} if (12) is satisfied and M (r, n) =
2 — n~" otherwise.
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